Skip to main content

Metabolism of Infants and Children

  • Living reference work entry
  • First Online:
Book cover Pediatric Surgery
  • 247 Accesses

Abstract

Despite advances in the field of nutrition prevalence of malnutrition remains strikingly high in hospitalized patients particularly those with protracted illness. Appropriate nutritional intervention following any metabolic stress is predicated upon an understanding of the profound, yet predictable, alteration in metabolism. The primary aim of these interventions is to augment the short-term benefits of the pediatric metabolic response to insult or injury while minimizing any long-term consequences. The metabolic state following insult or injury progresses through two predictable stages: an initial hypometabolic “ebb phase”, followed quickly by a prolonged increase in overall metabolic rate, called the “flow phase”. Quantification of energy requirements is an important first step in the design of appropriate nutritional strategies, as dietary regimens that both underestimate and overestimate energy needs are associated with injurious consequences. Pediatric patients additionally have several key differences as compared to adults in terms of available metabolic reserves, baseline energy and substrate requirements. The metabolic stress response leads to enhanced protein, glucose and lipid turn over to provide energy and substrate needed for healing and recovery. This enhanced substrate turnover is beneficial in the short-term, but the consequences of sustained catabolism may be quite rapidly deleterious in children. While this substrate breakdown cannot be completely reversed, knowledge of the key differences in the pediatric metabolic stress response can help design nutritional regimens, which can mitigate the deleterious effects associated with sustained catabolism to a large extent by appropriate provision of energy and nutritional substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agus MS, Javid PJ, Piper HG, Wypij D, Duggan CP, Ryan DP, Jaksic T. The effect of insulin infusion upon protein metabolism in neonates on extracorporeal life support. Ann Surg. 2006;244(4):536–44.

    PubMed  PubMed Central  Google Scholar 

  • Agus MS, Steil GM, Wypij D, SPECS Study Investigators, et al. Tight glycemic control versus standard care after pediatric cardiac surgery. N Engl J Med. 2012;367(13):1208–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anez-Bustillos L, Dao DT, Baker MA, Fell GL, Puder M, Gura KM. Intravenous fat emulsion formulations for the adult and pediatric patient: understanding the differences. Nutr Clin Pract. 2016;31(5):596–609. https://www.ncbi.nlm.nih.gov/pubmed/27533942

  • Baker J, Detsky A, Wesson D. Nutritional assessment: a comparison of clinical judgement and objective measurements. N Engl J Med. 1982;306(16):969–72.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett RH, Dechert RE, Mault JR, Ferguson SK, Kaiser AM, Erlandson EE. Measurement of metabolism in multiple organ failure. Surgery. 1982;92(4):771.

    CAS  PubMed  Google Scholar 

  • Beaufrere B. Protein turnover in low-birth-weight (LBW) infants. Acta Paediatr. 1994;83(s405):86–92.

    Article  Google Scholar 

  • Birkhahn RH, Long CL, Fitkin DL, Busnardo AC, Geiger JW, Blakemore WS. A comparison of the effects of skeletal trauma and surgery on the ketosis of starvation in man. J Trauma. 1981;21(7):513–9.

    Article  CAS  PubMed  Google Scholar 

  • Carter BA, Taylor OA, Prendergast DR, Zimmerman TL, Von Furstenberg R, Moore DD, Karpen SJ. Stigmasterol, a soy lipid-derived phytosterol, is an antagonist of the bile acid nuclear receptor FXR. Pediatr Res. 2007;62(3):301–6. https://www.ncbi.nlm.nih.gov/pubmed/17622954

  • Chwals WJ. Overfeeding the critically ill child: fact or fantasy? New Horiz. 1994;2(2):147.

    CAS  PubMed  Google Scholar 

  • Chwals WJ, Letton RW, Jamie A, Charles B. Stratification of injury severity using energy expenditure response in surgical infants. J Pediatr Surg. 1995;30(8):1161–4.

    Article  CAS  PubMed  Google Scholar 

  • Covelli HD, Black JW, Olsen MS, Beekman JF. Respiratory failure precipitated by high carbohydrate loads. Ann Intern Med. 1981;95(5):579–81.

    Article  CAS  PubMed  Google Scholar 

  • Cuthbertson DP. Post-shock metabolic response. Lancet. 1942;1:433–7.

    Article  Google Scholar 

  • Cuthbertson D. Intensive-care-metabolic response to injury. Br J Surg. 1970;57:718–21.

    Article  CAS  PubMed  Google Scholar 

  • Delgado AF, Okay TS, Leone C, Nichols B, Del Negro GM, Vaz FA. Hospital malnutrition and inflammatory response in critically ill children and adolescents admitted to a tertiary intensive care unit. Clinics (Sao Paulo). 2008;63(3):357–62.

