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ABSTRACT

Phase separation is a relevant mode of transformation for microstructure

development in multicomponent alloys. Its occurrence can drastically alter the

composition landscape and lead to patterns, either beneficial or undesired to the

alloy design. This phenomenon is reported commonly in the BCC phase region

of AlCoCrFeNi high-entropy alloys and their cost-effective Co-free alternatives

based on AlCrFeNi due to chemical ordering. To better understand this trans-

formation, we employ a phase-field model with materials parameters obtained

from the CALPHAD methodology. Microstructure simulations of phase sepa-

ration are conducted for the BCC-B2 phase on the AlnCrFe2Ni2 alloy (n is the

stoichiometric coefficient). The free energy density is obtained from a

CALPHAD sublattice model, in which the disordered BCC and ordered B2

phases are formulated as a single Gibbs free energy expression. The relation

between the site fraction variables in the CALPHAD sublattice model and the

mole fractions in the phase-field equations is provided via neural networks. The

acquisition of training data on the equilibrium value of the site fractions is

presented along with the training and validation procedure. The trained neural

networks are combined with a finite-element framework and Cahn–Hilliard

model to simulate the BCC-B2 phase separation at different compositions.
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GRAPHICAL ABSTRACT

Introduction

High-entropy alloys (HEAs) constitute a new family

of high-interest materials because some have shown

exceptional properties with high potential for appli-

cations. The near-equiatomic composition distin-

guishes them from the conventional alloys, which are

primarily based on a single major element. In HEAs,

all components significantly contribute to determin-

ing the equilibrium phase and microstructure; thus,

even small changes in the alloy composition can

result in a distinguishable set of properties. Conse-

quently, a fundamental challenge in the development

of HEAs is the exploration of vast high-dimensional

composition spaces [1].While experimental approa-

ches have been successful in studying HEAs, they

tend to be costly and time-consuming; therefore, the

development of computational tools to aid and

accelerate the discovery of new alloys is essential.

Recent publications on AlnCrFe2Ni2 based med-

ium-entropy alloys (MEAs) have demonstrated the

excellent mechanical properties of this system [2].

Experimental studies have shown the microstructure

to consist mainly of a combination of the face-cen-

tered cubic (FCC-A1) and body-centered cubic pha-

ses in a disordered (BCC-A2) and ordered (BCC-B2)

state [3]. In the pseudo-binary phase diagram region

of interest (Fig. 1), a miscibility gap exists where the

A2 phase separates from the parent B2, either via

nucleation and growth or spinodal decomposition.

Moreover, with the increase in aluminum content, the

A1 field overlaps part of the miscibility gap, creating

a region where the three phases can coexist at equi-

librium. This combination of phases yields the pos-

sibility to obtain a large variety of microstructure

morphologies, finely controlled by the alloy compo-

sition and the processing route [4].

As-cast AlnCrFe2Ni2 alloys with composition n � 1

have shown exceptional tensile strength and ductility

[2, 5]. These properties have been attributed to the

peculiar dual-phase microstructure consisting of A1

and B2 regions, formed simultaneously with the

decomposition in the B2 phase [4]. Furthermore, the

Figure 1 AlnCrFe2Ni2 medium-entropy alloy phase-diagram,

plotted as function of the mole fraction of aluminum x and

temperature. The labels for the FCC (A1), disordered (A2) and

ordered (B2) BCC, and liquid phases are showed.
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use of additive manufacturing techniques, such as

laser powder bed fusion [6] and laser metal deposi-

tion [7], has revealed a strong dependency of the

phase fractions and morphology on the cooling con-

ditions. To understand the process of microstructure

evolution in this material and the correlation between

phase transformation and phase separation, a com-

putational model that takes diffusion of the alloy

components into account in a thermodynamically

consistent manner must be employed.

Phase-field models (PFM) are a common choice for

simulating microstructure evolution at the meso-

scopic scale. If diffusion of chemical species is con-

sidered, the amount of each element is often

represented by a mole fraction field. When combined

with CALPHAD Gibbs free energy models, PFM

simulations can be used to predict quantitatively the

system compositions, fractions of existing phases,

and their morphology as a function of time. The

parameters of a CALPHAD model are assessed based

on experiments and first-principle calculated data

and are stored in thermodynamic databases (TDB).

Many approaches have been proposed to combine

CALPHAD free energy models in PFM simulations

[8–23]. However, their applicability and efficiency

depend on the CALPHAD Gibbs energy model.

