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Abstract
Despite the fact that satellite-terrestrial systems have advantages such as high 
throughput, low latency, and low energy consumption, as well as low exposure to 
physical threats and natural disasters and cost-effective global coverage, their inte-
gration exposes both of them to particular security challenges that can arise due 
to the migration of security challenges from one to another. Intrusion Detection 
Systems (IDS) can also be used to provide a high level of protection for modern 
network environments such as satellite-terrestrial integrated networks (STINs). To 
optimize the detection performance of malicious activities in network traffic, four 
hybrid intrusion detection systems for satellite-terrestrial communication systems 
(SAT-IDSs) are proposed in this paper. All the proposed systems exploit the sequen-
tial forward feature selection (SFS) method based on random forest (RF) to select 
important features from the dataset that increase relevance and reduce complexity 
and then combine them with a machine learning (ML) or deep learning (DL) model; 
Random Forest (RF), Long Short-Term memory (LSTM), Artificial Neural Net-
works (ANN), and Gated Recurrent Unit (GRU). Two datasets—STIN, which simu-
lates satellite networks, and UNSW-NB15, which simulates terrestrial networks—
were used to evaluate the performance of the proposed SAT-IDSs. The experimental 
results indicate that selecting significant and crucial features produced by RF-SFS 
vastly improves detection accuracy and computational efficiency. In the first dataset 
(STIN), the proposed hybrid ML system SFS-RF achieved an accuracy of 90.5% 
after using 10 selected features, compared to 85.41% when using the whole data-
set. Furthermore, the RF-SFS-GRU model achieved the highest performance of 
the three proposed hybrid DL-based SAT-IDS with an accuracy of 87% after using 
10 selected features, compared to 79% when using the entire dataset. In the second 
dataset (UNSW-NB15), the proposed hybrid ML system SFS-RF achieved an accu-
racy of 78.52% after using 10 selected features, compared to 75.4% when using the 
whole dataset. The model with the highest accuracy of the three proposed hybrid 
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DL-based SAT-IDS was the RF-SFS-GRU model. It achieved an accuracy of 79% 
after using 10 selected features, compared to 74% when using the whole dataset.

Keywords  Satellite-terrestrial integrated network · STIN & UNSW-NB15 dataset · 
Intrusion detection system (IDS) · Cyber security · Machine learning · Deep 
learning

1  Introduction

A satellite is a self-contained communications device with the capacity to receive 
messages from Earth and retransmit them using a transponder, which functions as 
both a radio transmitter and receiver. Thanks to the satellite, large areas of Earth 
may be seen at once. As a result, satellites can gather data more quickly and effi-
ciently than devices on the ground, as shown in Fig. 1. The ability of satellites to 
transmit signals from one place to numerous destinations is their fundamental ben-
efit. As a result, “point-to-multipoint” communications like broadcasting are perfect 
for satellite technology [1]. Satellite communication is the best option for under-
served and remote locations with dispersed populations because it doesn’t require 
significant investments on the ground. However, the satellite-terrestrial network has 
significant issues with networks that are growing daily, enormous devices, the inclu-
sion of the satellite network, data security, and data privacy [2]. Another issue is 

Fig. 1   Satellite-terrestrial communication networks [3]
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that the satellite network has less computing power and resources than the terres-
trial network. A satellite node that has been targeted by an attacker becomes quickly 
exhausted and is challenging to repair. Therefore, high-level protection for modern 
networks requires the development of effective intrusion detection techniques. To 
address these issues, further classification algorithms are presented. Therefore, high-
level protection for modern networks necessitates the development of effective intru-
sion detection techniques due to the rise in network intrusion attacks [3].

There is a greater demand for network security due to the rise in network intru-
sion attacks [3, 4]. Cybersecurity is playing a crucial role in satellite system pro-
tection through the application of security policies, confidentiality, and integrity. 
Intrusion detection systems (IDSs) are utilized to detect attacks and any abnormal 
behavior in satellite systems [5]. IDS is categorized into five categories, as shown in 
Fig. 2. IDSs can be divided according to their structure: Based on centralized IDS 
or distributed IDS. The centralized IDS analyses data at a set number of locations 
[10]. The distributed IDS, which includes multiple IDS through a large network, all 
of which are connected to each other or connected to a central server that provides 
advanced network monitoring and incident analysis, can also be divided according 
to their deployment location into host-based intrusion detection systems (HIDS) and 
network-based intrusion detection systems (NIDS) [8]. HIDS in the IDS system uses 
the activities of the system in the form of different log files running on the local 
host computer to detect attacks, but NIDS in the IDS system uses network behavior. 
The network behaviors are gathered using network equipment through mirroring by 
networking devices, such as routers, switches, and network taps, and analyzed to 
specify attacks and possible threats hidden within network traffic. The log files in 
NIDS are gathered through local sensors. While HIDS depends on the information 
in log files, which include system logs, sensor logs, file systems, software logs, user 
account information, disc resources, and others for each system, NIDS inspects the 
contents of each packet in network traffic flows. Many organizations utilize a hybrid 
of both HIDS and NIDS [8].

In addition, IDS can be divided according to the approach that is used to detect 
attacks and other hidden potential threats within network data [3–8] into two catego-
ries: Anomaly-Based detection and Signature-Based detection, also known as “mis-
use detection” or “knowledge-Based detection”. Anomaly-Based detection has the 
feature of detecting deviations from normal behavior. The role of this technique is 
to: establish a baseline for the normal behavior of network traffic, then compare the 
incoming traffic with this baseline to detect malicious attacks. This IDS type enables 
detecting unknown attacks as well as known attacks [9]. Signature-Based detection 
has predefined signatures for known attacks that are matched with all connection 
patterns in the network to detect and stop any anomalous attacks. The main advan-
tage of this type of IDS is that it detects known attacks. However, the unknown 
attacks are not detected due to the unavailability of attack signatures [9].

According to their response, IDSs are classified into passive IDS, which moni-
tor, log, and provide alerts to activity, and active IDS, which act based on software 
design [10].

