Skip to main content
Log in

Molecular interaction of the triazole fungicide propiconazole with homology modelled superoxide dismutase and catalase

  • Original Article
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

To understand the plasmid mediated biodegradation of propiconazole and enzymatic antioxidant activity, the plasmid cured PS-4C strain was utilized against the propiconazole for its dissolution in the liquid medium, further, the molecular docking studies against the Pseudomonas aeruginosa superoxide dismutase (SOD) as well as catalase (CAT) was undertaken. An acridine orange based LD50 concentration of the propiconazole was found at 50 µg ml−1 and hence the plasmid of PS-4C strain was cured at this dose. Homology modeling using Swiss modeler was applied to generate 3D structure of both SOD and CAT. Active sites were predicted using CastP server and molecular docking was performed by AutodockVina program and thereby calculated binding free energy. Ligand docked against the SOD and CAT enzymes was found to bind with strong hydrophobic interaction. Propiconazole showed strong binding affinity with CAT compared to SOD. Thus, propiconazole resistant plasmid degenerated bacterium PS-4C strain can be a potent candidate for the safer remediation of pollutants and the conformation of propiconazole exploits the interactive geometry along with the molecule size sufficient for spanning the two enzymes to which they will bind making it a good starting point for designing library of antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aislabie J, Lloyd-Jones G (1995) A review of bacterial-degradation of pesticides. Aust J Soil Res 33:925–942

    Article  CAS  Google Scholar 

  • Araya M, Lakhi A (2004) Response to consecutive nematicide applications using the same product in mussaAAAcv. Grande naine originated from in vitro propagative material and cultivated in virgin soil. Nematol Bras 28:55–61

    Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201. https://doi.org/10.1093/bioinformatics/bti770

    Article  CAS  Google Scholar 

  • Azam SS, Abbasi SW (2013) Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor Biol Med Model 10:63. https://doi.org/10.1186/1742-4682-10-63

    Article  CAS  Google Scholar 

  • Chen S, Alexander M (1989) Reasons for the acclimation for 2,4-D biodegradation in lake water. J Environ Qual 8:153–156

    Article  Google Scholar 

  • Choi YS, Shin DH, Chung IY, Kim SH, Heo YJ, Cho YH (2007) Identification of Pseudomonas aeruginosa genes crucial for hydrogen peroxide resistance. J Microbiol Biotechnol 17(8):1344–1352

    Google Scholar 

  • Cooper RA, Jones DC, Parrott S (1985) Isolation and mapping of Escherichia coli K12 mutants defective in phenylacetate degradation. J Gen Microbiol 131(10):2753–2757. https://doi.org/10.1099/00221287-131-10-2753

    Article  CAS  Google Scholar 

  • Degtyarenko KN (1995) Structural domains of P450-containing monooxygenase systems. Protein Eng 8(8):737–747

    Article  CAS  Google Scholar 

  • DeLano WL (2002) Pymol: an open-source molecular graphics tool. http://www.pymol.org/

  • Deng D, Li F, Li MX (2018) A novel propane monooxygenase initiating degradation of 1,4-dioxane by Mycobacterium dioxanotrophicus PH-06. Environ Sci Technol Lett 5:86–91

    Article  CAS  Google Scholar 

  • Deshpande NM, Dhakephalkar PK, Kanekar PP (2001) Plasmid-mediated dimethoate degradation in Pseudomonas aeruginosa MCMB-427. Lett Appl Microbiol 33(4):275–279

    Article  CAS  Google Scholar 

  • Diaz E, Ferrandez A, Prieto MA, Garcia JL (2001) Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev MMBR 65(4):523–569. https://doi.org/10.1128/mmbr.65.4.523-569.2001

    Article  CAS  Google Scholar 

  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34(Web Server Issue):W116–W118. https://doi.org/10.1093/nar/gkl282

    Article  CAS  Google Scholar 

  • Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606. https://doi.org/10.1089/ars.2011.3999

    Article  CAS  Google Scholar 

  • Gerstein M, Levitt M (1998) Comprehensive assessment of automatic structural alignment against a manual standard, the scop classification of proteins. Protein Sci 7(2):445–456. https://doi.org/10.1002/pro.5560070226