Sublattice models [24–26] are commonly used to

describe the Gibbs free energy of solid phases, with

multiple sublattices being employed to model pref-

erential occupation of atoms to specific sites in the

crystal structure. The amount of each element is

quantified by one or multiple internal variables called

constituent or site fractions, depending on the num-

ber of sublattices in the model. For solid solution

phases, only one sublattice is used as the atoms can

occupy any position in the crystal structure, i.e.,

equivalent to a substitutional model. Consequently,

there is only one site fraction variable for each ele-

ment, which can be directly related to the mole

fractions in conventional PFMs. Intermetallic phases,

however, are usually described with multiple sub-

lattices, resulting in Gibbs free energy models

expressed as a function of site fraction variables for

which there is no straightforward analytical relation

with the mole fractions used as variables in a PFM

model. More complex models often consider addi-

tional physics, as is the case for the B2 phase, which is

modeled with a two sublattice order-disorder model,

introduces vacancies as a constituent, and has a

magnetic energy contribution [3, 27]. Therefore, to

combine these models in PFM, the values of the site

fractions variables must be obtained using a numer-

ical procedure in which the Gibbs free energy is

minimized for a given composition, temperature, and

pressure.

A solution, proposed in the literature, is the for-

mulation of PFM equations as a function of site

fraction variables [12, 16]. This approach, however,

increases the computational cost of simulations as a

continuity equation is introduced for each site frac-

tion variable. For the B2 phase of the quaternary

AlnCrFe2Ni2 alloy, eight continuity equations would

be necessary to describe the evolution of the site

fractions, instead of three when using mole fractions.

Moreover, it is still unclear how to handle the inter-

action between phases with a different number of

sublattices and site fractions, limiting the application

of this approach for multiphase models.

Here, we propose a new approach to make use of

free energy sublattice models in PFMs formulated as

function of mole fraction variables using neural net-

works. The relation between site and mole fractions is

learned by a neural network with data obtained from

equilibrium calculations using a thermodynamic

software. This procedure is described in the methods

section, together with the PFM and the CALPHAD

sublattice model. In the results and discussion sec-

tion, we show the efficacy of the proposed approach

when applied for the B2 phase free energy model.

Finally, we conduct phase separation simulations for

the AlnCrFe2Ni2 MEA to test the applicability of this

new approach. The method can be generalized to any

system containing phases for which a CALPHAD

Gibbs free energy expression based on a sublattice

model is available, which is the model of choice for

metallic and ceramic systems.

Methods

Phase-field model

The temporal and spatial evolution of the

microstructure of the quaternary ðC ¼ 4Þ alloy is

described with three ðN ¼ 3Þ mole fraction fields

Xiðr; tÞ, one for each independent component, XAl

representing the mole fraction of aluminum, XCr of

chromium and XFe of iron. Nickel is assumed to be

the dependent component and is indirectly tracked

with XNi ¼ 1:0� XAl � XCr � XFe. Taking a volume-
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fixed frame of reference [28], the continuity equation

for each dependent component is given by

1

Vm

� �
oXi

ot
¼ �rJi; ð1Þ

in which Vm is the constant molar volume and Ji is

the diffusion flux, defined as

Ji ¼
XN
j

�Lijr
dF
dXj

: ð2Þ

The kinetic parameters Lij relate the fluxes of com-

ponents i with all driving forces, which are the

derivatives of a free energy functional, of the form

[29],

F ¼
Z
V
f0 þ

XN
j

jj
2
ðrXjÞ2dV;

with respect to the mole fractions Xj, i.e.,

dF
dXj

¼ of0
oXj

�r jjrXj

� �
: ð3Þ

The gradient energy coefficient jj controls the inter-

face energy and width in the PFM, and f0 is the free

energy density that guides the system towards

equilibrium. The complete model is obtained by

replacing Eq. (3) in Eq. (2), and Eq. (2) in Eq. (1), and

results in a Cahn–Hilliard type equation [29],

1

Vm

� �
oXi

ot
¼ r

XN
j

Lijr
of0
oXj

� jj rXj

� �2� �
; ð4Þ

The derivatives of the free energy density of the B2

phase w.r.t. the mole fractions are obtained from the

relation

of0
oXj

¼ 1

Vm

lj � lNi
� 	

¼ 1

Vm

~lj:

With lj being the chemical potential of component

j and lNi the chemical potential of nickel. The ther-

modynamic quantity ~lj is referred as the diffusion

potential and it is presented in ‘‘Thermodynamic

model’’ section. The models for the material proper-

ties Lij and jj are explained in ‘‘Mobility’’ and ‘‘Gra-

dient energy coefficient’’ sections, respectively, while

the numerical implementation of Eq. (4) and the

simulation parameters are discussed in ‘‘Implemen-

tation and numerical details’’ section.

Thermodynamic model

The Gibbs free energy of the B2 phase is formulated

with an order-disorder model [24, 25], in which the

disordered A2 and ordered B2 states are combined in

a single description. The sublattice model of the A2

phase is ðAl,Cr,Fe,Ni,VaÞ1:0, meaning that there is one

site fraction for each component and one additional

to model vacant lattice sites. The variables describing

the occupation of each constituent in a given sublat-

tice are the site fractions and are represented as xi,

with i ¼ Al, Cr, Fe, Ni, and Va, for the A2 phase,

while the sublattice model of the B2 phase is

ðAl,Cr,Fe,Ni,VaÞ0:5ðAl,Cr,Fe,Ni,VaÞ0:5. Therefore,

there are two sublattices (S ¼ 2), two site fraction

variables for each component and two additional for

vacancies. The site fractions of the B2 phase are rep-

resented as y
ðsÞ
i , with i ¼ Al, Cr, Fe, Ni, and Va, and

s is the sublattice index. The number in the paren-

thesis subscript is the stoichiometric factor, which is

NðsÞ ¼ 1:0 for A2 and NðsÞ ¼ 0:5 for B2 in both

sublattices.

The expression for the molar Gibbs free energy of

the B2 phase is defined as

GB2
m ¼ Gdis

m þ DGord
m ;

with Gdis
m ¼ GA2

m being the contribution from the dis-

ordered A2 phase, and

DGord
m ¼ Gord

m ðyðsÞi Þ � Gord
m ðyðsÞi ¼ xiÞ;

is used to describe chemical ordering. In this term,

Gord
m is the ordering contribution to the molar Gibbs

free energy, which is evaluated as a function of site

fractions of the B2 phase Gord
m ðyðsÞi Þ and by setting the

site fraction of B2 equal to the A2 phase

Gord
m ðyðsÞi ¼ xiÞ. This procedure guarantees that

DGord
m ¼ 0 when all y

ðsÞ
i ¼ xi, i.e. the phase is in a

disordered state, and DGord
m 6¼ 0 when all or some

y
ðsÞ
i 6¼ xi, i.e. the phase is partially or fully ordered.

The site fraction of the A2 phase can be calculated

from the site fractions of the B2 phase with the rela-

tion xi ¼
PS

s N
ðsÞy

ðsÞ
i , and Eq.(5) can be converted to a

function of the site fraction of the B2 phase only.

The mole fractions in the PFM are calculated as a

function of the site fraction with the relation
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Xi ¼
PS

s N
ðsÞy

ðsÞ
iPS

s N
ðsÞ P

j6¼Va y
ðsÞ
j

¼
PS

s N
ðsÞy

ðsÞ
i

nf

: ð5Þ

nf in Eq.(5) is the proportion of the sublattice posi-

tions occupied by constituents that contribute to the

content of matter, i.e., excluding vacancies. When the

site fractions are given, Eq.(5) can be used to calculate

the corresponding mole fractions. However, when

composition is given in mole fractions, it is generally

not possible to compute the corresponding site frac-

tion. Therefore, the values of the site fractions must

be obtained through the minimization of the Gibbs

free energy.

The degree of ordering [30], which is defined as

DOO ¼ 1

C

XS
s

XC
i

NðsÞðyðsÞi � XiÞP2
s N

ðsÞy
ðsÞ
i

; ð6Þ

is used to identify the phase and visualize the

microstructure. We assume that if DOO\10�2 the

alloy is disordered and if DOO� 10�2 the alloys is

ordered or exhibits partial ordering. In Eq. (6), C is

the number of components, which is equal to four in

the alloy under study.

Both GA2
m and Gord

m models are formulated according

to the CALPHAD method, containing the terms,

Gm ¼ Gref þ Gmix þ Gexs þ Gphys: ð7Þ

In which Gref is the term describing a surface of ref-

erence formed by the free energy of the pure com-

ponents or end-members. Gmix is known as the ideal

mixing term and models the configurational entropy

of the phase. Gexs is the excess term and is used to

model any contribution that deviates from the ideal

behavior. The last term Gphys can include the contri-

bution from additional physics, and for the B2 phase,

it contains a model describing magnetic ordering.

The form of each term in Eq. (7) is well-known in

the literature [24–26] and is not presented here.

All terms in the Gibbs free energy model of the

B2 phase in Eq. (7) are formulated as a function of

site fractions, i.e., GB2
m ðyð1ÞAl ; y

ð1Þ
Cr ; y

ð1Þ
Fe ; y

ð1Þ
Ni ; y

ð1Þ
Va ; y

ð2Þ
Al ; y

ð2Þ
Cr ;

y
ð2Þ
Fe ; y

ð2Þ
Ni ; y

ð2Þ
Va Þ, while the free energy in Eq. (4) is for-

mulated as a function of mole fractions,

f0ðXAl;XCr;XFe;XNiÞ.
The derivatives of the free energy density in

Eq. (7), i.e., the diffusion potentials, are obtained as

of0
oXj

¼ 1

Vm

~lj ¼
1

VmNð1Þ
oGm

oy
ð1Þ
j

� oGm

oy
ð1Þ
Ni

0
@

1
A;

and its derivatives,

of0
oXjXk

¼ 1

Vm

o~lj
oXk

¼ 1

VmNð1Þ
o2Gm

oy
ð1Þ
j y

ð1Þ
k

� o2Gm

oy
ð1Þ
Ni oy

ð1Þ
k

0
@

1
A;

which are required to numerically solve Eq. (4).

According to [26], any sublattice can be selected for

the computation of the derivatives, and we consis-

tently used the first sublattice in all cases.

Mobility

The kinetic parameter Lij in Eq. (4) is a phenomeno-

logical coefficient expressing the mobility of compo-

nent i with respect to a diffusion potential gradient of

component j and is defined as

Lij ¼
XC
k

ðdik � XiÞðdjk � XjÞXkMk; ð8Þ

where dik and djk are Kronecker delta functions, and

Mk is the atomic mobility of component k given as

Mk ¼ M0
k exp

�Qk

RT

� �
1

RT
:

With M0
k being a frequency factor and Qk the activa-

tion energy. The order-disorder transition is modeled

similarly to the Gibbs free energy, with the term

Qk ¼ Qdis
k þ DQord

k :

Qdis
k ¼ QA2

k is the contribution from the disordered A2

phase, and

DQord
k ¼

XC
l

XC
m6¼l

DQord
k y

ð1Þ
l yð2Þm � XiXj

� 	
: ð9Þ

The parameters Qk and M0
k have their composition

dependency represented by a Redlich–Kister poly-

nomial [31] and are acquired from open databases

available in the literature [31–33]. The site fractions in

Eq. (9) are obtained from the minimization of the

Gibbs free energy; consequently, their values must

also be provided for the computation of the

mobilities.
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Gradient energy coefficient

The model for the gradient energy coefficient is for-

mulated as

jj ¼ max
a2

4

P
k 6¼j

Xk

VmNð1Þ j o2Gexs

oy
ð1Þ
j
y
ð1Þ
k

j

1� Xj

2
64

3
75: ð10Þ

With a ¼ 2:85 Å being an effective interaction dis-

tance, which is assumed to be equal to the inter-

atomic distance of the A2 phase, and is obtained for

the equiatomic composition from [34]. The original

formulation of (10) is introduced in [35, 36] and is a

composition dependent expression. However, we

modify this model by taking the maximum value of

jj over the entire composition domain, making this

material property a constant to simplify the numeri-

cal solution of Eq. (4), avoiding higher-order deriva-

tives of Gexs.

Surrogate model

To compute the Gibbs free energy with Eq. (7) in

Eq. (4), the equilibrium site fractions for a given set of

mole fractions must be known, i.e., we assume that

an underlying function of the form,

fðXAl;XCr;XFeÞ ¼ y
ðsÞ
i ; ð11Þ

exists for each site fraction on each sublattice, and for

the B2 phase, ten of these functions are required.

However, an analytical expression for (11) does not

exist as its values can only be obtained through

minimization of the Gibbs free energy.

Our strategy is to train a regression model with

data computed on a thermodynamic software and

use it as a surrogate of (11) for each site fraction.

Therefore, the model inputs are the mole fractions,

and the outputs are the site fractions. The Gibbs free

energy and diffusion potentials required in the PFM

are then computed, evaluating each term in Eq. (7),

using the site fractions obtained from this regression

model.