Based on the above figure, the proposed ML/DL-based hybrid IDSs in this 
research study focused on signature-based IDSs. It provides a high level of security 
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for both satellite and terrestrial networks by detecting known attacks and improving 
the accuracy of the results.

1.1 � Problem Statements

In terms of bandwidth, computing power, and other resources, satellite networks and 
terrestrial networks differ significantly from one another. Furthermore, when satel-
lites are launched, improving their hardware becomes much more challenging. The 
fundamental issue with satellites is that they have limited resources and are chal-
lenging to repair when attacked. Thus, Network Intrusion Detection Systems (NIDS) 
were developed to protect the modern network environment. NIDS is used to distin-
guish between the network’s normal and anomalous traffic [2].

Fig. 2   Categories of intrusion detection systems (IDS) [10]
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The effectiveness of NIDS is evaluated based on their performance in identify-
ing attacks, which requires a comprehensive dataset that contains normal and abnor-
mal behaviors, such as UNSW-NB15. However, this dataset and NIDS are generally 
used to simulate terrestrial networks and are difficult to apply to satellite networks 
because of the characteristics of STIN. Rather, the STIN dataset was used to simu-
late satellite networks.

1.2 � Contribution

Our contribution is to propose four hybrid intrusion detection approaches for sat-
ellite-terrestrial systems in modern network environments by considering the data 
from satellite and terrestrial networks to achieve good detection performance of 
malicious activities in the network traffic. The key contribution of this paper is the 
proposal of four SAT-IDSs:

•	 The first model uses the sequential forward selection (SFS) method based on the 
Random Forest model (RF-SFS) to select important features in the dataset and 
then combine it with Random Forest (RF).

•	 The second model uses the sequential forward selection (SFS) method based on 
the Random Forest model (RF-SFS) to select important features in the dataset 
and then combine it with the Artificial Neural Network (ANN) model (RF-SFS-
ANN) to achieve higher accuracy than ANN.

•	 The third model combines the RF-SFS with Long-Short-Term memory (RF-
SFS-LSTM) to improve the accuracy of the LSTM model.

•	 The fourth one utilizes the RF-SFS with the Gated Recurrent Unit (RF-SFS-
GRU).

This paper is constructed as follows: Sect. 2 presents the literature review. Sec-
tion 3 describes the methodology. In Sect. 4, four novel SAT-IDSs are proposed. The 
results of the experiments are presented in Sect. 5 and discussed in Sect. 6. Section 7 
sums up the paper and presents the future work.

2 � Related Work

This section focuses on some recent related works on intrusion detection sys-
tems using UNSW-NB15 for terrestrial datasets and/or STIN for satellite datasets. 
Researchers in [11] provide a comprehensive review of the latest feature selection 
(FS) methods in large data sets, organized based on their nature, like search strategy, 
evaluation process, and feature structure. 

The authors in [5] proposed a new approach-based intrusion detection method 
using data from satellite and terrestrial networks. The model combines random 
forest (RF) and multilayer perceptron (MLP) to increase the accuracy of intrusion 
detection compared to other machine learning models. They also analyze the effi-
ciency of the proposed framework for the satellite and then use three datasets for 
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experiments, namely NSL-KDD, KDD-CUP 99, and STIN. Other researchers [12] 
analyzed the important features of huge traffic in networks to improve the accuracy 
of the intrusion detection model and minimize the execution time. They use the 
Information Gain method as a feature selection method to select important features 
and then implement Bayes Net (BN), Random Forest (RF), Naive Bayes (NB), J48, 
and Random Tree (RT) classifiers. The results of experiments on the CICIDS-2017 
dataset improved the accuracy and execution time, and the Random Forest model 
(RF) achieved the highest accuracy of 99.86% based on 22 selected features, while 
the J48 model achieved an accuracy of 99.87% based on 52 selected features but 
with a longer execution time. The authors in [13] proposed a comparative study on 
Artificial Intrusion Detection Systems (AIDS) using different datasets and differ-
ent types of attacks. They also apply different supervised ML algorithms such as 
random forest (RF), decision tree (DT), k-nearest neighbour (k-NN), support vector 
machine (SVM), naive Bayes (NB), artificial neural network (ANN), and convolu-
tional neural network (CNN) algorithms, as well as unsupervised ML algorithms 
including k-means, expectation–maximization (EM), and self-organizing maps 
(SOM) algorithms. In [8], the authors propose an alert system based on hybrid intru-
sion detection through a highly scalable framework. The proposed framework han-
dles large-scale data in real time.

The authors in [14] proposed a UAV and satellite-based 5G network security 
model based on machine learning to enhance the security of networks by effec-
tively detecting vulnerabilities and cyberattacks. This approach is divided into two 
parts: the creation of the model using different machine learning algorithms and 
the implementation of the ML-based model using satellite or terrestrial gateways. 
This model achieves maximum accuracy with a 99.99% true negative rate and a 0% 
false negative rate by using a decision tree algorithm rather than other ML classi-
fiers. Other researchers [15] proposed deep learning model-based intrusion detec-
tion using hybrid sampling to solve the problem of data imbalance. To produce a 
balanced dataset, they use one-sided selection (OSS) to reduce the majority sam-
ples and increase the minority samples using the Synthetic Minority Over-Sampling 
Technique (SMOTE). Then they implement Bi-directional long short-term mem-
ory (BiLSTM) using the NSL-KDD and UNSW-NB15 datasets, and they achieve 
76.82% for multiclass classification and 77.16% for binary classification. In [16], 
authors proposed a new approach-based intrusion detection and compared it with 
different machine learning techniques, including SVM, AdaBoost, decision tree, and 
MLP, to classify normal and anomalous traffic. It depends on selected features based 
on the correlation between the features, and it implements using the UNSW-NB 15 
dataset for network anomaly detection. The proposed approach achieves high accu-
racy in binary classification using Adaboost, which is 99.3%.

Researchers in [17] proposed an overview of different feature selection meth-
ods to reduce the computation time and improve the accuracy of the prediction. 
They focus on explaining the filter, wrapper, and embedded methods with various 
machine learning classifiers. Authors in [18] implemented a filter-based XGBoost 
algorithm using UNSW-NB15 to reduce feature space and then used ML approaches 
such as k-Nearest-Neighbour (kNN), Logistic Regression (LR), Support Vector 
Machine (SVM), Decision Tree (DT), and Artificial Neural Network (ANN). The 
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results based on XGBoost-based feature selection achieve high test accuracy for the 
DT model, ranging from 88.13% to 90.85% in binary classification. The authors 
in [19] applied a Gated Recurrent Units (GRU) classifier based on deep learning 
to detect DDoS and intrusion attacks in a software-defined network (SDN). Other 
researchers in [20] studied the effect of different feature selection techniques such 
as Chi-Square, Information Gain (IG), and Recursive Feature Elimination (RFE) on 
the performance of ML classifiers, namely Naïve Bayes, Decision Tree Classifier, 
Support Vector Machine, k-nearest neighbours, Random Forest Classifier, Logistic 
Regression, and Artificial Neural Networks. Authors in [21] proposed a new hybrid 
approach using chi-square as a feature selection technique, Extra Tree, and ANOVA 
with ML classifiers such as Random Forest, k-Nearest Neighbours, Decision Tree, 
and XGBoost to detect DDoS attacks on IoT devices.

The authors in [22] presented an automatic evaluation method based on 
human–computer interaction and virtual reality for mental health physical exami-
nation. They use the HCI technique to induce the participants’ emotional experi-
ence via three virtual reality (VR) emotional scenes: sad, joyful, and calm, and con-
struct two differential pupil-waves for sad and joyful with the calm pupil-wave as 
the baseline. Researchers in [23] developed ECMADE, which is proposed to solve 
premature convergence and search stagnation. When compared to other algorithms, 
ECMADE outperforms them in terms of solution quality, space distribution, and 
robustness. Other researchers in [24] presented a multi-strategy competitive-coop-
erative co-evolutionary algorithm based on adaptive random competition and neigh-
bourhood crossover, namely MSCOEA, to effectively solve multi-objective optimi-
zation problems (MOPs) and fully balance uniformity and convergence. The authors 
in [25] proposed a long short-term memory (LSTM)-based approach to detect net-
work attacks using an SDN-supported intrusion detection system in IoT networks. 
They effectively identify the attacks and classify the attack types with an accuracy of 
0.971. Researchers [26] proposed an approach that combined both CNN and GRU 
to optimize the network parameters. In this simulation, the authors used the CIC-
IDS-2017 benchmark dataset and metrics such as precision, recall, false-positive 
rate (FPR), and true-positive rate (TPR). The authors also performed a compara-
tive analysis with other existing approaches, and the obtained results indicate the 
efficacy of the proposed IDS scheme in real-world cybersecurity setups. Others [27] 
developed a deep learning model for network intrusion detection in both binary and 
multiclass classifications of network traffic. They also proposed an effective refine-
ment strategy and generated several models for lowering the FNR and increasing 
predictability for the minority classes. Researchers in [28] proposed LSTM (Long 
Short-Term Memory) combined with FCN (Fully Connected Network) deep learn-
ing approaches to classify the normal and anomalous connections on intrusion 
datasets and specify the attack pattern more accurately. The proposed deep learn-
ing model achieved a better classification accuracy result using the KDDCup99, 
NSLKDD, GureKDD, KDDCorrected, Kyoto, and NITRIDS datasets, respectively. 
The authors in [29] proposed an unsupervised ensemble autoencoder connected to 
the Gaussian mixture model (GMM) to adapt to multiple domains. The performance 
of the proposed model is comparable with the selected anomaly detection baselines 
using three public datasets.
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In recent related works on IDS, previous authors proposed many approaches to 
improving the accuracy results in binary and multi-class classification by combining 
two techniques with each other or solving an imbalanced dataset. As a result, some 
researchers proposed filter methods such as Chi-square and Information Gain, which 
were combined with ML models to improve accuracy. Other researchers proposed 
solutions to the imbalanced dataset problem, such as the SMOTE technique, which 
also increases accuracy. Their findings included some problems: mainly the low 
accuracy of the adapted models combined with more execution time and complexity 
time according to the number of used features. Many researchers used terrestrial net-
work traffic as a dataset to evaluate those proposed approaches, as shown in Table 1.

3 � Methodology

This section explains in detail the two datasets for satellite and terrestrial networks, 
STIN and UNSW-NB15, respectively. Then, the ML and DL models, which are 
implemented in the proposed SAT-IDS approaches to detect different satellite-ter-
restrial attacks, were reviewed.

3.1 � Datasets

This section has two parts based on types of datasets, mainly STIN and UNSW-
NB15, respectively.

3.1.1 � STIN Dataset

The STIN dataset [2] was utilized to represent a satellite dataset that includes vari-
ous types of attacks in modern satellite and terrestrial network environments. The 
authors in [2] simulate a real scenario for the terrestrial network and satellite net-
work. This dataset contains two types of traffic: TER20 and SAT20, in csv format. 
These two files contain 32 features with labels and nine different types of attacks. 
The distribution of the samples for types of attacks in the training set for each cat-
egory is mainly one for terrestrial network attacks, which include 7 various types of 
attacks like Botnet with 14,622 records, Web Attack with 13,017 records, Backdoor 
with 12,762 records, LDAP_DDos with 15,694 records, MSSQL_DDos with 15,688 
records, NetBIOS_DDos with 11,530 records, and the last type is Portmap_DDos 
with 14,380 records. Another one is for satellite network attacks, which include 
two types of attacks: Syn_DDos with 54,789 records and UDP_DDos with 57,082 
records.