    Article  CAS  Google Scholar 

  • Hassett DJ, Alsabbagh E, Parvatiyar K, Howell ML, Wilmott RW, Ochsner UA (2000) A protease-resistant catalase, KatA, released upon cell lysis during stationary phase is essential for aerobic survival of a Pseudomonas aeruginosa oxyR mutant at low cell densities. J Bacteriol 182:4557–4563

    Article  CAS  Google Scholar 

  • Hayatsu M, Hirano M, Tokuda S (2000) Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100. Appl Environ Microbiol 66(4):1737–1740

    Article  CAS  Google Scholar 

  • Hoskeri RS, Mulla SI, Ninnekar HZ (2014) Biodegradation of chloroaromatic pollutants by bacterial consortium immobilized in polyurethene foam and other matrices. Biocatal Agric Biotechnol 3:390–396

    Article  Google Scholar 

  • Javaid MK, Ashiq M, Tahir M (2016) Potential of biological agents in decontamination of agricultural soil. Scientifica 2016:1598325. https://doi.org/10.1155/2016/1598325

    Article  CAS  Google Scholar 

  • Kamachi S, Wada K, Tamoi M, Shigeoka S, Tada T (2014) The 2.2 Å resolution structure of the catalase-peroxidase KatG from Synechococcus elongatus PCC7942. Acta Crystallogr F Struct Biol Commun 70:288–293

    Article  CAS  Google Scholar 

  • Kurjogi M, Satapute P, Jogaiah S, Abdelrahman M, Daddam JR, Ramu V, Tran LP (2018) Computational modeling of the Staphylococcal enterotoxins and their interaction with natural antitoxin compounds. Int J Mol Sci 19(1):133. https://doi.org/10.3390/ijms19010133

    Article  CAS  Google Scholar 

  • Latha MS, Saddala MS (2017) Molecular docking based screening of a simulated HIF-1 protein model for potential inhibitors. Bioinformation 13(11):388–393. https://doi.org/10.6026/97320630013388

    Article  Google Scholar 

  • Lengauer T, Rarey M (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6(3):402–406

    Article  CAS  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65(12):5357–5363

    CAS  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50(3):437–450. https://doi.org/10.1002/prot.10286

    Article  CAS  Google Scholar 

  • Mangasuli SN, Hosamani KM, Satapute P, Joshi SD (2018) Synthesis, molecular docking studies and biological evaluation of potent coumarin–carbonodithioate hybrids via microwave irradiation. Chem Data Collect 15–16:115–125

    Article  Google Scholar 

  • Milgrom LR (2016) Why is catalase so fast? A preliminary network hypothesis for the rapid enzyme-catalysed decomposition of hydrogen peroxide. Water 7:129–146

    Google Scholar 

  • Miller CD, Kim YC, Anderson AJ (1997) Cloning and mutational analysis of the gene for the stationary-phase inducible catalase (catC) from Pseudomonas putida. J Bacteriol 179(16):5241–5245

    Article  CAS  Google Scholar 

  • Misura KM, Baker D (2005) Progress and challenges in high-resolution refinement of protein structure models. Proteins 59(1):15–29. https://doi.org/10.1002/prot.20376

    Article  CAS  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  • Mulla SI, Sun Q, Hu A, Wang Y, Ashfaq M, Eqani SAMAS, Yu CP (2016a) Evaluation of sulfadiazine degradation in three newly isolated pure bacterial cultures. PLoS One 11:e0165013

    Article  Google Scholar 

  • Mulla SI, Wang H, Sun Q, Hu A, Yu CP (2016b) Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C. Sci Rep 6:21965

    Article  CAS  Google Scholar 

  • Mulla SI, Ameen F, Tallur PN, Bharagava RN, Bangeppagari M, Eqani S, Bagewadi ZK, Mahadevan GD, Yu CP, Ninnekar HZ (2017) Aerobic degradation of fenvalerate by a Gram-positive bacterium, Bacillus flexus strain XJU-4. 3 Biotech 7(5):320. https://doi.org/10.1007/s13205-017-0957-5

    Article  Google Scholar 

  • Mulla SI, Hu A, Sun Q, Li J, Suanon F, Ashfaq M, Yu CP (2018) Biodegradation of sulfamethoxazole in bacteria from three different origins. J Environ Manag 206:93–102