We use Thermo-Calc 2020b TC-Toolbox for

MATLAB R2020a (script provided in [37]) and the

thermodynamic database from [3] to sample equi-

librium data of the B2 phase in the AlCrFeNi system.

The computed data are saved as a dataset (example

provided in [37]) containing 104 entries. Each entry is

calculated by generating a random composition, i.e.,

assigning a random value to the mole fraction of each

element, but respecting the constraint
P

Xi ¼ 1:0 and

at a constant temperature of 1500K. The values

obtained for the Gibbs free energy, derivatives and

corresponding site fraction, are stored in a dataset for

each condition once the Gibbs free energy is mini-

mized. On a Windows computer with a i7-7700 CPU

and 16GB of ram, this sampling procedure took

approximately 14 minutes.

Analysis of the sampled dataset showed that the

maximum value of the site fractions of vacancies

encountered on each sublattice are max y
ð1Þ
Va

� 	
¼

0:2356 and max y
ð2Þ
Va

� 	
¼ 1:8� 10�4. This information

is used to reduce the number of site fractions which

are modeled. The normalization factor is simplified

as it can be calculated with the site fractions on the

first sublattice only, as

nf ¼ 0:5 y
ð1Þ
Al þ y

ð1Þ
Cr þ y

ð1Þ
Fe þ y

ð1Þ
Ni þ 1:0

� 	
;

since the sum of all site fractions on the second sub-

lattice, excluding vacancies, is approximately 1.0.

Therefore, y
ð2Þ
i can be calculated if Xi, y

ð1Þ
i and nf are

available, by modifying Eq.(5) as

y
ð2Þ
i ¼ Xinf � y

ð1Þ
i :

Additionally, we use the constraint
P

y
ð1Þ
i ¼ 1:0 to

indirectly track the site fraction of vacancies on the

first sublattice as y
ð1Þ
Va ¼ 1:0� y

ð1Þ
Al � y

ð1Þ
Cr � y

ð1Þ
Fe � y

ð1Þ
Ni .

With these simplifications, only the site fractions y
ð1Þ
Al ,

y
ð1Þ
Cr , y

ð1Þ
Fe and y

ð1Þ
Ni are required to compute Eq. (7).

Neural network

Neural networks (NN) are known as universal

function approximators and are used here to train a

regression model that learns the relation between

mole and site fractions. The input layer consists of

three nodes (nx ¼ 3), which are the mole fractions of

aluminum, iron and chromium; the mole fraction of

nickel is suppressed since it is the dependent com-

ponent. The output layer consists of a single site

fraction variable (ny ¼ 1); therefore, four NNs are

needed for this approach. Taking in consideration

that the NN is evaluated multiple times during the

phase-field simulation, a simple and efficient NN

architecture is desired. To select the NN parameters,

a search is conducted on the optimal number of

J Mater Sci (2022) 57:10600–10612 10605



hidden layers L and number of neurons on each layer

nh.

Tensorflow version 2.4.1 is used to construct and

optimize the NNs, and tanh is selected as activation

function for all hidden layers and linear for the

output layer. This choice of activation functions is

commonly suggested in the literature when NNs are

used as regression models of nonlinear functions, and

in a preliminary study, it exhibited the best perfor-

mance compared to other options. All training and

validation data are scaled to the interval ½�1; 1� in a

pre-processing step. The Adam optimizer is used with

a learning rate of 10�4 and the mean squared error as

loss function, with the batch size equal to 32 and for

104 epochs. The dataset obtained as described in

‘‘Surrogate model’’ section is used for the NN opti-

mization, with 80% of the entries assigned as training

data and 20% for validation. These choice of these

parameters were also investigated in a preliminary

study.

The training is conducted on a HPC using a single

core of a 18-cores Xeon Gold 6140 CPU and 5 GB of

RAM for each NN. No significant improvements in

performance are observed when the training is con-

ducted using multiple cores or a GPU since the NN

architecture is relatively small in terms of trainable

parameters. Therefore, multiple NN are trained

simultaneously on a HPC node, with an average

duration of five hours for the given number of

epochs. The weights and biases of the optimized

model are saved after the training procedure is

concluded.

Implementation and numerical details

The Multiphysics Object-Oriented Simulation Envi-

ronment (MOOSE) is an open-source finite element

framework [38, 39] in which the Cahn–Hilliard model

Eq. (4) [40, 41] is efficiently implemented as part of

the phase-field module. All simulations presented

here are conducted using MOOSE, and the simula-

tion input files are included in [37]. The 2D spatial

domain of the simulations is discretized using 4-node

quadrilateral elements, and the mole fraction fields

are interpolated using Lagrange shape functions with

periodic boundary condition in all directions. Addi-

tionally, mesh adaptivity is employed to improve the

simulation performance by reducing the number of

required finite elements. The domain size of each

simulation is 100 by 100 nanometers, and initially 400

by 400 grid points. The preconditioned Jacobian-free

Newton–Krylov (PJFNK) method is used to solve the

system of equations, with the convergence tolerance

for the linear solve set to 10�4 and, 10�8 (relative) and

10�10 (absolute) tolerances for the nonlinear solve.

For the numerical solution of Eq. (4), the materials

properties are converted to their dimensionless form

(identified with a star superscript) with the equations

~l�j ¼
~lj
ec
; j�j ¼

jj
ec l2c

; and L�ij ¼
Lij ec tc
l2c

:

The characteristic length lc, energy ec and time tc are

defined as

lc ¼ 10�8m; ec ¼
RT

Vm

; and tc ¼
l2c

ecVm
�L
;

with the molar gas constant R ¼ 8:3145 Jmol�1 K�1,

the temperature T ¼ 1500K, the molar volume Vm ¼
7:7142� 10�6 m3 mol�1 (obtained from Thermo-Calc)

and the average mobility
�L ¼ 2:0� 10�17 m2mol J�1 s�1, calculated with Eq. (8).

The NNs are implemented in MOOSE as mate-

rials objects (see [37]), with the equation for pre-

dictions given as

aðnÞ ¼ gðWðnÞaðn�1Þ þ bðnÞÞ: ð12Þ

where aðnÞ is a vector containing the neurons in layer

n, g is the activation function (tanh or linear), WðnÞ

is a matrix containing the weights and bðnÞ a vector

with biases. Using (12), the values of the neurons in a

given layer aðnÞ can be calculated based on the neu-

rons in the previous layer aðn�1Þ, once all layers are

computed, a feedforward pass through the NN is

completed and the value of the output layer is

obtained.

The uncertainty on the fitting of the outputs (site

fractions) to the input features (mole fractions) is

contained in the values of the weightsWðnÞ and biases

bðnÞ and is cumulatively passed through each layer of

the NN. Additionally, the uncertainty on the opti-

mization of the CALPHAD parameters [42, 43] is

propagated to the NN model. An uncertainty quan-

tification and propagation analysis including the lat-

ter was not conducted in this work, as it involves

access to the optimization procedure of the CAL-

PHAD parameters. The validation of the NN models

is only provided based on errors measured compar-

ing the NN models and the validation dataset, see
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‘‘Neural network validation297’’ section, and by

comparing quantities obtained from thermodynamic

equilibrium calculations with the simulation results,

see ‘‘Phase-field simulations’’ section.

The equation for the Gibbs free energy model of the

B2 phase Eq. (7) is constructed using the coefficients

from the thermodynamic optimization in [3] and the

pycalphad [30] python package. The symbolic

derivatives of Eq. (7) are obtained with the SymPy

package [44]. Eq. (7) and its first and second deriva-

tives are implemented as a materials object in

MOOSE. The phase-field simulations are performed

on an HPC using 10 nodes, each with two 18-cores

Xeon Gold 6140 CPU and 192 GB of RAM. The

duration of each simulation (wall time) is given in

Table 2.

Results and discussion

Neural network validation

A series of NNs are trained with a varied number of

layers L ¼ 2; 3; 4 and nodes nh ¼ 4; 8; 16; 32; 64 in

search for an optimal architecture. This procedure is

conducted for the site fractions y
ð1Þ
Al , y

ð1Þ
Cr , y

ð1Þ
Fe and y

ð1Þ
Ni ,

with a total of 60 NN being trained. In Fig. 2a, the

absolute error distribution of the NNs after training is

plotted using box plots. The errors of all site fractions

are combined in the same distribution for each

architecture, i.e., each combination of L and nh.

Additionally, in Fig. 2b, the wall time required to

make a single prediction with each NN architecture is

plotted.