3.1.2 � UNSW‑NB15 Dataset

The UNSW-NB15 dataset [30] was used to represent terrestrial traffic only, which 
includes various types of attacks in modern terrestrial network environments. This 
dataset contains two main files, mainly training set and testing set files in csv format, 
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and it contains 45 features with labels and nine different types of attacks. The dis-
tribution of the samples for types of attacks in the training set is Analysis with 677 
records; Backdoor with 583 records; DoS with 4089 records; Exploits with 11,132 
records; Fuzzers with 6,062 records; Generic with 18,871 records; Reconnaissance 
with 3,496 records; Shellcode with 378 records; and Worms with 44 records. How-
ever, the distribution of the samples for types of attacks in the testing set for UNSW-
NB15 is: Backdoor with 1,746 records; Analysis with 2,000 records; DoS with 
12,264 records; Exploits with 33,393 records; Fuzzers with 18,184 records; Generic 
with 40,000 records; Worms with 130 records; Shellcode with 1,133 records; and 
Reconnaissance with 10,491 records. Table 2 compares the two datasets used, the 
STIN and UNSW-NB15 datasets.

3.2 � ML & DL techniques

Although most researchers propose IDSs based on machine learning (ML), deep 
learning (DL) models are less commonly used in cybersecurity since they require 
enormous amounts of high-quality data for appropriate training. DL is a subset of 
machine learning that implements artificial neural networks [31]. It has the struc-
ture of a multi-layer neural network. Traditional ML algorithms perform better when 
data volumes are small, and training takes little time. On the contrary, the test time 
of the ML takes more time based on the amount of data. This leads to the conclu-
sion that using DL algorithms achieves higher accuracy than ML when increasing 
the volume of data and consuming less test execution time. This article investigates 
both ML-and DL-based intrusion detection systems (IDSs) as efficient solutions for 
detecting network intrusions. This research work considers RF as an example of ML 
and Long-Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Artifi-
cial Neural Networks (ANN) as DL techniques. The following subsections provide a 
review of the supervised ML and DL approaches that are used in this work:

3.2.1 � Random Forest (RF)

Random forest (RF) [32] is a machine learning method dependent on multiple deci-
sion trees that can be used for tasks in regression and classification. The difference 

Table 2   Comparison between UNSW-NB15 and STIN datasets

STIN UNSW-NB15

Domain Satellite Network Traffics Terrestrial Network Traffics
Total no. of attack types 2 satellite-type attacks and 9 

terrestrial-type attacks
9 types of attacks

No. of features 32 features 45 features
Total no. of attacks records in train set 209,564 records 45,332 records
Total no. of normal records in train set No records 37,000 records
Total no. of attacks records in test set 41,913 records 119,341 records
Total no. of normal records in test set No records 56,000 records
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between a random forest and a decision tree is to avoid overfitting for better gener-
alizability by adding randomness for multiple decision trees in a random forest. The 
results of the prediction for a random forest after training have a higher probability 
through a voting method based on the prediction of each tree [20]. RF has an advan-
tage that increases the performance of the model by producing an important score 
for each feature and removing features with the lowest score [32].

3.2.2 � Artificial Neural Network (ANN)

A feed-forward artificial neural network with many hidden layers is called a multi-
layer perceptron (MLP). The number of neurons in the MLP output layer for clas-
sification issues is equal to the number of classes to be identified, but the number of 
neurons in the input layer is associated with the number of features. Backpropaga-
tion is frequently used to train the layers between the input and output layers [33]. 
These layers are completely connected. Equation 1 demonstrates how the network 
calculates the output of each layer during forward propagation based on an activa-
tion function from the prior layer as well as related weight and bias variables, as 
shown in Eq. 1 [14].

where l stands for input layers, W[l] for the weight matrix, b[l] for the bias vector, and 
Z[l] for the output matrix.

An activation function can be used to normalize the output of an MLP because 
the output could have any value. Equation 2 illustrates how the activation function 
can change each layer’s output to fall inside a specific range [32].

where A[l] denotes the output matrix that has been activated, and g(Z[l]) is the type 
of activation function that is used in the hidden layers. The suggested methodologies 
used activation functions such as “tanh” and “softmax” for the hidden layer and final 
output layer, respectively. A straightforward activation function called tanh, which 
is defined in Eq.  3 [32], provided higher performance for multi-layer neural net-
works. The “softmax” activation function described in Eq. 4 [32] is typically used 
for multi-classification because it can correct sigmoid function flaws and guarantee 
that the probability sum of the output layer is equal to 1. A cross-entropy loss func-
tion is used to calculate the error between the predicted value and the actual value.

where asoft in Eq. 4 denotes to “softmax” activation function, J is the class number, 
zi represents the ith output value.

(1)Z[l] = W [l]A[l− 1] + b[l],

(2)A[l] = g
(

Z[l]
)

,

(3)tanh(x) =
ex − e−x

ex + e−x
,

(4)asoft =
ezi

∑j

j=1
ezj

for i ∈
�

1, j
�

,
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3.2.3 � Long‑Short Term Memory (LSTM)

Vanishing errors are a problem that LSTM can help with. More than 1000 discrete time 
steps can be bridged using LSTM. All the units in the hidden layer are swapped out for 
memory blocks in LSTM networks. There is at least one memory cell in every memory 
block. One cell in a fundamental LSTM network [34]. The regulatory gates activate 
the memory cells. These gates regulate the flow of information coming in and leaving. 
A forget-gate is located between an input gate and an output gate. If the stored data is 
no longer required, forget gates can reset the state of the linear unit. Simple sigmoid 
threshold units make up these gates. The range of these activation functions is 0 to 1 
[34]. In deep neural models, the dropout [18] process is used to lose neurons randomly 
throughout each training session. Deep neural networks must go through this procedure 
to avoid overfitting, a condition in which the network learns to effectively identify vari-
ables in fresh samples [18]. In this study, a layer with a 0.2 dropout rate is included. 
The output ycj(t) of an LSTM memory cell is computed as [34] in Eq. 5:

where c stands for internal cell state, j stands for output gate, youtj is the output of the 
activation gate, scj is the internal state of the output gate, and h is the output of the 
hidden layer.