    Article  Google Scholar 

  • Denne SC, Karn CA, Ahlrichs JA, Dorotheo AR, Wang J, Liechty EA. Proteolysis and phenylalanine hydroxylation in response to parenteral nutrition in extremely premature and normal newborns. J Clin Invest. 1996;97(3):746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felig P. The glucose-alanine cycle. Metabolism. 1973;22(2):179–207.

    Article  CAS  PubMed  Google Scholar 

  • Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism. 1988;37(3):287–301.

    Article  CAS  PubMed  Google Scholar 

  • Forbes GB, Bruining GJ. Urinary creatinine excretion and lean body mass. Am J Clin Nutr. 1976;29(12):1359–66.

    CAS  PubMed  Google Scholar 

  • Freeman J, Goldmann DA, Smith NE, Sidebottom DG, Epstein MF, Platt R. Association of intravenous lipid emulsion and coagulase-negative staphylococcal bacteremia in neonatal intensive care units. N Engl J Med. 1990;323(5):301–8.

    Article  CAS  PubMed  Google Scholar 

  • Friedman Z, Danon A, Stahlman MT, Oates JA. Rapid onset of essential fatty acid deficiency in the newborn. Pediatrics. 1976;58(5):640–9.

    CAS  PubMed  Google Scholar 

  • Giovannini M, Riva E, Agostoni C. Fatty acids in pediatric nutrition. Pediatr Clin N Am. 1995;42(4):861.

    Article  CAS  Google Scholar 

  • Griffiths RD, Jones C, Palmer TE. Six-month outcome of critically ill patients given glutamine-supplemented parenteral nutrition. Nutrition. 1997;13(4):295–302.

    CAS  PubMed  Google Scholar 

  • Heyland D, Muscedere J, Wischmeyer PE, Canadian Critical Care Trials Group, et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;368(16):1489–97.

    Article  CAS  PubMed  Google Scholar 

  • Hulst JM, van Goudoever JB, Zimmermann LJ, Hop WC, Büller HA, Tibboel D, Joosten KF. Adequate feeding and the usefulness of the respiratory quotient in critically ill children. Nutrition. 2005;21(2):192–8.

    Article  PubMed  Google Scholar 

  • Institute of Medicine (US). Panel on Macronutrients, & Institute of Medicine (US). Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Natl Acad Pr; 2005;1.

    Google Scholar 

  • Joosten KF, Verhoeven JJ, Hazelzet JA. Energy expenditure and substrate utilization in mechanically ventilated children. Nutrition. 1999;15(6):444–8.

    Article  CAS  PubMed  Google Scholar 

  • Long CL, Spencer JL, Kinney JM, Geiger JW. Carbohydrate metabolism in man: effect of elective operations and major injury. J Appl Physiol. 1971;31(1):110–6.

    CAS  PubMed  Google Scholar 

  • Long CL, Kinney JM, Geiger JW. Nonsuppressability of gluconeogenesis by glucose in septic patients. Metabolism. 1976;25(2):193–201.

    Article  CAS  PubMed  Google Scholar 

  • Manley BJ, Makrides M, Collins CT, DINO Steering Committee, et al. High-dose docosahexaenoic acid supplementation of preterm infants: respiratory and allergy outcomes. Pediatrics. 2011;128(1):e71–7.

    Article  PubMed  Google Scholar 

  • McClave SA, Snider HL. Invited review: use of indirect calorimetry in clinical nutrition. Nutr Clin Pract. 1992;7(5):207–21.

    Article  CAS  PubMed  Google Scholar 

  • McClave SA, Lowen CC, Kleber MJ, McConnell JW, Jung LY, Goldsmith LJ. Clinical use of the respiratory quotient obtained from indirect calorimetry. JPEN J Parenter Enteral Nutr. 2003;27(1):21–6.

    Article  PubMed  Google Scholar 

  • Mehta NM, Compher C. ASPEN clinical guidelines: nutrition support of the critically ill child. JPEN J Parenter Enteral Nutr. 1997;33(3):260–76.

    Article  Google Scholar 

  • Mehta N, Jaksic T. Nutritional support of the pediatric patient. In: Holcomb 3rd GW, Murphy JP, Ostlie DJ, editors. Ashcraft’s pediatric surgery. 5th ed. Philadelphia: Saunders Elsevier; 2010. p. 19–31.