From the analysis of Fig. 2, a NN with L ¼ 3 and

nh ¼ 16 is chosen as the optimal architecture and is

used in further validation and for the phase-field

simulations. Increasing the number of hidden layers

from L ¼ 2 to L ¼ 3 provides a significant increase in

accuracy, while an increase from L ¼ 3 to L ¼ 4 has a

relatively small effect. A continuous decrease in the

error is observed when increasing the number of

nodes from nh ¼ 4 to nh ¼ 16, but improvements

become limited for higher nh. The wall time needed to

make predictions with each NN appears to be more

sensitive to the number of nodes than to the number

of layers under consideration. For instance, moving

from nh ¼ 16 to nh ¼ 32 increases the wall time by a

factor of two. Taking into account that the NN will be

evaluated multiple times throughout the simulation

mesh and at every time step, the choice of architec-

ture is also crucially dependent on this measure.

The absolute error on each site fraction for the

selected architecture is presented as box plots in

Fig. 3a. The absolute error distribution on the

dimensionless thermodynamic quantities, namely

Gibbs free energy Gm and diffusion potentials ~li, is
plotted in (b).

(a)

(b)

Figure 2 Analysis of neural network architecture. a The absolute

error distribution is plotted for a series of neural network

architectures using box plots. The x-axis indicates the number of

nodes on each layer and the different colors are used to identify

the number of layers, which are two, three and four according to

the legend. b The plot contains the wall time needed to compute

one prediction with each architecture in seconds. Both plots are

used to judge the optimal neural network architecture.
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In Fig. 3a, we observe that the absolute error is

similar for all site fractions, and that the upper

quartile in all cases is smaller than 10�3. The distri-

bution of the errors show that all variables have an

alike behavior, which facilitates the modeling of each

of these variables with the same NN architecture. The

thermodynamic quantities in Fig. 3b also display a

similar error, with a slightly larger error occurring on

the diffusion potential of aluminum ~lAl. With analy-

sis of all terms in ~lj, we observed that the contribu-

tion coming from the term Gmix in Eq. (7) gives the

larger contribution to the error. For ~lAl; this term

equals to RT logðYð1Þ
Al =Y

ð1Þ
Ni Þ, and is the most sensitive

to deviations on the values of the site fractions.

Phase-field simulations

In the pseudo-binary phase-diagram in Fig. 1, the x-

axis represents the mole fraction of aluminum in the

AlCrFe2Ni2 system, and the y-axis the temperature in

Kelvin. The liquid, FCC (A1), disordered BCC (A2),

and ordered BCC (B2) phases are present in the dis-

played section. The miscibility gap, where the sepa-

ration of the BCC occurs, is identified by the A2 ? B2

label. The three green circled labels with the numbers

one, two and three are used to locate the alloy com-

positions which are considered in the phase-field

simulations. This information is also provided in

Table 1; in addition, a fourth alloy is included which

cannot be encountered in the phase-diagram sec-

tion. This fourth alloy is selected with an equimolar

composition.

The simulation results are presented in Fig. 4. The

first row contains the DOO map of each alloy at the

last time step for visualization purpose. The second,

third and fourth rows contain the distribution of the

composition map of aluminum, chromium and iron,

respectively, for each alloy. Two peaks are observed

on each distribution, which correspond to the com-

position of the A2 and B2 phases. The numerical

values of the peaks are displayed on the x-axis and in

Table 2. The latter also contains the expected equi-

librium composition, obtained from Thermo-Calc for

each component and alloy, and the equilibrium vol-

ume fraction of the A2 NA2 and B2 NB2 phases. The

absolute error between the equilibrium and simu-

lated quantities is also displayed, and in the last two

(a)

(b)

Figure 3 Analysis of absolute error on prediction of site fractions

and the nondimensional thermodynamic quantities using a 3-layer

32-nodes neural network. a The box plot shows the absolute error

distribution for prediction of each site fraction variable. The site

fractions are indicated on the x-axis by their respective component

name and sublattice number. b The absolute error distribution on

the thermodynamic quantities calculated using only the site

fractions of the first sublattice.

Table 1 The composition used for each of the simulation cases is

given in the table

Alloy no. XAl XCr XFe XNi

1 0.25 0.15 0.30 0.30

2 0.30 0.14 0.28 0.28

3 0.35 0.13 0.26 0.26

4 0.25 0.25 0.25 0.25
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rows, the simulation duration in wall time (SWT) and

the number of time steps (NTS) is given for each case.

The simulation is stopped when the duration reaches

10 seconds in real time, and because of the adaptive

time stepping, the NTS is different for each

simulation.