3.2.4 � Gated Recurrent Unit (GRU)

The vanishing problem has been tackled in several ways, but Long-Short-Term Mem-
ory (LSTM) is the one that appears in literature the most frequently (Hochreiter and 
Schmidhuber, 1997) [16]. The use of a set of gates—mechanisms that control learning 
and memory rates—ensures that long-term data continues to have an impact on recent 
predictions. However, compared to LSTM, GRU has fewer tensor operations, which 
speeds up the training process [20].

The update and reset gates are operated by GRUs. It is up to the first one to specify 
what details about a new entry will be forgotten and what new details will be added. 
The second, however, talks about how much information from the past or the long term 
would be forgotten. As was already mentioned, there are various neural networks that 
determine which information should be retained or forgotten. Because it normalizes 
its output into values between 0 and 1, the sigmoidal activation function used by both 
gates to operate helps to streamline the process. Any value multiplied by 0 will there-
fore be lost; however, values multiplied by 1 will be retained [20].

The cell first multiplies ht−1 and xt together to determine the value of ht . It then sends 
the resulting vector to the reset and update gates to determine their respective outputs, rt 
and ut , using Eqs. (6) and (7).

(5)ycj(t) = youtj (t) h(scj(t)),

(6)rt = �(wr ⋅ [ht−1, xt] + br),

(7)ut = �(wu ⋅ [ht−1, xt] + bu),
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where br and bu are the bias vectors for the neural networks, xt refers to an input 
at a time point, ht−1 refers to an output at a previous time point, and Wr and Wu are 
their weight matrices. The result is concatenated with xt and sent into a third neu-
ral network with a hyperbolic tangent (tanh) activation function after performing a 
pointwise multiply between rt and ht−1 . Tanh normalizes data between 1 and − 1, 
controlling the neural network’s output and avoiding data that is too large or too 
small between iterations. This neural network’s output ĥt is calculated using Eq. (8).

3.3 � Feature Selection Techniques

The process of selecting discriminative feature variables that are most beneficial 
to the target variable is known as feature selection [35–44]. By eliminating the 
factors that don’t affect how the target variable is determined, the feature selec-
tion procedure aims to lower the computing cost of the model.

To select features, a selection wrapper method such as sequential forward 
(SFS) was applied. Wrapper approaches evaluate the variable subset using the 
predictor’s performance as the objective function and the predictor as a black 
box, as shown in Fig.  3. The wrapper approaches are generally categorized as 
sequential selection algorithms. The sequential selection methods begin with 
an empty set (a complete set), add features, and then subtract features until the 
maximum objective function is reached. To expedite the selection process, a cri-
terion is selected that gradually raises the objective function until the maximum 
is obtained with the fewest features. Sequential selection algorithms were used. 
Given that these algorithms are iterative, they are regarded as sequential [20]. In 
the proposed approaches, RF-based sequential forward selection (RF-SFS) was 
implemented. The tuning parameter that was used for RF to achieve high accu-
racy is max_depth = 20 because the values of the max_depth parameter that go 
between 5 and 10 achieve an accuracy between 74.1% and 77.9% since the tree 
is underfit. This led us to increase the value of the max_depth parameter to gain 
more accurate results. The accuracy remained the same even after passing the 
max_depth of 20.

(8)̂ht = tanh (w0[rtht− 1, xt] + b0),

Fig. 3   Wrapper method diagram [35]
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4 � Proposed SAT‑IDSs

Inspired by ML/DL techniques, four hybrid IDS techniques are proposed. The first 
technique depends on using RF combined by SFS (RF-SFS), the second technique 
depends on using ANN combined by SFS (RF-SFS-ANN), the third technique 
depends on using LSTM combined by SFS (RF-SFS-LSTM), and the fourth tech-
nique depends on using GRU combined by SFS (RF-SFS-GRU). A subset of high-
performing features was chosen from the datasets STIN for satellite networks and 
UNSW-NB15 for terrestrial networks by using sequential forward selection (RF-
SFS) to reduce the complexity and dimensionality of the features. As a result, 10 
features were selected from the whole set of features for each dataset. Therefore, the 
selected features are combined with ML and DL models to detect intrusions.

4.1 � Data Pre‑processing

Figure 4 shows the dataset preprocessing steps. For the learning process to be suc-
cessful, this phase is essential. The five processes of data pre-processing are clean-
ing, minority removal, label encoder, normalization, and feature selection. The 
Sequential Forward Selection (SFS) feature selection method was used to reduce the 
dimensionality of the dataset. This technique is implemented based on Random For-
est (RF) to select the best subset.

This section discusses the following data preprocessing steps:

1.	 Cleaning: There are 45 and 32 features in the UNSW-NB15 and STIN datasets, 
respectively. In the UNSW-NB15 dataset, two features are the attack’s class des-
ignations, and 43 of them are important features. While “label” is a binary class 
label, “attack cat” is a multi-class label. The term “label” was eliminated because 
the proposed ML and DL models are built to conduct multi-classification for 
intrusion detection. In the STIN dataset, one feature is class designations, and 31 
of them are important features. While “label” is a multi-class label.

2.	 Minority Removal: The performance of machine learning and deep learning 
might be negatively impacted by extremely unbalanced datasets. In the UNSW-

Fig. 4   Preprocessing dataset 
steps
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NB15 dataset, four minority classes are eliminated since they made up 1.141%, 
0.996%, 0.646%, and 0.074% of the training set, respectively. These classes were 
“Analysis,” “Backdoor,” “Shellcode,” and “Worms.” But in the STIN dataset, 
four minority classes are merged into one DDoS class, and another three minority 
classes are merged into one Botnet class because the minority classes are a subset 
of the main class, and the main target in this dataset set is satellite attacks. Finally, 
a balanced training dataset for UNSW-NB15 was produced that includes DoS, 
Exploits, Fuzzers, Generic, Normals, and Reconnaissance with 4,089, 11,132, 
6,062, 18,871, 37,000, and 3,496 records, respectively. Also, a balanced training 
dataset for STIN was produced that included Botnet, DDoS, Syn_DDoS, and 
UDP_DDoS with 40,401, 57,292, 54,789, and 57,082 records, respectively.

3.	 Label Encoder: The UNSW-NB15 dataset includes three categorical characteris-
tics that each contain categorical values: “service”, “proto”, “state” and “attack_
cat”. Using a label encoder, these features were converted from string values to 
integers [31], but the STIN dataset has only one categorical characteristic in the 
“Label” feature.

4.	 Normalization: The value range of each feature can be unified through normaliza-
tion. To convert the range of feature values between 0 and 1, “MinMax” Normali-
zation was utilized. According to Eq. 9 [32], the difference between the minimum 
value and the scale size is used to determine the new value.

 where xi is normalized value, x
i
 represents the ith feature vector, min

(

x
i

)

 
returns the minimum value of the vector, and 

(

x
i

)

 returns the maximum value of 
the vector.

5.	 RF-SFS: sequential forward feature selection (SFS) based on a random forest 
model (RF-SFS) was applied to select the best subset with ten features to achieve 
high accuracy. These features are “proto, dbytes, sttl, dttl, dload, swin, synack, 
smean, dmean, ct_dst_src_ltm” for the UNSW-NB15 dataset and “fl_dur, l_fw_
pkt, pkt_len_min, pkt_len_max, fl_byt_s, fw_hdr_len, fin_cnt, urg_cnt, fw_pkt_
blk_avg, fw_win_byt” for the STIN dataset.

4.2 � Training and Testing Set Preparation

The training set is used to fit the model, and the test set is used to verify the 
model’s performance. The preprocessing steps of the training and testing sets 
are detailed in Fig. 5. The UNSW-NB15 dataset has 82,332 records for the train-
ing set and 175,341 records for the testing set, but the STIN dataset has 209,564 
records for the training set and 41,913 records for the testing set. The training 
and testing set details are shown in Table 2.

(9)xi =
xi − min

(

xi
)

(

xi
)

− min
(

xi
) ,
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4.3 � Implemented IDS Models

In this section, ML/DL approaches-based RF-SFS was proposed in detail. This step 
is executed after two stages, mainly the preprocessing of the dataset and the dataset 
splitting, as shown in Fig. 6. In the block of model training, one of the ML- or DL-
based RF-SFS approaches was implemented, and then the model was evaluated.

4.3.1 � RF‑SFS‑RF Model

The RF-SFS-RF approach was implemented using an RF classifier with selected 
features from the SFS-RF method and achieved high accuracy results with max_
depth = 20. The time complexity of RF in the proposed model = O (depth of tree*k). 
Where k is the number of decision trees and O(d) is the complexity of SFS. Where d 
is the desired number of features. The overall complexity of SFS-RF is O (2*(depth 
of tree*k)) + O(d).

4.3.2 � RF‑SFS‑ANN Model

The RF-SFS-ANN approach was implemented with the “Adam” optimizer, and it 
included three hidden layers with the same number of neurons (50), an input layer 
with input dimension parameters of 10 for UNSW-NB15, and STIN datasets that are 
equal to input features. The used activation function in the input and hidden layers is 

Fig. 5   Training and test prepara-
tion step

Fig. 6   Proposed models
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tanh; the output layer has 6 and 4 neurons for the UNSW-NB15 and STIN datasets, 
respectively, which are equal to the number of output classes, and the used activa-
tion function is “softmax”.

For ANN, there are n input features,  3 hidden layers with mi  neurons for each 
layer, k output neurons with t training samples, and n epochs. So, the time complex-
ity of ANN is O (nt*(n*m1 + m1*m2 + m2*m3 + m3*k)). Therefore, the overall com-
plexity of RF-SFS-ANN is O (nt * (n*m1 + m1*m2 + m2*m3 + m3*k)) + O (depth of 
tree*k) + O (d).

4.3.3 � RF‑SFS‑LSTM Model

The RF-SFS-LSTM approach was implemented with the “Adam” optimizer, and it 
included three hidden layers with the same number of neurons (50): an input layer 
with input dimension parameters of 10 for UNSW-NB15 and STIN datasets, which 
are equal to input features; an output layer with 6 and 4 neurons for UNSW-NB15 
and STIN datasets, respectively, which are equal to the number of output classes; 
and an activation function of “softmax”.

LSTM is local in space and time, which means that the input length does not 
affect the storage requirements of the network, and for each time step, the time com-
plexity per weight is O (1). Therefore, the complexity of an LSTM per time step is 
equal to O(w), where w is the total number of weights in the network. So, the overall 
complexity of RF-SFS-LSTM = O (depth of tree*k) + O(d) + O(w).

4.3.4 � RF‑SFS‑GRU Model

This approach was designed with three hidden layers with 50 neurons: an input 
layer with 10 neurons and an output layer with 6 and 4 neurons, respectively, for the 
UNSW-NB15 and STIN datasets. The activation function was “Softmax” and the 
“Adam” optimizer was used when fitting the model.

In the proposed RF-SFS-GRU, there are I input features, 3 hidden layers (H, J, 
and N) with mi  neurons for each layer, and k  output neurons with  t  training sam-
ples and n epochs. So, the time complexity of GRU is O (nt*(IH + J2 + N2 + N*k)) 
and the overall time complexity of RF-SFS is O (depth of tree*k) + O(d), as 
mentioned previously. Therefore, the overall complexity of RF-SFS-GRU is O 
(nt*(IH + J2 + N2 + N*k)) + O (depth of tree*k) + O (d).

5 � Experimental Results

Kaggle [44] was used as the experimental environment. Kaggle notebooks run in a 
remote computational environment. It has 20 gigabytes of auto-saved disc space (/
kaggle/working).

•	 The CPU specifications are: 4 CPU cores and 30 gigabytes of RAM.
•	 GPU specifications are: 1 Nvidia, 2 CPU cores, and 13 gigabytes of RAM.
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Scikit-Learn, Numpy, Pandas, Matplotlib, and other packages were also used 
to provide data processing, feature selection, and visualization functions [44] to 
analyze the performance of the proposed SAT-IDSs.