    Chapter  Google Scholar 

  • Mehta NM, Bechard LJ, Leavitt K, Duggan C. Severe weight loss and hypermetabolic paroxysmal dysautonomia following hypoxic ischemic brain injury: the role of indirect calorimetry in the intensive care unit. JPEN J Parenter Enteral Nutr. 2008;32(3):281–4.

    Article  PubMed  Google Scholar 

  • Nandivada P, Fell GL, Mitchell PD, Potemkin AK, O’Loughlin AA, Gura KM, Puder M. Long-term fish oil lipid emulsion use in children with intestinal failure-associated liver disease. JPEN J Parenter Enteral Nutr. 2017;41(6):930–937.

    Google Scholar 

  • NICE-SUGAR Study Investigators, Finfer S, Chittock DR, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.

    Article  Google Scholar 

  • Nordenström J, Carpentier YA, Askanazi J, Robin AP, Elwyn DH, Hensle TW, Kinney JM. Metabolic utilization of intravenous fat emulsion during total parenteral nutrition. Ann Surg. 1982;196(2):221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pham TN, Warren AJ, Phan HH, Molitor F, Greenhalgh DG, Palmieri TL. Impact of tight glycemic control in severely burned children. J Trauma. 2005;59(5):1148–54.

    Article  PubMed  Google Scholar 

  • Powis MR, Smith K, Rennie M, Halliday D, Pierro A. Effect of major abdominal operations on energy and protein metabolism in infants and children. J Pediatr Surg. 1998;33(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  • Reichman B, Chessex P, Verellen G, Putet G, Smith JM, Heim T, Swyer PR. Dietary composition and macronutrient storage in preterm infants. Pediatrics. 1983;72(3):322–8.

    CAS  PubMed  Google Scholar 

  • Schoeller DA, Hnilicka JM. Reliability of the doubly labeled water method for the measurement of total daily energy expenditure in free-living subjects. J Nutr. 1996;126(1):348S.

    CAS  PubMed  Google Scholar 

  • Schoenheimer R, Rittenberg D. Deuterium as an indicator in the study of intermediary metabolism. Science. 1935;82:156–7.

    Article  CAS  PubMed  Google Scholar 

  • Seale JL, Rumpler WV. Comparison of energy expenditure measurements by diet records, energy intake balance, doubly labeled water and room calorimetry. Eur J ClinNutr. 1997;51:856–63.

    Article  CAS  Google Scholar 

  • Shew SB, Keshen TH, Jahoor F, Jaksic T. The determinants of protein catabolism in neonates on extracorporeal membrane oxygenation. J Pediatr Surg. 1999;34(7):1086–90.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan V, Spinella PC, Drott HR, Roth CL, Helfaer MA, Nadkarni V. Association of timing, duration, and intensity of hyperglycemia with intensive care unit mortality in critically ill children. Pediatr Crit Care Med. 2004;5(4):329–36.

    Article  PubMed  Google Scholar 

  • Tappy L, Schwarz JM, Schneiter P, et al. Effects of isoenergetic glucose-based or lipid-based parenteral nutrition on glucose metabolism, de novo lipogenesis, and respiratory gas exchanges in critically ill patients. Crit Care Med. 1998;26(5):860–7.

    Article  CAS  PubMed  Google Scholar 

  • Van Aerde JE, Sauer PJ, Pencharz PB, Smith JM, Heim T, Swyer PR. Metabolic consequences of increasing energy intake by adding lipid to parenteral nutrition in full-term infants. Am J Clin Nutr. 1994;59(3):659–62.

    PubMed  Google Scholar 

  • Van den Berghe G, Wilmer A, Hermans G, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354(5):449.

    Article  PubMed  Google Scholar 

  • Whyte RK, Haslam R, Vlainic C, et al. Energy balance and nitrogen balance in growing low birthweight infants fed human milk or formula. Pediatr Res. 1983;17(11):891–8.

    Article  CAS  PubMed  Google Scholar 

  • Wiener RS, Wiener DC, Larson RJ. Benefits and risks of tight glucose control in critically ill adults. JAMA. 2008;300(8):933–44.

    Article  CAS  PubMed  Google Scholar 

  • Wintergerst KA, Buckingham B, Gandrud L, Wong BJ, Kache S, Wilson DM. Association of hypoglycemia, hyperglycemia, and glucose variability with morbidity and death in the pediatric intensive care unit. Pediatrics. 2006;118(1):173–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faraz A. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Germany

About this entry

Cite this entry

Khan, F.A., Fisher, J.G., Sparks, E.A., Jaksic, T. (2016). Metabolism of Infants and Children. In: Puri, P. (eds) Pediatric Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38482-0_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38482-0_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38482-0

  • Online ISBN: 978-3-642-38482-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics