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ABSTRACT

In  recent  studies,  proxy  XCH4 retrievals  from  the  Japanese  Greenhouse  gases  Observing  SATellite  (GOSAT)  have
been  used  to  constrain  top-down  estimation  of  CH4 emissions.  Still,  the  resulting  interannual  variations  often  show
significant discrepancies over some of the most important CH4 source regions, such as China and Tropical South America,
by  causes  yet  to  be  determined.  This  study  compares  monthly  CH4 flux  estimates  from  two  parallel  assimilations  of
GOSAT XCH4 retrievals from 2010 to 2019 based on the same Ensemble Kalman Filter (EnKF) framework but with the
global chemistry transport model (GEOS-Chem v12.5) being run at two different spatial resolutions of 4° × 5° (R4, lon ×
lat) and 2° × 2.5° (R2, lon × lat) to investigate the effects of resolution-related model errors on the derived long-term global
and regional CH4 emission trends. We found that the mean annual global methane emission for the 2010s is 573.04 Tg yr –1

for the inversion using the R4 model, which becomes about 4.4 Tg yr –1 less (568.63 Tg yr –1) when a finer R2 model is
used, though both are well within the ensemble range of the 22 top-down results (2008–17) included in the current Global
Carbon Project  (from 550 Tg yr –1 to  594 Tg yr –1).  Compared  to  the  R2 model,  the  inversion  based  on  the  R4 tends  to
overestimate tropical emissions (by 13.3 Tg yr –1), which is accompanied by a general underestimation (by 8.9 Tg yr –1) in
the  extratropics.  Such  a  dipole  reflects  differences  in  tropical–mid-latitude  air  exchange  in  relation  to  the  model’s
convective  and  advective  schemes  at  different  resolutions.  The  two  inversions  show  a  rather  consistent  long-term  CH4

emission  trend  at  the  global  scale  and  over  most  of  the  continents,  suggesting  that  the  observed  rapid  increase  in
atmospheric  methane  can  largely  be  attributed  to  the  emission  growth  from  North  Africa  (1.79  Tg  yr –2 for  R4  and
1.29 Tg yr –2 for R2) and South America Temperate (1.08 Tg yr –2 for R4 and 1.21 Tg yr –2 for R2) during the first half of
the  2010s,  and  from  Eurasia  Boreal  (1.46  Tg  yr –2 for  R4  and  1.63  Tg  yr –2 for  R2)  and  Tropical  South  America
(1.72 Tg yr–2 for R4 and 1.43 Tg yr –2 for R2) over 2015–19. In the meantime, emissions in Europe have shown a consistent
decrease over the past decade. However, the growth rates by the two parallel inversions show significant discrepancies over
Eurasia  Temperate,  South  America  Temperate,  and  South  Africa,  which  are  also  the  places  where  recent  GOSAT
inversions usually disagree with one other.
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Article Highlights:

•  Inversion  modeling  systems  using  CTMs with  coarse  horizontal  resolutions  can  reliably  estimate  global  total  methane
emissions  and  give  a  rather  credible  long-term  trend  in  all  TransCom-3  regions  except  for  Eurasia  Temperate,  South
America Temperate, and South Africa.

•  Emission  increases  in  North  Africa  and  South  American  Temperate  contributed  the  most  strongly  to  global  emission
growth from 2010 to 2014. During the second half of the 2010s, accelerated methane increases in the atmosphere were
mainly driven by Eurasia Boreal and Tropical South America emissions.
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•  There are large uncertainties and debates in methane emission from Eurasia Temperate. We discuss possible causes for
different  emission estimates,  particularly  over  China,  to  highlight  the adverse effects  of  the model  transport  error  over
regions that are poorly constrained by observations or a priori estimates.

 

 
  

1.    Introduction

Methane  concentrations  in  the  atmosphere  have  more
than doubled since the pre-industrial era, contributing about
20% to present-day human-induced global warming (Myhre
et al., 2013; Etminan et al., 2016). Methane is also a chemical
precursor  to  tropospheric  ozone,  which  has  adverse  effects
on both human and ecosystem health. Its lifetime in the atmo-
sphere is  about 8 to 11 years (Patra et  al.,  2011; Prather et
al., 2012Canadell et al., 2021). Quantifying methane emission
and understanding the  factors  driving its  interannual  varia-
tions  are  of  both  the  public  and  scientific  interest  because
CH4 emission reduction is now considered to be an efficient
strategy for combating global warming, which can improve
air quality (Shindell et al., 2012; Schaefer et al., 2016; Schae-
fer, 2019).

Surface observations from the NOAA network (Dlugo-
kencky,  NOAA/GML  (gml.noaa.gov/ccgg/trendsch4/)
reveal significant interannual variability in the rate by which
methane is increasing. This variability is caused by an imbal-
ance  of  surface  emissions  and  atmospheric  sinks,  mainly
due  to  reactions  with  hydroxyl  radicals  (OH),  chlorine
atoms (Cl), and excited atomic oxygen (O(1D)) (Saunois et
al., 2020). Emissions can be broadly divided into natural (e.
g.,  wetlands,  inland  water  systems,  geological  seeps,  ter-
mites,  oceans,  terrestrial  permafrost,  and  hydrates)  (Bloom
et al., 2010; Kirschke et al., 2013; Melton et al., 2013) and
anthropogenic sources (e.g., from agriculture, fossil fuel com-
bustion,  and  waste  management)  (Kirschke  et  al.,  2013;
Schaefer,  2019; Saunois  et  al.,  2020).  It  is  challenging  to
quantify  the  methane  budget  accurately  and  determine  the
drivers for the unstable methane trend due to large uncertain-
ties  in  both  sources  (emissions)  and  sinks  (Canadell  et  al.,
2021).  In  the  past  several  years,  many  studies  focused  on
the  reasons  for  the  plateau  in  the  trend  and  subsequent
regrowth  of  CH4 in  the  2000s  but  reached  no  consensus,
which is discussed in detail and concluded by Canadell et al.
(2021).  Based  on  sectoral  a  priori  emission  inventories
derived  from  “Bottom-up ”  approaches,  the  “Top-down ”
method takes advantage of atmospheric measurements to opti-
mize  the  total  emissions  and  sinks  (Jacob  et  al.,  2016;
Brasseur and Jacob, 2017). The quality of inferred emissions
depends  critically  on  the  quality  and  density  of  measure-
ments.  In  the  2010s,  long-term  satellite  retrievals  from
GOSAT and TROPOMI, with improved precision and accu-
racy,  provided  worldwide  measurements  to  cover  spatial
and  temporal  changes  in  the  atmospheric  column-averaged
concentration of (XCH4) to constrain and interpret the interan-
nual variation of global and regional methane emissions and
their  trends  (Fraser  et  al.,  2013, 2014; Wecht  et  al.,  2014;

Turner  et  al.,  2015; Feng  et  al.,  2017; Lunt  et  al.,  2019,
2021; Maasakkers et al., 2019; Miller et al., 2019). In the pro-
cesses of “Top-down” inverse modeling, atmospheric trans-
port and chemistry models (CTMs), driven by meteorological
fields, act as a “bridge” to link methane sources and sinks to
atmospheric concentrations and thus also impact the inversion
results.