5.1 � Performance Metrics

To evaluate the performance of the four proposed SAT-IDSs, performance met-
rics like accuracy, recall, precision, and F1-score were calculated.

Table 3 presents a simplified confusion matrix that differentiates the classifi-
cation results [5]. Based on the one versus all principle, there are generally four 
cases in ML/DL classification tasks where:

•	 True Positive (TP): represents correctly classified positive samples.
•	 False Negative (FN): represents incorrectly classified positive samples.
•	 False Positive (FP): represents incorrectly classified negative samples.
•	 True Negative (TN): represents correctly classified negative samples.

The equation’s definition of accuracy determines the proportion of correctly 
classified samples to all samples, as defined in Eq. 10 [40].

Recall calculates the ratio of correctly classified positive samples to all sam-
ples that were supposed to be positive, as defined in Eq. 11 [40].

Precision, as defined in Eq. 12, returns the ratio of classified positive samples 
to all samples that are predicted to be positive [40].

The F1-score, as defined in Eq.  13, returns the harmony mean of recall and 
precision. In multi-class imbalanced data, it can be applied as a performance met-
ric to address recall and precision faults [40].

(10)Accuracy =
TP + TN

TP + TN + FP + FN
,

(11)Recall (True Positive Rate) =
TP

TP + FN
,

(12)Precision =
TP

TP + FP
,

Table 3   Simplified confusion 
matrix [5]

Predicted class

Positive Negative

Actual class Positive TP FN
Negative FP TN
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5.2 � Performance Analysis

To prove the efficiency of the proposed IDSs, the proposed approaches were tested 
on two datasets: UNSW-NB15 and STIN. Classifier performance evaluation is com-
monly computed using evaluation metrics such as accuracy, precision, recall, and 
the F1 score. These metrics are measured using a confusion matrix, as given in 
Eqs. 10, 11, 12, and 13.

To test the performance of individual attack labels on the UNSW-NB15 data-
set, a confusion matrix for the RF-SFS-LSTM multiclass classification model was 
computed, as shown in Fig. 7. The RF-SFS-LSTM model performs well for Recon-
naissance, Generic, Exploits, and Normal classes, as demonstrated by the darker 
squares in the confusion matrix. The performance of a model for classification at all 
classification thresholds was evaluated using a ROC curve to evaluate the model’s 
robustness. The ROC curve for the RF-SFS-LSTM multiclass classification model 
is shown in Fig. 8. While the model is unable to distinguish between positive and 
negative class values for the Fuzzers class, which has the worst ROC curve, the pro-
posed approach identifies all the classes with better ROC curves.

Figure  9 displays the confusion matrix for the RF-SFS-GRU multiclass classi-
fication model on the UNSW-NB15 dataset, which was used to evaluate the per-
formance of individual attack labels. Through darker squares, it performs well for 
Reconnaissance, Generic, Exploits, and Normal classes. The ROC curve for the 

(13)F1−Score = 2 ×

(

Precision × Recall

Precision + Recall

)

,

Fig. 7   Confusion matrix of test set for RF-SFS-LSTM (UNSW-NB15)
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RF-SFS-GRU multiclass classification model is shown in Fig.  10. This proposed 
model outperforms the RF-SFS-LSTM model in detecting Fuzzers.

Figure 11 illustrates the confusion matrix for the RF-SFS-LSTM multiclass clas-
sification model on the STIN dataset. Based on the darker squares in the confu-
sion matrix of the RF-SFS-LSTM classifier, it performs well for terrestrial attacks, 
which include Botnet and DDos categories, but it performs better for the Syn_DDos 
class than the UDP_DDos class in satellite attacks, which include Syn_DDos and 

Fig. 8   ROC curve for RF-SFS-LSTM (UNSW-NB15)

Fig. 9   Confusion matrix of test set for RF-SFS-GRU (UNSW-NB15)
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UDP_DDos attacks. The ROC curves for the RF-SFS-LSTM multiclass classifica-
tion model in the STIN dataset are shown in Fig. 12. The model distinguishes the 
Syn_DDos class better than the UDP_DDos class.

Fig. 10   ROC curve for RF-SFS-GRU (UNSW-NB15)

Fig. 11   Confusion Matrix of test set for RF-SFS-LSTM (STIN)
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The confusion matrix for the RF-SFS-GRU multiclass classification model on 
the STIN dataset is shown in Fig.  13. It is obvious that it outperforms the RF-
SFS-LSTM multiclass classification model for the UDP_DDos class. The ROC 
curve for the RF-SFS-GRU multiclass classification model in the STIN dataset 

Fig. 12   ROC curve for RF-SFS-LSTM (STIN)

Fig. 13   Confusion matrix of test set for RF-SFS-GRU (STIN)
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is shown in Fig. 14. This model outperforms the RF-SFS-LSTM model in distin-
guishing the Syn_DDos class.

5.3 � Performance Comparison

To prove the efficacy of the proposed IDSs, they were tested on two datasets, 
UNSW-NB15 and STIN, and compared to others. Table 4 and Fig. 15 demonstrate 
the experimental results for deep learning models like ANN, GRU, and LSTM 
and machine learning models like RF before utilizing the RF-SFS approach on the 
UNSW-NB15 dataset. The experimental results for proposed approaches based 
on deep learning, such as RF-SFS-ANN, RF-SFS-GRU, and RF-SFS-LSTM, and 
machine learning models, such as RF-SFS, are shown in Table 5 and Fig. 16, and 
they achieved higher accuracy results using SFS technique-based RF classifiers than 
those in [18], which used 19 selected features. The highest accuracy and precision 

Fig. 14   ROC curve for RF-SFS-GRU (STIN)

Table 4   Results of classifiers on UNSW-NB15 dataset—multiclass classification

ML/DL model Testing acc. (%) Precision (%) Recall (%) F1-Score (%)

RF 75.4 66 46 47
ANN 69.05 71.61 65.33 68.32
GRU​ 74 55 44 42
LSTM 75 54 40 40
Proposed Approach In [18] based ANN 75.62 79.92 75.61 76.58
Proposed Approach In [18] based KNN 70.09 75.79 70.21 72.03
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in Table 4 were obtained utilizing the RF-SFS-GRU and RF-SFS-ANN approaches 
rather than those in [18].