The overall error between the equilibrium and the

mole fractions obtained from the simulations has a

mean value of 0.007. In all cases, the highest error is

encountered on the mole fraction of chromium, since

this variable is the nearest to assume dilute values.

The choice of NN architecture has shown a good

Figure 4 Simulated microstructures and analysis of composition

profile. The microstructures for alloys one to four are displayed in

the first row of the figure with the Degree of ordering (DOO) map,

in which yellow represents the B2 and blue the A2 phase. In the

second, third and fourth row, the distribution of the composition

profile of aluminum, chromium and iron are plotted respectively.

In addition the peaks that identify the equilibrium composition of

each phase are given in the x-axis.

Table 2 The equilibrium composition and the volume fraction of the
B2 and A2 phases obtained from Thermo-Calc are given for each
component on each alloy in the eq. column, and the values obtained
from the simulations are given in the sim. column. Additionally, the

absolute error between these quantities are displayed in the err.
column. The simulation wall time (SWT) is given in hours and the
number of time steps (NTS) is also provided

Alloy 1 Alloy 2 Alloy 3 Alloy 4

Eq. Sim. Err. Eq. Sim. Err. Eq. Sim. Err. Eq. Sim. Err.

XA2
Al

0.1715 0.1746 0.0031 0.2145 0.2138 0.0007 0.2653 0.2631 0.0022 0.1751 0.1797 0.0046

XB2
Al

0.2919 0.2920 0.0001 0.3496 0.3513 0.0017 0.4025 0.4043 0.0018 0.3238 0.3276 0.0038

XA2
Cr

0.3452 0.3463 0.0011 0.3391 0.3384 0.0007 0.3161 0.3182 0.0021 0.4551 0.4485 0.0066

XB2
Cr

0.0457 0.0532 0.0075 0.0245 0.0293 0.0048 0.0146 0.0194 0.0048 0.0483 0.0514 0.0031

XA2
Fe

0.4192 0.4161 0.0031 0.4149 0.4156 0.0007 0.4014 0.4002 0.0012 0.3326 0.3323 0.0003

XB2
Fe

0.2363 0.2372 0.0009 0.2017 0.1996 0.0021 0.1723 0.1689 0.0034 0.1688 0.1665 0.0023

NA2 0.3483 0.3536 0.0053 0.3672 0.3771 0.0099 0.3826 0.3735 0.0091 0.4959 0.4933 0.0026

NB2 0.6517 0.6464 0.0053 0.6328 0.6229 0.0099 0.6174 0.6265 0.0091 0.5041 0.5067 0.0026

SWT 23 h 28 h 29 h 23 h

NTS 3014 4176 4001 2924
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accuracy compared to its low computational cost. The

simulation duration in wall time, shown in Table 2, is

longer for alloys two and three due to the smaller size

of the A2 particles and the consequently larger

interface area.

The simplifications discussed in ‘‘Surrogate model’’

section that allowed us to reduce the number of

modeled site fractions to four are possible due to the

specifications of the B2 sublattice model. If these

simplifications are not possible, e.g., sublattice mod-

els that do not have all components present in all

sublattices, it is still feasible to model all site fractions

in all sublattices. Therefore, the approach presented

here is generally applicable to CALPHAD sublattice

models.

Conclusion

A new general approach to use CALPHAD sublattice

models in PFM mole fraction-based equations is

proposed, in which neural networks are used to

model the relation between mole and site fractions. It

is shown that a simple NN architecture can be used

to aid the calculation of the molar Gibbs free energy

and its derivatives with good accuracy. The choice of

NN training parameters are kept as close to the

default as possible to facilitate the reproduction of

this approach. Nonetheless, more complex architec-

tures might be beneficial in reducing the observed

error or the evaluation time.

In future work, the consideration of temperature as

a NN input is also possible, which would allow for

simulation of solidification or phase transformation

over a temperature range. Furthermore, Bayesian

NNs might be employed to address the uncertainty

quantification and error propagation in the model by

providing a probabilistic approach to the regression

problem. However, since these models are more

computationally demanding in comparison to the

conventional NN used in this work, the duration of

the NNs training step is expected to increase.

Finally, this approach can be extended to multi-

phase systems in which the number of sublattices,

stoichiometric factors, and sublattices occupancy is

not necessarily the same for all phases. This is only

possible since the phase-field model is expressed as a

function of the mole fractions.
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