Several studies have investigated the influence of obser-
vations from different platforms such as in-situ measurements
and  remotely-sensed  retrievals,  uncertainties  in  prior  emis-
sions,  and  other  inversion  parameters  in  observationally-
based  system  simulation  experiments  (OSSEs)  (Meirink  et
al., 2008; Eraser et al., 2014; Bousserez et al., 2016; Turner
et al.,  2018; Zhang et al.,  2018; Lu et al.,  2021). However,
errors  in  the  atmospheric  models  used  to  simulate  CH4
remain poorly characterized (Saito et al., 2013; Locatelli et
al.,  2015).  These  errors  are  mainly  derived  from  transport
errors  and  horizontal  resolution-related  representative  or
observation  mismatch  errors  (Ganesan  et  al.,  2019;
Stanevich  et  al.,  2020, 2021).  Transport  errors  contain
biases in numerical convective and advective schemes (Stra-
han and Polansky, 2006; Saito et al., 2013; Yu et al., 2018;
Bisht  et  al.,  2021),  meteorological  fields  (Locatelli  et  al.,
2013, Pandey et al., 2019), and parametrization of subgrid-
scale processes (Locatelli et al., 2015). Saito et al. (2013) com-
pared  vertical  profiles  of  twelve  chemistry  models  in  the
TransCom-CH4 intercomparison experiment with aircraft mea-
surements.  They  concluded  that  transport  uncertainties
partly cause the disparity of the vertical gradients among mod-
els. Yu et al. (2018) investigated the impact of model resolu-
tion  on  transport  in  GEOS-Chem  using 222Rn, 210Pb,  and
7Be tracers. They found that vertical transport is reduced in
the model with coarse resolution. Bisht et al. (2021) suggested
models  at  low  resolution  are  probably  transporting  mass
faster in the lower stratosphere, from the tropics to the mid-
high  latitudes.  Influences  of  these  transport  errors  on
methane emissions inversion are also investigated. Locatelli
et  al.  (2015)  tested  the  sensitivity  of  methane  budget  to
LMDz  sub-grid-scale  physical  parameterizations.  They
found that the inversions using a coarser version of the trans-
port model are actually masking a poor representation of the
stratosphere–troposphere methane gradient in the model. Rep-
resentative or observational mismatch errors due to model out-
put in coarse grids have geographically broader average val-
ues  than  finer  grids.  These  systematic  uncertainties  may
cause an overestimation or underestimation of anthropogenic
emissions  related  to  geographically  localized  processes
(such  as  oil  and  gas  production  and  coal  mining,  biomass
burning,  livestock,  and  landfills)  (Ganesan  et  al.,  2019).
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Stanevich  et  al.  (2020, 2021)  focused  on  short-term biases
in the global GEOS-Chem chemical transport model at differ-
ent  model  grids  and  assessed  their  effects  on  inversion
results. Their simulations using two different spatial resolu-
tions show large differences in the modeled CH4 column abun-
dances over major source regions such as China. They con-
cluded  that  the  simulation  at  a  higher  spatial  resolution
yielded a better agreement with observations.

To  investigate  the  impacts  of  the  horizontal  resolution
of CTMs on estimates of global and regional methane emis-
sion  long-term  trends,  we  report  the  first  comparison  of
decadal methane emission trends (2010–19) obtained using
the same Ensemble Kalman Filter (EnKF, Feng et al., 2017),
but with the CTM (GEOS-Chem v12.5) being run at two dif-
ferent spatial resolutions: 4° (lat) × 5° (lon) (Referred to R4
hereafter) versus 2° × 2.5° (Referred to R2 hereafter). Here,
a  10-year  record  of  satellite  column  observations  of
methane  from  the  Japanese  Greenhouse  gases  Observing
SATellite (GOSAT) retrievals was used to constrain the two
parallel inversions.

We provide a detailed description of these data in section
2  and  a  description  of  the  ensemble  Kalman  filter  method
and  GEOS-Chem model.  Validation  results  obtained  using
the Total Carbon Column Observing Network (TCCON) mea-
surements are provided in section 3. We report our compari-
son results in section 4 and provide conclusions in section 5. 

2.    Data and Methods
 

2.1.    Ensemble Kalman Filter Inversion Method

x t

To constrain and optimize past methane fluxes, we uti-
lized an existing Ensemble Kalman Filter (EnKF) framework
developed by Feng et  al.  (2009, 2017)  to  assimilate  space-
based  measurements  of  atmospheric  concentrations  from
2010 to 2019. As detailed by Feng et al. (2017), a posteriori
methane  flux  estimates  at  a  location  and  time  are
assumed to take the form of: 

f g
p (x, t) = f g

0 (x, t)+
∑n

i=1
cg

i BFg
i (x, t) , (1)

f g
0 (x, t)

cg
i

c

BFg
i (x, t)

where  g  denotes  the  methane  tracer  gas  and 
describes  a  priori  emission  inventories.  The  coefficient 
represents  adjustment  parameters  for  estimating  methane
fluxes from a joint state vector  through an optimized fitting
of the model results to observations. The pulse-like basis func-
tion  in (1) represents the methane flux perturbations
from various  sectors  across  predefined geographic  regions.
We divided a priori methane inventories into two source cate-
gories: anthropogenic and natural emissions. We defined 92
land sub-regions by dividing the 11 TransCom-3 (Gurney et
al.,  2002)  land  regions  into  almost  four  equal  sub-regions,
except  for  China,  which  was  divided  into  37  sub-regions
due to its large emissions. The 11 oceanic regions defined in
the  TransCom-3  experiment  were  combined  due  to  the
insignificant  exchange  between  the  ocean  and  atmosphere.
We selected state vectors as the monthly coefficients for scal-

BFg
i (x, t)

ing the pulse-like regional methane fluxes (basis functions)
in  93  global  regions.  To  achieve  higher  spatial  resolution
for assimilation, in this study,  denotes the perturba-
tion  of  total  a  priori  estimates  in  various  sub-regions  for
each month, rather than a priori fluxes from different emission
sectors as described in Feng et al. (2017). Therefore, we esti-
mated  a  total  of  22  320  (i.e.,  2  ×  (sub-sources)  ×  93  (sub-
regions) × 120 (months)) coefficients through an optimal fit-
ting of model concentrations with observations as follows: 

ca = cf +K
[
y−H (cf)

]
, (2)

cf ca

y
H (cf)

where  and  denote the a priori and a posteriori state vec-
tors,  respectively.  represents  the  XCH4 observations
retrievals  by GOSAT in  this  study,  and  represents  a
priori  information,  including  the  simulation  process  of  the
GEOS-Chem  relating  a  priori  inventories  to  concentration
fields,  as  well  as  the  sampling  processes  from  fields  to
XCH4 consistent with the format of the observations.

Pf

∆Cf =
[
∆cf1 ,∆cf2 , . . . ,∆cfne

]
Pf ∆Cf(∆Cf)T

K

In the ensemble Kalman filter framework, we approxi-
mate the a priori error covariance  by introducing an ensem-
ble  of  perturbation  states ,  so
that a priori  covariance  can be described as .
The Kalman gain matrix  in (2) is given by: 

K ≈ ∆Cf∆YT
[
∆Y(∆Y)T+R

]−1
, (3)

R ∆Y

∆Cf ∆Y = H(∆Cf)

T

where  is  the  observation  error  covariance,  and 
denotes  the  projection  of  the  flux  perturbation  ensemble

 to  observation  space  [ ].  The a posteriori
estimate uncertainties are also in the form of a perturbation
ensemble, which can be obtained by introducing a transform
matrix : 

∆Ca = ∆CfT , (4)
 

T(T)T = I− (∆Y)T
[
∆Y(∆Y)T+R

]−1
∆Y . (5)

T(T)T

∆YTR−1/2

ca ∆Ca

For simplifying the calculation of , we used singu-
lar value decomposition (SVD) of the scaled model observa-
tion ensembles  and an efficient numerical lower-
upper  solver  to  sequentially  calculate  the a  posteriori esti-
mates  and the associated uncertainties . 

2.2.    GEOS-Chem Atmospheric Chemistry and Transport
Model

We used v12.5.0 of GEOS-Chem to describe the relation-
ship  between  surface  emissions  and  the  atmospheric
methane distributions, forming part of the forward model in
our  inversion  system.  The  model  is  driven  by  MERRA-2
meteorological re-analysis fields from the Global Modeling
and Assimilation Office (GMAO) of  NASA (Bosilovich et
al., 2016). In our experiments, GEOS-Chem model simula-
tions are run at two horizontal resolutions, at R4 and R2, for
comparison. We used 47 hybrid-sigma levels from the surface
to 0.01 hPa, of which 30 lie below the dynamic troposphere.
We used the non-local boundary layer mixing scheme imple-
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mented by Lin and McElroy (2010). The initial CH4 field on
1 January 2010 was obtained from Feng et  al.  (2017)  with
an additional 1-year spin-up period starting in 2009.

We  used  existing  methane  inventories  for  various
source  types.  Specifically,  we  used  the  EDGAR  v4.3.2
global  emission  inventory  for  2012  [https://edgar.jrc.ec.
europa.eu/, last access: 1 December 2017; (Janssens-Maen-
hout  et  al.,  2019)]  to  represent  anthropogenic  emissions.
This inventory includes various emission sources related to
human  activities  (coal  mining,  oil  and  gas  industry,  live-
stock, and waste). We used the United States Environmental
Protection  Agency  inventory  (Maasakkers  et  al.,  2016)  for
the United States and the oil and gas emissions from Sheng
et al. (2017) for Canada and Mexico. Additionally, 10-year
daily global open fire emissions were obtained from QFED
(Darmenov and da Silva, 2013). Monthly wetland emissions
from  2010  to  2019  were  obtained  from  the  WetCHARTS
v1.0 extended ensemble mean (Bloom et al., 2017). For ter-
mite  emissions,  we  used  the  results  of  Fung  et  al.  (1991).
Emissions from geological macro seeps were obtained from
Etiope (2015) and Kvenvolden and Rogers (2005). In terms
of  areal  seepage,  we used  sedimentary  basins  (micro  seep-
age)  and  potential  geothermal  seepage  maps  from  Kven-
volden and Rogers (2005) and emission factors  from Lyon
et al. (2015).

For  the  atmospheric  sinks  of  methane,  we  used  a  3-D
global  tropospheric  OH  fields  based  on  a  GEOS-Chem  1-
year  full-chemistry  simulation  to  describe  the  main  tropo-
spheric  removal  process  of  CH4 (Fraser  et  al.,  2014).
Another tropospheric oxidation sink from Cl atoms is based
on fields from Sherwen et al. (2016). The soil uptake calcula-
tion  uses  fields  from  Fung  et  al.  (1991)  with  temperature-
based  seasonality  based  on  Murray  et  al.  (2012).  Other
minor loss terms in stratospheric oxidation are described by
Ridgwell et al. (1999). 

2.3.    Data

GOSAT was  launched  in  2009  by  the  Japanese  Space
Agency (JAXA) in collaboration with the Japanese National
Institute for Environmental Studies and the Ministry of Envi-
ronment.  This  satellite  is  equipped  with  a  high-resolution
Fourier-transform  spectrometer  (TANSO-FTS),  which
enables the measurement of concentrations of both CO2 and
CH4. GOSAT is in a sun-synchronous orbit, with a local equa-
tor crossing time of 1300 LST. The instrument has a ground
footprint diameter of 10.5 km with a pixel spacing of approxi-
mately 250 km. GOSAT achieves approximate global cover-
age  in  three  days.  We  used  the  v9  GOSAT  proxy  column
methane  data  from  the  University  of  Leicester,  including
nadir observations over land and glint observations over the
ocean  from 2009  to  2019  (Parker  et  al.,  2015, 2020),  with
only the nadir measurements used for inversion. These data
are routinely validated against ground-based remote sensing
data (Parker et al., 2015) and occasionally with aircraft data
(Webb et al., 2016). The proxy retrieval simultaneously pro-
vides CH4 and CO2 column estimates using absorption fea-
tures around the wavelength of 1.6 μm, which is most sensi-

tive to changes in these gases in the lower troposphere. In tak-
ing  the  ratio  of  these  retrieved  columns,  CH4/CO2,  CO2 is
assumed to be a proxy for modification along the light path
(Frankenberg  et  al.,  2011);  this  minimizes  the  influence  of
common  factors  affecting  the  retrieval  of  both  gases,  e.g.,
clouds  and  atmospheric  scattering.  As  a  result,  this  proxy
retrieval method is less sensitive to scattering than the tradi-
tional  full-physics  retrieval  approach  and,  therefore,  yields
greater data density over geographical regions with substan-
tial  aerosol  loading,  e.g.,  tropical  areas  during  the  dry  sea-
son,  when biomass  burning is  prevalent.  Previous  analyses
have shown that these retrievals have a bias of 0.2% and a sin-
gle-sounding precision of about 0.72% (Parker et al., 2011,
2015, 2020).  We  assume  that  GOSAT  proxy  column
methane has an uncertainty of 1.2% to account for all possible
errors,  including observational errors,  representative errors,
and retrieval errors from the radiative transfer model. 

3.    Validation
 

3.1.    Comparison with GOSAT retrievals

Figure  1 presents  latitudinal  differences  between
GOSAT-observed XCH4 values, and simulated using GEOS-
Chem  with  a  priori  emissions  at  R4  (a)  and  R2  (b)  model
grids, and values obtained using a posteriori emissions from
(c) the R4 inversion and (d) R2 inversion. In the appendix,
Fig.  A2 presents  the  distribution  of  decadal  mean  differ-
ences.  Before  inversion,  large  gaps  existed  between
GOSAT  observations  and  model  simulations  at  the  two
model  grids,  especially  over  mid-latitude  and  high-latitude
areas of the northern hemisphere (NH). These gaps increase
over time, reaching over 60 ppbv for the R4 simulation and
almost 80 ppbv for the R2 simulation in 2019. After the assim-
ilation of GOSAT measurements, differences between obser-
vations and model outputs were reduced to within ±2 ppbv
in  all  latitudinal  zones,  except  for  high-latitude  regions  in
the NH and southern hemisphere (SH). The R2 inversion per-
forms better at high latitudes than the R4 experiment, narrow-
ing differences to within ±2.5 ppbv throughout most time peri-
ods. 

3.2.    Validation using TCCON measurements

The  TCCON  is  a  global  network  of  ground-based
Fourier-transform spectrometers. It measures direct solar spec-
tra in the near-infrared spectral region to collect information
about  atmospheric  trace  gases,  including  methane  (Wunch
et al., 2011). Currently, the TCCON consists of 26 operational
stations. Due to their high precision and accuracy, TCCON
datasets  are  commonly  used  to  evaluate  satellite  retrievals
(Karion et al., 2010). Therefore, these datasets provide essen-
tial  information  for  comparison  with a  posteriori fields
simulated by GEOS-Chem with R4 and R2 grids. The latest
GGG2014  release  (updated  in  August  2021)  includes  35
long-term  datasets  of  measurements,  of  which  34  datasets
(Fig.  A1 in  the  Appendix)  representing  the  period  from
2010 to 2019 were used for validation.
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Figure 2 presents Taylor diagrams comparing TCCON
measurements  with  GEOS-Chem  outputs  before  and  after
inversion.  Compared  with  R4  outputs  using  a  priori  emis-
sions, we found a weaker correlation of R2 a priori model out-
puts  with  TCCON  observations.  Additionally,  the  root-
mean-square deviation (RSMD) revealed that biases at most
stations  are  larger  at  the  R2 than at  the  R4 grid.  However,
the a posteriori model outputs of R2 performed better than
R4 results, regardless of a correlation coefficient or RSMD.
Moreover, compared with a priori outputs, seasonal variations
(represented  by  the  standard  deviation)  of a  posteriori
model results for both grids were closer to the average value
of TCCON measurements. Emissions at high latitudes have
larger  seasonal  variations  and  thus  larger  standard  devia-
tions. Thus, we confirmed that GOSAT retrievals provide use-
ful constraints for a priori methane emissions, and the CTM
with  higher  horizontal  resolution  performs  better  in  inver-
sion. 

4.    Results and Discussion
 

4.1.    Global methane emission trends

Mean global annual methane emissions in R4 inversion
is 573.04 Tg yr –1, compared to 568.63 Tg yr –1 for R2 inver-
sion (Table  1).  The difference of  about  4.4  Tg yr –1 is  less
than  1%  of  the  mean  annual  emissions.  Compared  with
other  inversion  results  using  GEOS-Chem  runs  at  the  R4
grid,  we  found  that  our  results  (561.10  Tg  yr-1 for  R4  and
559.91  Tg  yr –1 for  R2)  are  about  3%  higher  than  the
2010–15 mean methane emission of 546 Tg yr –1 estimated
by  Maasakkers  et  al.  (2019).  Lu  et  al.  (2021)  also  used

GEOS-Chem simulations at the R4 grid to conduct GOSAT-
only, in-situ-only, and joint GOSAT and in-situ inversions;
our results are close to their joint inversion result (551 Tg yr –1)
for 2010–17 but much higher than their GOSAT-only inver-
sion.  Zhang  et  al.  (2021)  expanded  the  study  period  from
2017 to 2018 and concluded that the 9-year annual total emis-
sions were 512 Tg yr –1 when only GOSAT retrievals were
assimilated  in  inversion.  Sensitivity  tests  (not  included)
show that  the  large  differences  are  mainly  due  to  different
model OH concentrations. Zhao et al. (2020) studied the influ-
ence of the production and loss processes of OH on CH4 life-
time  and  the  global  methane  budget  on  decadal  scales  and
found  that  interannual  variation  of  OH  has  a  significant
impact  on  the  top-down  inversion  of  the  methane  budget,
especially  for  tropical  regions.  However,  Yin  et  al.  (2021)
compared  six  inversion  results  optimized  by  the  inversion
system PYVAR-LMDz based  on  the  LMDz-INCA (1.9°  ×
3.75°) CTM (OH fields are from a full chemistry simulation
by model LMDZ-INCA and the TransCom model intercom-
parison experiment). They suggested that the XCH4 acceler-
ated  growth  could  be  mostly  induced  by  increased  emis-
sions.  Our  decadal  mean  emissions  are  close  to  the  upper
bound  (510–570  Tg  yr –1)  of  the  8-year  mean  values  for
their  six  ensemble  results.  Janardanan  et  al.  (2020)  used
GOSAT  and  surface  measurements  to  optimize  methane
a  priori  estimates  in  the  NIES-TM-FLEXPART-VAR
(NTFVAR)  inverse  modeling  system.  They  estimated  the
global annual mean methane emissions to be 573.4 Tg yr –1

from 2011 to 2017. Chandra et al. (2021) assimilated surface
measurements  from  NOAA  over  three  decades  from  1988
to  2016  and  reported  global  emissions  over  2007–16

 

 

Fig.  1. Latitudinal  difference  between  GOSAT-observed  methane  column  concentrations  (XCH4)  and  those
simulated  using  GEOS-Chem with  a  priori  emissions  at  R4  (a)  and  R2  (b)  and  using a  posteriori emissions  after
inversion at R4 (c) and R2 (d).
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(renewed  growth  of  atmospheric  methane)  of  543±
16 Tg yr –1.Based on an ensemble of 22 top-down methane
budgets  from  2008  to  2017,  the  Global  Carbon  Project
(GCP) reports  that  the decadal  mean emissions range from
550  to  594  Tg  yr –1, with  a  mean  value  of 576  Tg  yr –1.
Among  the  ensemble  members,  the  11  GOSAT-only  or
GOSAT and in-situ joint inversion results range from 564.1
to  594.1  Tg  yr –1 with  mean  emissions  of  579  Tg  yr –1

(Saunois  et  al.,  2020).  Our  results,  using  two  different
model  grids,  are  comparable  to  these  11  GOSAT-related
inversions.  Several  inversion  results,  including  9  surface
CH4 and 10 satellite  XCH4 inversions  reported  by Saunois
et  al.  (2020),  three  decadal  inversion  results  (1988–2016)
using surface measurements from 19 sites given by Chandra
et  al.  (2021) as well  as global total  emissions (Bousquet et
al.,  2006)  were  summarized  in  latest  IPCC  AR6  report
(Canadell et al., 2021). Global total emissions in two inver-
sions using surface CH4 measurements show similar trends
from 2000 to 2017 but large discrepancies in 2015. While con-

tinued  methane  growth  occurred  in  2015  with  anomalies
close to 25 Tg yr –1 [relative to 2010–16 as given by Chandra
et al. (2021)], nine ensemble mean emissions from Saunois
et al. (2020) show a plateau after the substantial increase in
2014. These two inversions both show declining trends after
2015, when the ensemble mean result from 10 satellite inver-
sions differs greatly with ongoing increases.  Two trends in
our inversions are similar to the ensemble mean trend from
satellite  inversions  with  sustained  growth  from  2010  to
2017.  The discrepancy between the  surface  inverted trends
and satellite assimilated trends after 2015 still needs further
investigation.

Figure  3a presents  interannual  variations  of  the  global
emissions  from  2010  to  2019.  Long-term  increases  can  be
found  in  both  inversions,  with  the  growth  rate  being
4.95 Tg yr –2 in R4 and 3.10 Tg yr –2 in the R2 model. The
growth  rate  shows  temporal  fluctuations,  with  the  largest
increase in 2013 (25.51 Tg yr –2 in R4 and 13.00 Tg yr –2 in
R2).  Generally,  most  increases  are  derived  from  enhance-
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Fig.  2. Taylor  diagrams  of  statistical  results  [correlation  coefficient,  standard  deviation,  and  root-mean-square
deviation  (RMSD)]  between surface-measured  methane  column concentrations  (XCH4)  from the  TCCON network
and  those  simulated  using  GEOS-Chem  with  a  priori  emissions  at  R4  (a)  and  R2  (b),  and  using a  posteriori
emissions after inversion at R4 (c) and R2 (d) (Deep blue: latitudes of TCCON sites are larger than 60°N; Green: the
latitudes of sites are within 45°–60°N; Yellow: the latitudes of sites are within 30°–45°N; Red: the latitudes of sites
are within –15°S–45°N; Blue: The sites located in the mid-latitudes of SH).
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ments over 2012–17, during which time the annual total emis-
sions for both the R2 and R4 inversions increased by more
than 35 Tg (49.25 Tg for R4 and 36.09 Tg for R2). Yin et al.
(2021) also found the lowest annual total emission in 2012
and the highest in 2017 in the PYVAR-LMDz (1.9° × 3.75°)
inversion  system.  Its  8-year  increasing  trend  is  about
4.1 Tg yr –2, accounting for nearly 1% of the annual total emis-
sions.  On  average,  the  first  8-year  increase  trends  in  our
study are 7.04 Tg yr –2 and 5.15 Tg yr –2 in the R4 and R2,

respectively,  corresponding  to  annual  increases  of  nearly
1.24%  and  0.99%.  Compared  to  R4  inversion,  both  the
increasing trend and the percentage of total emissions in the
R2 experiment are more consistent with the results of Yin et
al. (2021).

Large  discrepancies  in  annual  total  emissions  between
R4 and R2 can be observed in 2019. While a posteriori emis-
sions in R2 continued to decrease after a peak in 2017, the
emissions in  R4 rebounded after  decreasing in  2018.  From

 

 

Fig. 3. Annual mean variations of global total methane emissions (a) in R4 (blue) and R2 (orange) versions
of the GEOS-Chem model and their monthly variations (b) from 2010 to 2019.

Table 1.   Global annual total emissions during the 2010s (Tg yr–1).

Institution CTM Gridded (lon×lat) Period Observation used
Global total
emissions References

IAP GEOS-Chem 4° × 5° 2010–19 GOSAT 573.04 this study

2° × 2.5° 568.63

University of Harvard GEOS-Chem 4° × 5° 2010–15 GOSAT 546±2 (Maasakkers et al., 2019)

University of Harvard GEOS-Chem 4° × 5° 2010–17 GOSAT 515 (Lu et al., 2021)

In-situ 504

GOSAT & in-situ 551

University of Harvard GEOS-Chem 4° × 5° 2010–18 GOSAT 512 (Zhang et al., 2021)

JAMSTEC MIROC4-ACTM 2.8125° × 2.8125° 2007–16 In-situ 543±16 (Chandra et al., 2021)

LSCE/CEA LMDz-INCA 3.75°×1.875° 2010–17 GOSAT 510–570 (Yin et al., 2021)

NIES NIES-TM v08.1i 2.5° 2011–17 GOSAT & in-situ 573.4 (Janardanan et al., 2020)

LSCE/IPSL 22 inversions
ensemble mean

2008–17 In-situ or GOSAT
or GOSAT

&in-situ

576
(550–594)

(Saunois et al., 2020)

11 inversions
ensemble mean

GOSAT or
GOSAT&in-situ

579
(564–594)
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the monthly comparison shown in Fig. 3b, we found that the
difference in 2019 arose mainly from the maximum emissions
during  summer.  In  addition  to  the  large  emissions  gap  in
2019,  we found that  emissions  in  summer  (July  in  the  NH
and December in  the SH) caused most  of  the difference in
other years.

The latitudinal breakdown of emissions from 22 ensem-
ble  inversion  results  concluded  by  Saunois  et  al.  (2020)
reveals the dominance of tropical emissions at 368 Tg yr –1

[337–399],  representing  64%  of  the  global  total  over
2008–17. A total of 32% of the emissions are from the mid-
latitudes (186 Tg yr –1 [166–204]), and 4% are from high lati-
tudes  (above  60°N).  In  this  study,  the  dominant  emissions
over the tropics are 364.71 Tg yr –1 and 355.31 Tg yr –1 in
R4 and R2, representing 63.64% and 62.48% of their global
totals over 2010–19, respectively. Emissions from mid-lati-
tudes  account  for  34.22%  (196.12  Tg  yr –1)  and  35.17%
(200.02  Tg  yr –1).  Those  from  high-latitude  regions  are
12.22  Tg  yr –1 (2.13%)  and  13.31  Tg  yr –1 (2.34%)  in  R4
and R2, respectively. The emission distribution proportions
in  various  latitudinal  zonal  are  similar  between R2 and R4
and are basically consistent with those given by Saunois et
al. (2020). For the emission variation over various latitudinal
zones, our results reveal global emission enhancements over
2015–19,  compared  to  the  first  half  of  the  2010s,  are
derived  mostly  from  tropical  regions,  representing  77.76%
(21.57 Tg yr –1) and 71.57% (15.85 Tg yr –1) of their totals
in R4 (27.74 Tg yr –1) and R2 (22.11 Tg yr –1). Compared to
the  R4  results,  emission  increases  are  more  gradual  in  the
R2 grid, with larger contributions coming from the mid-lati-
tudes (9.28%) and high-latitudes (19.14%).

Considering the 1.16% larger proportion of tropical emis-
sions  to  global  totals,  as  well  as  the  corresponding  6.19%
greater contribution to the 5-year global increase in R4, we
suggest explanations that may include a high-latitude bias in
GEOS-Chem due to an imprecise description of convection
across the tropopause (Bisht et al., 2021) and the inaccurate
estimation  of  the  vertical  exchange  between  troposphere
and  stratosphere  (Strahan  and  Polansky,  2006).  Especially
in  R4,  there  is  less  methane  in  the  troposphere  and  more
methane  in  the  lower  stratosphere  at  high  latitudes  (shown
in Fig.  A3),  which  produces  a  latitudinal  XCH4 bias  with
large positive XCH4 anomalies at high latitudes and small neg-
ative anomalies in the tropics (shown in Fig. A2). Bisht et al.
(2021) attributed this bias to stronger quasi-horizontal mixing
across the tropopause from the tropics to the mid-high lati-
tudes  in  the  model  with  a  low  resolution  by  comparing
MIROC4-ACTM  simulated  CH4 vertical  profiles  in  the
upper  troposphere  and  lower  stratosphere  with  the  CON-
TRAIL  (Comprehensive  Observation  Network  for  TRace
gases  by  AIrLiner)  aircraft  observations.  Stanevich  et  al.
(2020)  compared  GEOS-Chem simulated  XCH4 in  R4 and
R2  with  GOSAT,  TCCON,  and  ACE-FTS  (Atmospheric
Chemistry  Experiment  Fourier  Transform  Spectrometer)
observations and found that the R2 model produced a better
simulation of CH4, with smaller biases and a higher correla-
tion to the independent data. They explained that the major

reason for latitude-dependent errors is the excessive mixing
in the upper troposphere and lower stratosphere at coarser res-
olutions. The larger model biases at R4 grid thus impact the
distribution  of a  posteriori emissions  and  their  long-term
trends.

Detailed zonal mean a posteriori emissions variation by
the  R4  (a)  and  R2  (b)  from 2010  to  2019  are  presented  in
Fig. 4. We found the latitudinal distributions of the maximum
values differ greatly in mid-latitude regions between R4 and
R2. Compared with the single maximum around 35°N in R4,
several additional high zonal mean values were obtained in
R2, with the maximum near 30°N being the most apparent.
Additionally, emissions around 25°N in R2 increased signifi-
cantly  in  the  2010s,  which  was  unclear  in  the  R4  results.
These  results  suggest  that  inversions  using  coarse  models
have  difficulty  reproducing  hotspot  emissions  that  are
widely distributed over the mid-latitudes. 

4.2.    Regional emissions comparison

Decadal annual mean CH4 emissions (shown in Fig. A5)
are  aggregated  into  the  widely  used  11  TransCom-3  land
regions (Gurney et al., 2002), which are shown in Figure 5a.
Among the eleven regions,  the largest  annual  emissions from
Eurasia Temperate are 123.28 Tg yr –1 and 135.70 Tg yr –1

in  R4 and R2,  accounting  for  21.51% and 23.85% of  their
global totals, respectively. Annual emissions in R4 are under-
estimated  by  about  12.42  Tg  yr –1 compared  with  those  in
R2, accounting for 9.15% of the regional totals. In the trop-
ics, where wetlands are widely distributed, underestimations
in annual emissions by R4 are about 5.85 Tg yr –1 in Tropical
South America (58.97 Tg yr –1 for R4 and 64.81 Tg yr –1 for
R2)  and  8.70  Tg yr –1 in  Tropical  Asia  (46.23  Tg yr –1 for
R4  and  54.93  Tg  yr –1 for  R2),  accounting  for  9.02%  and
15.84% of  their  annual  totals.  For  North  Africa,  emissions
in R4 are 3.46 Tg yr –1 higher than those in R2 (50.80 Tg yr –1

for R4 and 47.34 Tg yr –1). For the high-latitude regions of
Eurasia Boreal, North American Boreal, and Europe, the opti-
mized emissions from R4 are smaller than emissions simu-
lated by the R2 model. The differences between R4 and R2
are  2.19,  2.72,  and  6.32  Tg  yr –1,  accounting  for  13.75%,
25.68%,  and 15.67% of  the  totals  in  these  regions,  respec-
tively.

In terms of differences in regional annual total emissions
between  the  first  half  and  the  second  half  of  the  2010s
(shown in Fig. 5b), five-year annual total methane emissions
in Eurasia Boreal, North Africa, and Tropical South America
have  shown significant  growth  (>  4  Tg  yr –1)  compared  to
those over 2010–14. While the increase from Eurasia Boreal
in  the  R4  inversion  is  smaller  than  that  in  R2,  emission
increases over North Africa and Tropical South America are
overestimated  in  the  R4.  For  emission  growth  inside  the
half-decade  over  the  2010s,  we  found  increased  emissions
in North Africa (1.79 Tg yr –2 for R4 and 1.29 Tg yr –2 for
R2,  shown  in Fig.  6f)  and  South  American  Temperate
(1.08  Tg  yr –2 for  R4  and  1.21  Tg  yr –2 for  R2,  shown  in
Fig. 6k) contribute the most (71.69% for R4 and 59.67% for
R2)  to  global  emissions  growth  (4.01  Tg  yr –2 for  R4  and
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Fig. 4. Zonal mean monthly variations of methane emissions in the R4 (a) and R2 (b) versions of the GEOS-
Chem model from 2010 to 2019.