The performance of the proposed IDSs when applied to the whole STIN data-
set without feature selection is shown in Table 6 and Fig. 17. The RF technique pro-
duces the best results. The average results for proposed techniques utilizing the RF-
SFS feature selection method are shown in Table 7 and Fig. 18. RF-SFS significantly 

Fig. 15   Comparison among classifiers without using a FS technique (UNSW-NB15 dataset)

Table 5   Results of classifiers with FS technique on UNSW-NB15 dataset—multiclass classification

ML/DL model Testing acc. (%) Precision (%) Recall (%) F1-Score (%)

SFS-RF 78.52 72 66 68
RF-SFS-ANN 78.23 85.13 68.85 76.13
RF-SFS-GRU​ 79 67 63 62
RF-SFS-LSTM 78 70 63 64
ANN [18] using 19 features 77.51 79.50 77.53 77.28
KNN [18] using 19 features 72.30 77.24 72.30 73.81

Fig. 16   Comparison among classifiers using FS technique (UNSW-NB15 dataset)
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Table 6   Average results of classifiers on STIN dataset—multiclass classification

ML/DL model Testing acc. (%) Precision (%) Recall (%) F1-Score (%)

RF 85.41 82.54 81.11 81
GRU​ 79 75 71 71
LSTM 82 77 75 75
ANN 63.61 69.16 61.61 65.17

Fig. 17   Comparison among classifiers without using RF-FS technique (STIN dataset)

Table 7   Average results of classifiers using SFS-RF on STIN dataset—multiclass classification

ML/DL model Testing acc. (%) Precision (%) Recall (%) F1-Score (%)

SFS-RF 90.5 91.19 90.41 90
RF-SFS-GRU​ 87 87 86 86
RF-SFS-LSTM 86 86 85 85
RF-SFS-ANN 71.47 71.51 71.39 71.44

Fig. 18   Comparison among classifiers using RF-FS technique (STIN dataset)
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outperforms other proposed approaches; as shown in Table 6, utilizing the RF-SFS fea-
ture selection approach improves the performance of all proposed IDSs.

Table 8 compares the performance of the proposed IDSs with the previous IDSs 
proposed in [5] based on satellite attacks in the STIN dataset. It concludes that the 
RF-SFS-LSTM and RF-SFS-GRU approaches outperformed [5] in terms of accuracy 
in Syn_DDos attacks, which are highlighted in grey in Table 8. As shown in Table 8, 
IDS in [5] produced a higher accuracy result in a UDP_DDos attack than the proposed 
approaches.

6 � Discussion

The previous section presented a performance analysis and comparison of the four ML/
DL-based RF-SFS techniques. The RF-SFS feature selection technique is exploited 
to significantly reduce the execution time of training and testing data by minimizing 
the number of selected features while enhancing the accuracy of intrusion detection. 
It selects 10 features among 32 features and 45 features using the STIN and UNSW-
NB15 datasets, respectively.

When applying to the STIN dataset, the accuracy of the RF classifier increased 
by using RF-SFS from 85.41% to 90.50%, and the accuracy of the ANN classifier 
increased from 63.61% to 71.47%. Furthermore, by using RF-SFS with an LSTM clas-
sifier, the accuracy increased from 82 to 86%. In the last approach, the accuracy of the 
GRU classifier increased from 79 to 87%. The experimental results demonstrate that 
the RF-SFS-GRU classifier achieved a higher accuracy score in the UDP_DDoS attack 
than the RF-SFS-LSTM classifier. In addition, RF-SFS-LSTM and RF-SFS-GRU IDS 
recorded higher detection accuracy for Syn_DDos than RFMLP [5]. When applied to 
the UNSW-NB15 dataset, the accuracy of the RF classifier increased by using SFS-
RF from 75.4% to 78.5%, and the accuracy of the ANN classifier increased from 
69.05 to 78.23%. Furthermore, by using RF-SFS with an LSTM classifier, the accu-
racy increased from 75 to 78%. In the last approach, the accuracy of the GRU classifier 
increased from 74 to 79%. The experimental results also demonstrate that the RF-SFS-
GRU classifier achieved higher accuracy results than other proposed approaches. The 
proposed RF-SFS-GRU and RF-SFS-ANN IDS achieved higher accuracy and preci-
sion, respectively, than the approaches in [18].

Table 8   Accuracy of classifiers 
on STIN dataset

Attack type RFMLP [5] RF-SFS-LSTM RF-SFS-GRU​

UDP_DDos 100.0 92.81 93.36
Syn_DDos 93.18 94.49 94.49
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7 � Conclusion and Future Works

The requirement for cybersecurity solutions to prevent attacks in the modern net-
work environment has increased along with the number of network intrusion attacks. 
To provide a high level of security for both satellite and terrestrial networks, four 
ML/DL based hybrid IDSs are proposed in this paper. The proposed models are 
evaluated and verified using the UNSW-NB15 and STIN datasets. The RF-SFS fea-
ture selection technique is utilized to improve the classification results and reduce 
the execution time. The proposed models ensure their efficiency when compared to 
the literature’s existing models [5–18]. When applied to the UNSW-NB15 dataset, 
SFS-RF and RF-SFS-GRU approaches achieved high accuracy scores of 78.52% and 
79%, respectively, rather than the proposed approach in [18], which achieves accu-
racy scores in the ANN and KNN approaches of 72.30% and 77.51%, respectively, 
when using 19 features. In the STIN dataset, SFS-RF and RF-SFS-GRU achieved 
high accuracy results of 90.5% and 87%, respectively. The proposed approaches 
achieved high accuracy in Syn_DDos attacks compared to [5], but the RFMLP 
model [5] achieved high accuracy in UDP_DDos attacks compared to the proposed 
approaches. In the future, a new dataset with more various types of satellite attacks 
and normal traffic will be constructed to test the efficiency of the proposed models.
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