Skip to main content

Advertisement

Log in

Environmental applications of microbial extremophiles in the degradation of petroleum hydrocarbons in extreme environments

  • Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

The ubiquitous occurrence, recalcitrance, bioaccumulation potential and toxicity of petroleum hydrocarbons have gained significant environmental concern. The petroleum hydrocarbon contaminations are frequent in the extreme environments where the temperature, pH, salt concentrations, and/or pressure vary from normal conditions. Bioremediation using naturally occurring microorganisms is a promising tool for removal of hydrocarbons from contaminated environments, since it is effective, inexpensive and eco-friendly. Degradation of hydrocarbons depends on various factors including structure and other properties of the target hydrocarbon, environmental conditions and, quantity and type of the microbes present at contaminated sites. Hydrocarbon-degrading microorganisms are usually present in diverse environments and the ability of these microbes to adapt under extreme environments are often exploited for bioremediation. In this review, the processes of extremophiles to degrade different constituents of petroleum hydrocarbons including polyaromatic and aliphatic hydrocarbons, have been explained for soil and marine ecosystems, in extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(redrawn from Hwang et al. 2007; Rojo 2010; Leewis et al. 2016)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adebusoye SA, Ilori MO, Amund OO, Teniola OD, Olatope SO (2007) Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World J Microbiol Biotechnol 23(8):1149–1159

    Article  CAS  Google Scholar 

  • Aertsen A, Meersman F, Hendrickx MEG, Vogel RF, Michiels CW (2009) Biotechnology under high pressure: applications and implications. Trends Biotechnol 27:434–441. https://doi.org/10.1016/j.tibtech.2009.04.001

    Article  CAS  Google Scholar 

  • Ahmadi M, Jorfi S, Kujlu R, Ghafari S, Soltani RDC, Haghighifard NJ (2017) A novel salt-tolerant bacterial consortium for biodegradation of saline and recalcitrant petrochemical wastewater. J Environ Manag 191:198–208

    Article  CAS  Google Scholar 

  • Al Jazeera (2007) Tanker oil spill off S Korea coast

  • Al-Awadhi H, Sulaiman RHD, Mahmoud HM, Radwan SS (2007) Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian Gulf. Appl Microbiol Biotechnol 77(1):183–186

    Article  CAS  Google Scholar 

  • Alexander B, Leach S, Ingledew WJ (1987) The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. J Gen Microbiol 133:1171–1179

    CAS  Google Scholar 

  • Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328. https://doi.org/10.1007/s00792-010-0312-9

    Article  CAS  Google Scholar 

  • Alvarez PJJ, Vogel TM (1991) Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl Environ Microbiol 57(10):2981–2985

    Article  CAS  Google Scholar 

  • Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, Michaelis AW (2000) Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl Environ Microbiol 66. http://aem.asm.org/

  • Aono R, Inoue A (1998) Organic solvent tolerance in microorganisms. In: Horikoshi K, Grant WD (eds) Extremophiles: microbial life in extreme environments. Wiley-Liss, New York, pp 287–310

    Google Scholar 

  • Arulazhagan P, Al-Shekri K, Huda Q, Godon JJ, Basahi JM, Jeyakumar D (2017a) Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in Saudi Arabia. Extremophiles 21(1):163–174

    Article  CAS  Google Scholar 

  • Arulazhagan P, Mnif S, Rajesh Banu J, Huda Q, Jalal MAB (2017b) HC-0B-01: biodegradation of hydrocarbons by extremophiles. In: Biodegradation and bioconversion of hydrocarbons, pp 137–162

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209

    CAS  Google Scholar 

  • Atlas R, Bragg J (2009) Bioremediation of marine oil spills: when and when not—the Exxon Valdez experience. Microb Biotechnol 2(2):213–221

    Article  CAS  Google Scholar 

  • Barakat KM, Hassan SWM, Darwesh OM (2017) Biosurfactant production by haloalkaliphilic Bacillus strains isolated from Red Sea, Egypt. Egypt J Aquat Res 43:205–211

  • Baraniecki CA, Aislabie J, Foght JM (2002) Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon degrading bacterium isolates. Microb Ecol 43:44–45

    Article  CAS  Google Scholar 

  • Bej AK, Saul D, Aislabie J (2000) Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105

    Article  Google Scholar 

  • Bell TH, Joly S, Pitre FE, Yergeau E (2014) Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 32(5):271–280

    Article  CAS  Google Scholar 

  • Bertrand JC, Caumette P, Mille G, Gilewics M, Denis M (1989) Aerobic biodegradation of hydrocarbons. In: Science progress. Oxford, pp 333–350

  • Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD (2015) Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46(1):7–21

    Article  CAS  Google Scholar 

  • Bland B (2018) Rescuers battle toxic oil blaze off China coast. Financial Times

  • Bonfa MRL, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84(11):1671–1676

    Article  CAS  Google Scholar 

  • Brakstad OG, Bonaunet K (2006) Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0–5 °C) and bacterial communities associated with degradation. Biodegradation 17:71–82

    Article  CAS  Google Scholar 

  • Brakstad OG, Throne-Holst M, Netzer R, Stoeckel DM, Atlas RM (2015) Microbial communities related to biodegradation of dispersed Macondo oil at low seawater temperature with Norwegian coastal seawater. Microb Biotechnol 8(6):989–998

    Article  CAS  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54–68

    CAS  Google Scholar 

  • Brooijmans RJ, Pastink MI, Siezen RJ (2009) Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microb Biotechnol 2(6):587–594

    Article  CAS  Google Scholar 

  • Brown GC, Skipsey E (1986) Energy resources, geology, supply and demand. Open University Press, Milton Keynes

    Google Scholar 

  • Burgherr P (2007) In-depth analysis of accidental oil spills from tankers in the context of global spill trends from all sources. J Hazard Mater 140:245–256

    Article  CAS  Google Scholar 

  • Cai Q, Zhang B, Chen B, Zhu Z, Lin W, Cao T (2014) Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments. Mar Pollut Bull 86:402–410

    Article  CAS  Google Scholar 

  • Calderon LJP, Gontikaki E, Potts LD, Shaw S, Gallego A, Anderson JA, Witte U (2018) Pressure and temperature effects on deep-sea hydrocarbon degrading microbial communities in subarctic sediments. Microbiol Open. https://doi.org/10.1002/mbo3.768

    Article  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368. https://doi.org/10.1007/BF00129093

    Article  CAS  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48

    Article  CAS  Google Scholar 

  • Chen SH, Aitken MD (1999) Salicylate stimulates the degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ Sci Technol 33:435–439

    Article  CAS  Google Scholar 

  • Chen CI, Taylor RT (1995) Thermophilic biodegradation of BTEX by two Thermus species. Biotechnol Bioeng 48:614–624

    Article  CAS  Google Scholar 

  • Chen CI, Taylor RT (1997) Batch and fed-batch bioreactor cultivations of a Thermus species with thermophilic BTEX-degrading activity. Appl Microbiol Biotechnol 47:726–733

    Article  CAS  Google Scholar 

  • Dabbs WC (1996) Oil production and environmental damage. http://www.american.edu.TED/hpl.htm. Accessed 20 May 2019

  • Delille D (2000) Response of Antarctic soil bacterial assemblages to contamination by diesel fuel and crude oil. Microb Ecol 40(2):159–168

    Article  CAS  Google Scholar 

  • DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU et al (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503. https://doi.org/10.1126/science.1120250

    Article  CAS  Google Scholar 

  • Dias RL, Ruberto L, Calabro A, Lo Balbo A, Del Panno MT, Mac Cormack WP (2015) Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol 38(5):677–687

    Article  Google Scholar 

  • Eriksson M, Ka J, Mohn WW (2001) Effects of low temperature and freeze–thaw cycles on hydrocarbon biodegradation in Arctic Tundra soil. Appl Environ Microbiol 67(11):5107–5112

    Article  CAS  Google Scholar 

  • Eriksson M, Sodersten E, Yu Z, Dalhammar G, Mohn WW (2003) Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from Northern soils. Appl Environ Microbiol 69:275–284

    Article  CAS  Google Scholar 

  • Fahy A, Ball AS, Lethbridge G, Timmis KN, McGenity TJ (2008) Isolation of alkali-tolerant benzene-degrading bacteria from a contaminated aquifer. Lett Appl Microbiol 47(1):60–66. https://doi.org/10.1111/j.1472-765X.2008.02386.x

    Article  CAS  Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00173

    Article  Google Scholar 

  • Feitkenhauer H, Markl H (2003) Biodegradation of aliphatic and aromatic hydrocarbons at high temperatures. Water Sci Technol 47:123–130

    Article  CAS  Google Scholar 

  • Feitkenhauer H, Muller R, Markl H (2003) Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60–70 °C by Thermus and Bacillus spp. Biodegradation 14(6):367–372

    Article  CAS  Google Scholar 

  • Grossi V, Yakimov MM, Al Ali B, Tapilatu Y, Cuny P, Goutx M et al (2010) Hydrostatic pressure affects membrane and storage lipid compositions of the piezotolerant hydrocarbon-degrading Marinobacter hydrocarbonoclasticus strain#5. Environ Microbiol 12:2020–2033

    Article  CAS  Google Scholar 

  • Gu T, Sjoblom J (1992) Surfactant structure and its relation to the krafft point, cloud point and micellization: some empirical relationships. Colloids Surf 64:39–46

    Article  CAS  Google Scholar 

  • Guerra AB, Oliveira JS, Silva-Portela RC, Araujo W, Carlos AC, Vasconcelos ATR et al (2018) Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation. Environ Pollut 235:869–880. https://doi.org/10.1016/j.envpol.2018.01.014

    Article  CAS  Google Scholar 

  • Habe H, Kanemitsu M, Nomura M, Takemura T, Iwata K, Nojiri H, Omori T (2004) Isolation and characterization of an alkaliphilic bacterium utilizing pyrene as a carbon source. J Biosci Bioeng 98(4):306–308. https://doi.org/10.1263/jbb.98.306

    Article  CAS  Google Scholar 

  • Hamamura N, Olson SH, Ward DM, Inskeep WP (2005) Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park. Appl Environ Microbiol 71(10):5943–5950. https://doi.org/10.1128/AEM.71.10.5943-5950.2005

    Article  CAS  Google Scholar 

  • Hao R, Lu A (2009) A biodegradation of heavy oils by halophilic bacterium. Prog Nat Sci 19:997–1001

    Article  CAS  Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208

    Article  CAS  Google Scholar 

  • Hazen TC, Prince RC, Mahmoudi N (2016) Marine oil biodegradation. Environ Sci Technol 50(5):2121–2129

    Article  CAS  Google Scholar 

  • Hirota K, Yamahira K, Nakajima K, Nodasaka Y, Okuyama H, Yumoto I (2011) Pseudomonas toyotomiensis sp. nov., a psychrotolerant facultative alkaliphile that utilizes hydrocarbons. Int J Syst Evolut Microbiol 61(8):1842–1848. https://doi.org/10.1099/ijs.0.024612-0

    Article  CAS  Google Scholar 

  • Holliger C, Gaspard S, Glod G et al (1997) Contaminated environments in the subsurface and bioremediation: organic contaminants. FEMS Microbiol Rev 20(3–4):517–523

    Article  CAS  Google Scholar 

  • Hua X, Wang J, Wu Z, Zhang H, Li H, Xing X, Liu Z (2010) A salt tolerant Enterobacter cloacae mutant for bioaugmentation of petroleum- and salt-contaminated soil. Biochem Eng J 49(2):201–206

    Article  CAS  Google Scholar 

  • Hwang H, Hu X, Zhao X (2007) Enhanced bioremediation of polycyclic aromatic hydrocarbons by environmentally friendly techniques. J Environ Sci Health Part C 25:313–352

    Article  CAS  Google Scholar 

  • Issa N, Vempatti S (2018) Oil spills in the Arabian Gulf: a case study and environmental review. Environ Nat Resour Res 8(2)

  • Ivanova AE, Sukhacheva MV, Kanat’eva AY, Kravchenko IK, Kurganov AA (2014) Hydrocarbon-oxidizing potential and the genes for n-alkane biodegradation in a new acidophilic mycobacterial association from sulfur blocks. Microbiology 83(6):764–772. https://doi.org/10.1134/s0026261714060095

    Article  CAS  Google Scholar 

  • Ivanova AE, Sokolova DS, Kanat’eva AY (2016) Hydrocarbon biodegradation and surfactant production by acidophilic mycobacteria. Microbiology 85(3):317–324

    Article  CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principle of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  CAS  Google Scholar 

  • Jones DM, Douglas AG, Parkes RJ, Taylor J, Giger W, Schaffner C (1983) The recognition of biodegraded petroleum-derived aromatic hydrocarbons in recent marine sediments. Mar Pollut Bull 14(3):103–108

    Article  CAS  Google Scholar 

  • Kate B (2017) Ten years later: the lessons of the Cosco Busan oil spill. The six fifty

  • Keum YS, Seo JS, Qing XL, Kim JH (2009) Comparative metabolomic analysis of Sinorhizobium sp. C4 during the degradation of phenanthrene. Appl Microbiol Biotechnol 80:863–872

    Article  CAS  Google Scholar 

  • Kingston PF (2002) Long-term environmental impact of oil spills. Spill Sci Technol Bull 7:53–61

    Article  CAS  Google Scholar 

  • Kloos K, Schloter M, Meyer O (2006) Microbial activity in an acid resin deposit: biodegradation potential and ecotoxicology in an extremely acidic hydrocarbon contamination. Environ Pollut 144(1):136–144. https://doi.org/10.1016/j.envpol.2005.12.022

    Article  CAS  Google Scholar 

  • Koga Y (2012) Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea 2012:789652

    Article  CAS  Google Scholar 

  • Kong FJ, Wang XJ (2017) Halophilic microrganisms in salt lakes on Tibet Plateau and their potential application. Sci Technol Rev 35(12):27–30

    Google Scholar 

  • Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77(22):7962–7974

    Article  CAS  Google Scholar 

  • Kotoky R, Rajkumari J, Pandey P (2018) The rhizosphere microbiome: significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. J Environ Manag 217:858–870

    Article  CAS  Google Scholar 

  • Kvenvolden KA, Cooper CK (2003) Natural seepage of crude oil into the marine environment. Geo Mar Lett 23(3–4):140–146

    Article  CAS  Google Scholar 

  • Lacerda CMR, Reardon KF (2009) Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology. Brief Funct Genom Proteomic 8:75–87. https://doi.org/10.1093/bfgp/elp005

    Article  CAS  Google Scholar 

  • Lagier JC, Dubourg G, Million M, Cadoret R, Bilen M, Fenollar F, Levasseur A, Rolain JM, Fournier PE, Raoult D (2018) Culturing the human microbiota and culturomics. Nat Rev Microbiol 16:540–550

    Article  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315

    CAS  Google Scholar 

  • Leewis MC, Uhlik O, Leigh MB (2016) Synergistic processing of biphenyl and benzoate: carbon flow through the bacterial community in polychlorinated-biphenyl-contaminated soil. Sci Rep 6:22145

    Article  CAS  Google Scholar 

  • Li HY, Shao JY (2000) The thermophilic mechanism of thermophilic baeteria. Chin Bull Life Sci 12(1):30–33

    Google Scholar 

  • Li X, Wang X, Zhang Y, Zhao Q, Yu B, Li Y, Zhou Q (2016) Salinity and conductivity amendment of soil enhanced the bioelectrochemical degradation of petroleum hydrocarbons. Sci Rep 6:32861. https://doi.org/10.1038/srep32861

    Article  CAS  Google Scholar 

  • Li H, Li X, Yu T, Wang F, Qu C (2019) Study on extreme microbial degradation of petroleum hydrocarbons. Mater Sci Eng 484:012040

    CAS  Google Scholar 

  • Lo Giudice A, Bruni V, De Domenico M, Michaud L (2010) Psychrophiles—cold-adapted hydrocarbon-degrading microorganisms. In: Handbook of hydrocarbon and lipid microbiology. https://doi.org/10.1007/978-3-540-77587-4.139

  • Lugowski AJ, Palamteer GA, Boose TR, Merriman JE (1997) Biodegradation process for detoxifying liquid streams. Patent US5656169

  • Mallick S, Chakraborty J, Dutta TK (2011) Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Crit Rev Microbiol 37:64–90

    Article  CAS  Google Scholar 

  • Mao X, Guo JF (2018) Functional protein research progression in extremophiles. Chin Bull Life Sci 30(01):107–112

    Google Scholar 

  • Marchant R, Sharkey FH, Banat SI, Rahman TJ (2006) The degradation of n-hexadecane in soil by thermophilic geobacilli. FEMS Microbiol Ecol 56(1):44–54

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5–6):650–663

    Article  CAS  Google Scholar 

  • Marietou A, Chastain R, Beulig F, Scoma A, Hazen TC, Bartlett DH (2018) The effect of hydrostatic pressure on enrichments of hydrocarbon degrading microbes from the Gulf of Mexico following the deepwater Horizon oil spill. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00808

    Article  Google Scholar 

  • Martin L, Eddie O (2019) We cannot swim, we cannot eat’: Solomon Islands struggle with nation’s worst oil spill. Guardian (ISSN 0261-3077)

  • Martins LF, Peixoto RS (2012) Biodegradation of petroleum hydrocarbons in hypersaline environments. Braz J Microbiol 43:865–872

    Article  CAS  Google Scholar 

  • Mayra C, Steve A (2017) Keystone pipeline leaks 210,000 gallons of oil in South Dakota

  • Mazoomdaar J (2017) Oil spill: we’re well prepared on paper but sluggish response made preparedness a joke. Indian Express

  • McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:10

    Article  Google Scholar 

  • Meintanis C, Chalkou KI, Kormas KA, Karagouni AD (2006) Biodegradation of crude oil by thermophilic bacteria isolated from a volcano island. Biodegradation 17(2):105–111. https://doi.org/10.1007/s10532-005-6495-6

    Article  CAS  Google Scholar 

  • Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang XJ, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou LW, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918

    Article  CAS  Google Scholar 

  • Michaud L, Lo Giudice A, Saitta M, De Domenico M, Bruni V (2004) The biodegradation efficiency on diesel oil by two psychrotrophic Antarctic marine bacteria during a two-month long experiment. Mar Res Bull 49:405–409

    Article  CAS  Google Scholar 

  • Mike S (2019) Bunker fuel spilled from Maersk ship at port of Hong Kong. gCaptain

  • Milva P, Attilio C, Gianfranco L, Franco B (2005) An Antarctic psychrotrophic bacteria Halomonas sp. ANT-3b, growing on n-hexadecane, produces a new emulsifying glycolipid. FEMS Microbiol Ecol 53:157–166

    Article  Google Scholar 

  • Mohamed ME, Al-Dousarya M, Hamzaha RY, Fuchs G (2006) Isolation and characterization of indigenous thermophilic bacteria active in natural attenuation of bio-hazardous petrochemical pollutants. Int Biodeterior Biodegrad 58:213–223

    Article  CAS  Google Scholar 

  • Mohn WW, Radziminski CZ, Fortin MC et al (2001) On site bioremediation of hydrocarbon-contaminated Arctic tundra soil in inoculated biopiles. Appl Microbiol Biotechnol 57:242–247

    Article  CAS  Google Scholar 

  • Mueller JG, Cerniglia CE, Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Crawford RL, Crawford LD (eds) Bioremediation: principles and applications. Cambridge University Press, Cambridge, pp 125–194

    Chapter  Google Scholar 

  • Mukherjee A, Chettri B, Langpoklakpam JS, Basak P, Prasad A, Mukherjee AK et al (2017) Bioinformatic approaches including predictive metagenomic profiling reveal characteristics of bacterial response to petroleum hydrocarbon contamination in diverse environments. Sci Rep 7:1–22. https://doi.org/10.1038/s41598-017-01126-3

    Article  CAS  Google Scholar 

  • Muller R, Antranikian G, Maloney S, Sharp R (1998) Thermophilic degradation of environmental pollutants. In: Antranikian G (ed) Biotechnology of extremophiles. Advances in biochemical engineering, bio-technology, vol 61. Springer, Berlin, pp 155–169

    Chapter  Google Scholar 

  • PTI Mumbai (2010) Mumbai oil spill continues, 300 containers tumbled into water so far. The Times of India

  • Nazarov M, Gorodyankin G (2014) Oil spills into Black Sea near Russian port after pipeline leak. Reuters

  • Ndimele PE, Saba AO, Ojo DO, Ndimele CC, Anetekhai MA, Erondu ES (2018) Remediation of crude oil spillage. In: The political ecology of oil and gas activities in the Nigerian aquatic ecosystem. https://doi.org/10.1016/b978-0-12-809399-3.00024-0

  • Neifar M, Chouchane H, Najjari A, Hidri DE, Mahjoubia M, Ghedira K, Naili F, Soufia L, Raddadi N, Sghaier H, Ouzari HI, Masmoudi AS, Cherif A (2018) Genome analysis provides insights into crude oil degradation and biosurfactant production by extremely halotolerant Halomonas desertis G11 isolated from Chott El-Djerid salt-lake in Tunisian desert. Genomics

  • Nguyen XP, Dong VH (2018) A Report of the Impacts of Pollutants on Maritime Operation in Vietnam. Eur J Eng Res Sci 3(10):120–125

  • Nie Y, Chi CQ, Fang H, Liang JL, Lu SL, Lai GL, Tang YQ, Wu XL (2014) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep 4:4968

    Article  CAS  Google Scholar 

  • Niehaus F, Bertoldo C, Kähler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729

    Article  CAS  Google Scholar 

  • Nzila A (2013) Update on the cometabolism of organic pollutants by bacteria. Environ Pollut 178:474–482

    Article  CAS  Google Scholar 

  • Nzila A (2018a) Current status of the degradation of aliphatic and aromatic petroleum hydrocarbons by thermophilic microbes and future perspectives. Int J Environ Res Public Health 15(12):2782. https://doi.org/10.3390/ijerph15122782

    Article  CAS  Google Scholar 

  • Nzila A (2018b) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: overview of studies, proposed pathways and future perspectives. Environ Pollut 239:788–802

    Article  CAS  Google Scholar 

  • Odokuma LO, Ibor MN (2002) Nitrogen fixing bacteria enhanced bioremediation of crude oil polluted soil. Glob J Pure Appl Sci 8(4):455–468

    CAS  Google Scholar 

  • Onibiyo S (2016) Biodegradation of petroleum hydrocarbons in contaminated coastal environments, Nigeria. Thesis, Georgia State University. https://scholarworks.gsu.edu/geosciences_theses/100. Accessed 14 May 2019

  • Pandey P, Pathak H, Dave S (2016) Microbial ecology of hydrocarbon degradation in the soil: a review. Res J Environ Toxicol 10(1):1–15

    Article  CAS  Google Scholar 

  • Park C, Park W (2018) Survival and energy producing strategies of alkane degraders under extreme conditions and their biotechnological potential. Front Microbiol 9:1081

    Article  Google Scholar 

  • Pashaei R, Gholizadeh M, Iran KJ, Hanifi A (2015) The effects of oil spills on ecosystem at the Persian Gulf. Int J Rev Life Sci 5(3):82–89

    Google Scholar 

  • Paudyn K, Rowe K et al (2008) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53:102–114

    Article  Google Scholar 

  • Perfumo A, Banat IM, Marchant R (2006) The use of thermophilic bacteria in accelerated hydrocarbon bioremediation. WIT Trans Ecol Environ 88:67–77

    CAS  Google Scholar 

  • Perry JJ (1984) Microbial metabolism of cyclic alkanes. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 61–98

    Google Scholar 

  • Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6(2):125–136

    CAS  Google Scholar 

  • Pham VH, Kim J, Jeong SW (2014) Enhanced isolation and culture of highly efficient psychrophilic oil-degrading bacteria from oil-contaminated soils in South Korea. J Environ Biol 35(6):1145–1149

    Google Scholar 

  • Philp J, Bamforth S, Singleton I et al (2005) Environmental pollution and restoration: a role for bioremediation. In: Bioremediation: applied microbial solutions for real-world environmental cleanup, 1st edn

  • Qin W, Fan F, Zhu Y, Wang Y, Liu X, Ding A, Dou J (2017) Comparative proteomic analysis and characterization of benzo(a)pyrene removal by Microbacterium sp. strain M.CSW3 under denitrifying conditions. Bioprocess Biosyst Eng 40:1825–1838

    Article  CAS  Google Scholar 

  • Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90(2):159–168

    Article  CAS  Google Scholar 

  • Rasika DG, Sunita B, Saroj B (2017) Utilisation of toxic aromatic compounds by alkaliphilic bacteria isolated from mangrove ecosystems of Goa. Int J Environ Sci Toxicol Res 5(2):36–40

    Google Scholar 

  • Rike AG, Haugen KB, Borresen M, Engene B, Kolstad P (2003) In situ biodegradation of petroleum hydrocarbons in frozen arctic soils. Cold Reg Sci Technol 37:97–120

    Article  Google Scholar 

  • Rojo F (2010) Enzymes for aerobic degradation of alkanes. In: Handbook of hydrocarbon and lipid microbiology. Springer, pp 781–797

  • Roling WFM, Ortega-Lucach S, Larter SR, Head IM (2006) Acidophilic microbial communities associated with a natural, biodegraded hydrocarbon seepage. J Appl Microbiol 101(2):290–299

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2014) Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol 27:191–194

    Article  CAS  Google Scholar 

  • Rontani JF, Bosser-julak F, Rambeloarisoa E, Bertrand JC, Giusti G, Faure R (1985) Analytical study of Asthart crude oil asphaltenes biodegradation. Chemosphere 14:1413–1422

    Article  CAS  Google Scholar 

  • Saxena R, Dhakan DB, Mittal P, Waiker P, Chowdhury A, Ghatak A, Sharma VK (2017) Metagenomic analysis of hot springs in central india reveals hydrocarbon degrading thermophiles and pathways essential for survival in extreme environments. Front Microbiol 7:2123. https://doi.org/10.3389/fmicb.2016.02123

    Article  Google Scholar 

  • Schedler M, Hiessl R, Juarez AGV, Gust G, Muller R (2014) Effect of high pressure on hydrocarbon-degrading bacteria. AMB Express 4:77

    Article  CAS  Google Scholar 

  • Schwarz JR, Walker JD, Colwell RR (1975) Deep-sea bacteria: growth and utilization of n-hexadecane at in situ temperature and pressure. Can J Microbiol 21:682–687

    Article  CAS  Google Scholar 

  • Scoma A, Barbato M, Hernandez-Sanabria E, Mapelli F, Daffonchio D, Borin S, Boon N (2016) Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria? Sci Rep 6:23526. https://doi.org/10.1038/srep23526

    Article  CAS  Google Scholar 

  • Shen JS, Shen B (2010) Thermostability mechanism of thermophilic enzyme. J Microbiol 2(30):80–85

    Google Scholar 

  • Singer AC, Thompson IP, Bailey MJ (2004) The tritrophic trinity: a source of pollutant degrading enzymes and its implication for phytoremediation. Curr Opin Microbiol 7:239–244

    Article  CAS  Google Scholar 

  • Siren R, Pelletier E, Brochu C (1995) Environmental factors influencing the biodegradation of petroleum hydrocarbons in cold seawater. Arch Environ Contam Toxicol 28:406–416

    Google Scholar 

  • Si-Zhong Y, Hui-Jun J, Zhi W, Rui-Xia H, Yan-Jun J, Xiu-Mei L, Shao-Peng Y (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19(3):371–381

    Article  Google Scholar 

  • Sorkhoh N, Ibrahim A, Ghannoum MA, Radwan S (1993) High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwaiti desert. Appl Microbiol Biotechnol. 39:123–126

    Article  CAS  Google Scholar 

  • Sotivora A, Spasova D, Vasileva-Tonkova E, Galabova D (2009) Effect of rhamnolipid biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol Res 164(3):297–303

    Article  CAS  Google Scholar 

  • Sprott GD, Agnew BJ, Patel GB (1997) Structural features of ether lipids in the archaeobacterial thermophiles Pyrococcus furiosus, Methanopyrus kandleri, Methanothermus fervidus, and Sulfolobus acidocaldarius. Can J Microbiol 43(5):467–476

    Article  CAS  Google Scholar 

  • Stapleton RD, Savage DC, Sayler GS, Stacey G (1998) Biodegradation of aromatic hydrocarbons in an extremely acidic environment. Appl Environ Microbiol 64(11):4180–4184

    Article  CAS  Google Scholar 

  • Sugiura K, Ishihara M, Shimauchi T, Harayama S (1997) Physicochemical properties and biodegradability of crude oil. Environ Sci Technol 31:45–51

    Article  CAS  Google Scholar 

  • Swaathy S, Kavitha V, Pravin AS, Mandal AB, Gnanamani A (2014) Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514. Biotechnol Rep 4:161–170

    Article  Google Scholar 

  • Swannell RPJ, Lee K, McDonagh M (1996) Field evaluations of marine oil spill bioremediation. Microbiol Rev 60:342

    CAS  Google Scholar 

  • Tang YJ, Hwang JS, Wemmer DE, Keasling JD (2007) Shewanella oneidensis MR-1 fluxome under various oxygen conditions. Appl Environ Microbiol 73:718–729. https://doi.org/10.1128/AEM.01532-06

    Article  CAS  Google Scholar 

  • Tango MSA, Islam MR (2002) Potential of extremophiles for biotechnological and petroleum applications. Energy Sources 24:543–559

    Article  CAS  Google Scholar 

  • Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2006) Biodegradation of crude oil by nitrogen fixing marine bacteria Azotobacter chroococcum. Res J Microbiol 1:401–408

    Article  CAS  Google Scholar 

  • Thomassin-Lacroix E, Eriksson M, Reimer K, Mohn W (2002) Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil. Appl Microbiol Biotechnol 59(4–5):551–556

    CAS  Google Scholar 

  • Tourova TP, Sokolova DS, Semenova EM, Shumkova ES, Korshunova AV, Babich TL, Poltaraus AB, Nazina TN (2016) Detection of n-alkane biodegradation genes alkB and ladA in thermophilic hydrocarbon-oxidizing bacteria of the genera Aeribacillus and Geobacillus. Microbiology 85:693–707

    Article  CAS  Google Scholar 

  • Tyson GW, Lo I, Baker BJ, Allen EE, Hugenholtz P, Banfield JF (2005) Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl Environ Microbiol 71:6319–6324. https://doi.org/10.1128/AEM.71.10.6319-6324.2005

    Article  CAS  Google Scholar 

  • Ufarte L, Laville E, Duquesne S, Potocki-Veronese G (2015) Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol Adv 33:1845–1854

    Article  CAS  Google Scholar 

  • Van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2016) Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 222:195–201

    Article  CAS  Google Scholar 

  • Varjani SJ, Rana DP, Jain AK, Bateja S, Upasani VN (2015) Synergistic ex situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegrad 10:116–124

    Article  CAS  Google Scholar 

  • Viamajala S, Peyton BM, Richards LA, Petersen JN (2007) Solubilization, solution equilibria, and biodegradation of PAH’s under thermophilic conditions. Chemosphere 66(6):1094–1106. https://doi.org/10.1016/j.chemosphere.2006.06.059

    Article  CAS  Google Scholar 

  • Vince G (2003) Prestige oil spill far worse than thought. NewScientist

  • Wang J, Wang J, Zhang Z, Li Y, Zhang B, Zhanga Z, Zhang G (2015) Cold-adapted bacteria for bioremediation of crude oil-contaminated soil. J Chem Technol Biotechnol 91(8):2286–2297

    Article  CAS  Google Scholar 

  • Ward EJ, Adkison M, Couture J, Dressel SC, Litzow MA, Moffitt S et al (2017) Evaluating signals of oil spill impacts, climate, and species interactions in Pacificherring and Pacificsal mon populations in Prince William Sound and Copper River, Alaska. PLoS One 12(3):e0172898

    Article  CAS  Google Scholar 

  • Whyte LG, Bourbonniere L, Greer C (1997) Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol 63:3719–3723

    Article  CAS  Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64(7):2578–2584

    Article  CAS  Google Scholar 

  • Whyte LG, Smits THM, Labbe D, Witholt B, Greer CW, van Beilen JB (2002) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68:5933–5942

    Article  CAS  Google Scholar 

  • Xin M, Zhou P (1998) Advance of research for microbial life in low temperature environments. Acta Microbiol Sin 38(5):400–403

    CAS  Google Scholar 

  • Xu X, Liu W, Wang W, Tian S, Jiang P, Qi Q, Yu H (2019) Potential biodegradation of phenanthrene by isolated halotolerant bacterial strains from petroleum oil polluted soil in Yellow River Delta. Sci Total Environ 664:1030–1038. https://doi.org/10.1016/j.scitotenv.2019.02.080

    Article  CAS  Google Scholar 

  • Yakimov MM, Kenneth N, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BA550. Appl Environ Microbiol 61:1706–1713

    Article  CAS  Google Scholar 

  • Yang S, Wen X, Shi Y, Liebner S, Jin H, Perfumo A (2016) Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments. Sci Rep 6:37473. https://doi.org/10.1038/srep37473

    Article  CAS  Google Scholar 

  • Yetti E, Thontowi A, Yopi (2016) Polycyclic aromatic hydrocarbon degrading bacteria from the Indonesian Marine Environment. Biodiversitas 17(2):857–864

    Article  Google Scholar 

  • Yi-bin W, Fang-ming L, Qiang L, Bi-juan H, Jin-lai M (2014) Low-temperature degradation mechanism analysis of petroleum hydrocarbon-degrading antarctic psychrophilic strains. J Pure Appl Microbiol 8(1):47–53

    Google Scholar 

  • Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K et al (2007) The sorcerer II global ocean sampling expedition: expanding the universe of protein families. PLoS Biol 5:e16. https://doi.org/10.1371/journal.pbio.0050016

    Article  CAS  Google Scholar 

  • Yumoto I, Nakamura A, Iwata H, Kojima K, Kusumoto K, Nodasaka Y, Matsuyama H (2002) Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evolut Microbiol 52:85–90

    Article  CAS  Google Scholar 

  • Zeinali M, Vossoughi M, Ardestani SK (2007) Characterization of a moderate thermophilic Nocardia species able to grow on polycyclic aromatic hydrocarbons. Lett Appl Microbiol 45(6):622–628

    Article  CAS  Google Scholar 

  • Zhao Z, Wong JWC (2010) Rapid biodegradation of benzo[a]pyrene by Bacillus subtilis BUM under thermophilic condition. Environ Eng Sci 27:939–945

    Article  CAS  Google Scholar 

  • Zhou J, Li G, Xie J, Cui X, Dai X, Tian H, Gao P, Wu M, Ma T (2016) A novel bioemulsifier from Geobacillus stearothermophilus A-2 and its potential application in microbial enhanced oil recovery. RSC Adv 98

  • Zhuang X, Han Z, Bai Z, Zhuang G, Shim H (2010) Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Environ Pollut. https://doi.org/10.1016/j.envpol.2010.01.007

    Article  Google Scholar 

Download references

Acknowledgements

PP, BB, ND gratefully acknowledge Department of Biotechnology, Government of India, for financial support. JR is grateful to University Grant Commission for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumari, J., Bhuyan, B., Das, N. et al. Environmental applications of microbial extremophiles in the degradation of petroleum hydrocarbons in extreme environments. Environmental Sustainability 2, 311–328 (2019). https://doi.org/10.1007/s42398-019-00065-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-019-00065-1

Keywords

Navigation