 

 

Fig.  5. Annual  total  methane  emissions  in  the  eleven  TransCom-3  land  regions  from  2010  to  2019.
Decadal annual mean optimized emissions obtained using the R4 (blue) and R2 (orange) versions of
the GEOS-Chem model (a), and the differences in methane emissions between the second and the first
half of the 2010s in R4 and R2 (b).
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4.19 Tg yr –2 for R2) before 2015. From six ensemble mean
results  over  2010–18,  using the inversion system PYVAR-
LMDz, Yin et al. (2021) also concluded that methane emis-
sions from Tropical Africa (a large part of North Africa and
a  small  part  of  South  Africa  in  this  study)  and  Eastern
Brazil  (basically  located  in  South  American  Temperate)
show an upward trend since 2012. However, several inversion
results summarized by Canadell et al. (2021) show increases
in the first half of the 2010s mainly from Eurasia Temperate
(including West Asia, East Asia, and South Asia) and North
America Temperate. In our study, the main contributions to
emissions  growth  from  2010  to  2014  occurred  in  North
Africa (including Northern Africa and part of Central Africa)
and South American Temperate (South part of Tropical Amer-
ica and Temperate South America), while only a slight emis-
sion increase could be found from Central Africa and Temper-
ate  America with no trend in  South Africa and large inter-
annual  variation  in  Tropical  America.  During  the  second
half of the 2010s, accelerated methane growth in the atmo-
sphere was mainly due to emissions from the Eurasia Boreal
(1.46  Tg  yr –2 for  R4  and  1.63  Tg  yr –2 for  R2,  shown  in
Fig.  6a) and Tropical  South America (1.72 Tg yr –2 for  R4
and 1.43 Tg yr –2 for R2, shown in Fig. 6g). The interannual
variation in Eurasia Boreal  (Russia) from Yin et  al.  (2021)
is  coincident  with  the  increased  emissions  which  occurred
in  2014  and  peaked  in  2016.  Chandra  et  al.  (2021)  also
reported  a  similar  increasing  trend  over  Eurasia  Boreal
(North Asia), with emissions reaching a maximum in 2016.
Our study additionally shows that  in  2019,  emissions from

the  Eurasia  Boreal  continued  growing  after  a  decline  in
2017  and  were  nearly  twice  the  emissions  in  2010.  In
Europe  (Fig.  6c),  there  are  decadal  declining  trends,  with  the
average rates of decrease of –0.58 Tg yr –2 and –0.59 Tg yr –2

in  R4 and R2,  respectively,  accounting for  about –1.7% of
their totals. This result is consistent with an ongoing consen-
sus (Saunois et al.,  2020; Canadell et al.,  2021; Chandra et
al.,  2021; Stavert  et  al.,  2022).  For  Australia  (Fig.  6i),
annual emissions in both R2 and R4 show decreasing trends.
However, these results incur large uncertainties as the relative
difference in the 5-year decreases reached more than half of
the total emissions.

Over  the  second half  of  the  2010s,  methane variations
in  the  South  America  Temperate  and  South  Africa  differ
greatly between R4 and R2. The result in R2 shows no obvious
decreasing trend in South America Temperate and no substan-
tial increase in South Africa, which is similar to the results
from Yin et al.  (2021) and Stavert et al.  (2022). Therefore,
emission  growth  in  South  Africa  in  R4  may  be  overesti-
mated, and emission trends in South America Temperate are
insufficiently estimated over 2015–19.

The  half-decadal  variation  in Fig.  5b shows  large  dis-
crepancies for the Eurasia Temperate. The mean annual emis-
sion  increase  compared  to  those  from  the  first  half  of  the
2010s  in  R4  (5.41  Tg  yr –1)  is  nearly  twice  that  in  R2
(2.80  Tg  yr –1),  with  large  discrepancies  over  2015–19
(Fig.  6d).  While  emissions  in  R4  show remarkable  growth
after  fluctuating  between  2012  and  2015,  those  in  the  R2
inversion show no consistent growth with a continuous fluctu-

 

 

Fig.  6. Regional  methane  emission  trends  in  the  eleven  TransCom-3  land  regions  (a–k)  in  R4  (blue)  and  R2  (orange)
inversions and their monthly variations (b) from 2010 to 2019.
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ation in the following years. There is also an ongoing debate
about  emissions  from  Eurasia  Temperate  among  studies,
which mainly focus on China, though all of them agree that
coal  emission  has  been  overestimated  by  the  widely  used
EDGAR (Maasakkers et al., 2019; Miller et al., 2019; Lu et
al., 2021; Yin et al., 2021; Zhang et al., 2021; Stavert et al.,
2022).  Miller  et  al.  (2019),  Maasakkers  et  al.  (2019),  and
Chandra  et  al.  (2021)  attributed  atmospheric  methane
growth  from  2010  to  2015  to  increased  emissions,  partly
from China,  related to fossil  fuel  exploration.  Stavert  et  al.
(2022) and Yin et al. (2021) suggested a substantial increase
in  Chinese  anthropogenic  methane  emissions  from  fossil
fuels,  agriculture,  and waste  from 2010 to  2017.  However,
Lu  et  al.  (2021)  compared  inversion  results  using  various
observations, and found that anthropogenic emission trends
in  China for  GOSAT-only (–0.6  Tg yr –2)  and for  GOSAT
and in  situ  joint  inversion (–0.4 Tg yr –2)  over  2010–2017.
Zhang et  al.  (2021) concluded that  anthropogenic emission
trends in China peaked midway within the 2010–18 record.
One  possible  reason  for  the  discrepancy  in  their  inversion
results may be the large uncertainties involved in the distribu-
tion  of  a  priori  estimates.  While  some  studies  suggest  a
decline  in  Chinese  coal  mining  emissions  since  2012
(Sheng et al., 2019, 2021; Gao et al., 2020, 2021), the trend
reported  by  Lin  et  al.  (2021)  using  national-level  activity

data  from  the  National  Bureau  of  Statistics  of  China  and
localized emission factors  showed a slight  increasing trend
of  0.5  Tg  yr –2 for  the  period  2015–19.  Additionally,  the
tropospheric  transport  bias  involved  in  the  coarser  model
may  be  another  important  reason  (Stanevich  et  al.,  2020).
Stanevich  et  al.  (2021)  found  that  resolution-dependent
model errors in the stratosphere can be traced back to biases
in the uplift of CH4 over the source regions in eastern China
and  North  America.  Regarding  observational  errors  in
GOSAT retrievals, Huang et al. (2020) found aerosols with
a high single-scattering albedo and low asymmetry parame-
ters (such as water-soluble aerosols, highly loaded in North-
ern  China)  induce  large  biases  in  the  retrieval.  Besides,
there are very few retrievals over Southern China during the
summer/monsoon  season  because  of  cloud  cover  (Chandra
et al.,  2017). Both the quality and the coverage of GOSAT
XCH4 retrievals may affect the convergence of posterior emis-
sions in inversion.

To  further  study  the  systematic  discrepancies  in
regional emissions, we used a box plot to show the difference
between  R4  and  R2  on  a  finer  monthly  scale  in Fig.  7.
Despite similar  long-term trends that  can be found in most
regions, there are large discrepancies between R4 and R2 on
monthly timescales. Interquartile Range (IR = Q3 – Q1) rela-
tive to their monthly emissions is larger than 30% in Eura-

 

 

Fig.  7. Box  diagram  (minimum,  maximum,  median,  first  quartile,  and  third  quartile)  of  regional
monthly methane emissions difference (R2 minus R4) in the eleven TransCom-3 land regions.
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sia, North American Boreal, and Australia, with the largest
values  in  Australia  at  105%.  In  other  regions,  IR  values
range  from 10% to  20% of  their  monthly  mean emissions,
indicating  that  the  horizontal  resolution  of  CTMs  can  pro-
foundly  impact  regional  emission  variation  on  monthly
timescales.  Therefore,  monthly  variations  of  regional
methane  emissions  have  large  uncertainties  and  should  be
interpreted with caution. 

5.    Conclusions

To  evaluate  long-term  methane  emission  trends  using
CTMs with coarse horizontal resolutions, we used the EnKF
framework  to  optimize  a  priori  methane  emission  inven-
tories  in  the  4°  ×  5°  (R4)  and  2°  ×  2.5°  (R2)  versions  of
GEOS-Chem by assimilating GOSAT proxy v9.0 retrievals
and  compared  the  inverted  emissions  and  their  long-term
trends from 2010 to 2019 on global, latitudinal, and regional
scales.

Global annual total methane emissions in R4 and R2 dur-
ing the 2010s are 573.04 Tg yr –1 and 568.63 Tg yr –1, respec-
tively,  within  the  range  of  22  top-down  ensemble  results
(576  Tg  yr –1 [550–594])  given  by  the  Global  Carbon
Project (Saunois et al.,  2020). Most increases were derived
from enhancements  over  2012–17,  with  the  largest  growth
in 2013 (25.51 Tg yr –2 in R4 and 13.00 Tg yr –2 in R2). Com-
pared to R4, the trend in R2 is closer to the ensemble mean
trend (nearly 1%) inverted by Yin et al. (2021). Discrepancies
between the two inversions mainly arise from different emis-
sions during the boreal summer.

The  latitudinal  breakdown  of  emissions  indicates  that
the dominant emissions over the tropics are 364.71 Tg yr –1

in R4 inversion and 355.31 Tg yr –1 in R2 inversion, represent-
ing 63.64% and 62.48% of their global totals over 2010–19,
respectively. Both are well within the range of tropical emis-
sions  (368  Tg  yr –1 [337–399])  reported  by  Saunois  et  al.
(2020). Compared to the R2 model, the inversion based on
R4 tends to overestimate tropical emissions (by 13.3 Tg yr –1)
and  their  contribution  to  the  global  half-decadal  increase
(by 6.19%), which is accompanied by a general underestima-
tion (by 8.9 Tg yr –1)  in the extratropics.  These differences
may be caused by errors in modeling the vertical exchange
between  the  troposphere  and  stratosphere  in  high  latitudes
(Strahan and Polansky, 2006; Stanevich et al.,  2020) in the
R4, and, to a lesser extent, in the R2 .

Among  the  eleven  TransCom-3  land  regions,  similar
trends  with  systematic  discrepancies  can  be  found  in  most
regions  for  long-term variations,  especially  during  the  first
half of the 2010s. Compared with mean emissions over the
first  five  years  of  the  2010s,  increases  in  mean  emissions
over  2015–19  mainly  came  from  Eurasia  Boreal,  North
Africa,  South  America  Temperate,  and  Tropical  South
America,  of  which  North  Africa  (1.79  Tg yr –2 for  R4 and
1.29  Tg  yr –2 for  R2)  and  South  America  Temperate
(1.08 Tg yr –2 for R4 and 1.21 Tg yr –2) contributed the most
(71.69% for R4 and 59.67% for R2) to the growth of global

emissions from 2010 to 2014. During the second half of the
2010s, accelerated atmospheric increases in methane levels
were  mainly  driven  by  Eurasia  Boreal  and  Tropical  South
America  emissions.  Europe’s  annual  methane  emissions
decreased by about –1.7% on both grids. Emission variations
in  Eurasia  Temperate  involve  large  uncertainties.  The
debate also exists among studies that mainly focus on China
(Lu et al., 2021; Yin et al., 2021; Zhang et al., 2021; Stavert
et al., 2022). The possible reasons may be large uncertainties
involved in the distribution of a priori estimates (Gao et al.,
2021; Lin et al.,  2021), transport bias in the troposphere in
CTMs (Stanevich et al., 2020, 2021), and sparse distribution
of  satellite  retrievals  (Chandra  et  al.,  2017; Huang  et  al.,
2020).

With  ongoing  and  rapid  increases  in  computing
resources, atmospheric chemistry and transport models with
higher  resolution  will  be  widely  adopted;  therefore,  more
atmospheric  measurement  data  with  consistent  high  spatial
resolution  will  be  needed.  As  several  remote  sensing
retrieval products from various satellites are available (such
as GOSAT, Tropomi, and MethaneSAT), methods to reason-
ably  combine  these  products  (such  as  taking  advantage  of
the high accuracy of GOSAT retrievals and high spatial reso-
lution  of  Tropomi  retrievals)  for  inversion  require  further
research.
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APPENDIX
 

 

Fig. A1. Geographic locations of observation sites in the TCCON network.
 

 

Fig. A2. The decadal mean difference between GOSAT-retrieved methane column concentrations (XCH4) and those
simulated using GEOS-Chem with a priori  emissions at  R4 (a) and R2 (b) scales and using a posteriori emissions
after inversion at grid scales of R4 (c) and R2 (d).

 

 

Fig. A3. The decadal zonal mean of the 3-D methane concentration field in R2 (a) and R4 (b) versions of the
GEOS-Chem model and their difference (R2 minus R4) (c).
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