    Article  CAS  Google Scholar 

  • Mulla SI, Bharagava RN, Belhaj D, Saratale GD, Bagewadi ZK, Saxena G, Kumar A, Mohan H, Yu CP, Ninnekar HZ (2019) An overview of nitro group-containing compounds and herbicides degradation in microorganisms. In: Arora PK (ed) Microbial metabolism of xenobiotic compounds Microorganisms for sustainability, vol 10. Springer, Singapore, pp 319–335. https://doi.org/10.1007/978-981-13-7462-3_16

    Chapter  Google Scholar 

  • Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol. Spectrum 1:1. https://doi.org/10.1128/microbiolspec.vmbf-0016-2015

    Article  Google Scholar 

  • Norman RS, Moeller P, McDonald TJ, Morris PJ (2004) Effect of pyocyanin on a crude-oil-degrading microbial community. Appl Environ Microbiol 70(7):4004–4011. https://doi.org/10.1128/AEM.70.7.4004-4011.2004

    Article  CAS  Google Scholar 

  • Pattanashetty SH, Hosamani KM, Satapute P, Joshi SD, Obelannavar K (2017) Discovery of new drugs and computational studies of coumarin-carprofen scaffolds as a novel class of anti-tubercular, anti-inflammatory and anti-bacterial agents. Eur J Pharm Med Res 4:486–498

    Google Scholar 

  • Phugare SS, Gaikwad YB, Jadhav JP (2012) Biodegradation of acephate using a developed bacterial consortium and toxicological analysis using earthworms (Lumbricus terrestris) as a model animal. Int Biodeterior Biodegrad 69:1–9

    Article  CAS  Google Scholar 

  • Raja CE, Selvam GS (2009) Plasmid profile and curing analysis of Pseudomonas aeruginosa as metal resistant. Int J Environ Sci Technol 6:259–266

    Article  CAS  Google Scholar 

  • Satapute P, Kaliwal B (2016a) Biodegradation of propiconazole by newly isolated Burkholderia sp strain BBK_9. 3 Biotech 6(1):110. https://doi.org/10.1007/s13205-016-0429-3

    Article  Google Scholar 

  • Satapute P, Kaliwal B (2016b) Biodegradation of the fungicide propiconazole by Pseudomonas aeruginosa PS-4 strain isolated from a paddy soil. Ann Microbiol 66:1355–1365

    Article  CAS  Google Scholar 

  • Satapute PP, Kaliwal BB (2018) Burkholderia Sp. Strain BBK_9: a potent agent for propiconazole Degradation. In: Bidoia ED, Montagnolli RN (eds) Toxicity and biodegradation testing, Methods in pharmacology and toxicology. Humana Press, New York, pp 87–108

    Chapter  Google Scholar 

  • Satapute P, Kamble MV, Adhikari SS, Jogaiah S (2019a) Influence of triazole pesticides on tillage soil microbial populations and metabolic changes. Sci Total Environ 651:2334–2344

    Article  CAS  Google Scholar 

  • Satapute P, Paidi MK, Kurjogi M, Jogaiah S (2019b) Physiological adaptation and spectral annotation of arsenic and cadmium heavy metal-resistant and susceptible strain Pseudomonas taiwanensis. Environ Pollut 251:555–563

    Article  CAS  Google Scholar 

  • Shetti AA, Kaliwal BB (2012) Biodegradation of imidacloprid by soil isolates Brevundimonas sp. Int J Curr Res 4:100–106

    Google Scholar 

  • Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6(2):174. https://doi.org/10.1007/s13205-016-0485-8

    Article  Google Scholar 

  • Talwar MP, Mulla SI, Ninnekar HZ (2014) Biodegradation of organophosphate pesticide quinalphos by Ochrobactrum sp. strain HZM. J Appl Microbiol 117(5):1283–1292. https://doi.org/10.1111/jam.12627

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30(12):2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  Google Scholar 

  • van der Meer JR (1994) Genetic adaptation of bacteria to chlorinated aromatic compounds. FEMS Microbiol Rev 15(2–3):239–249. https://doi.org/10.1111/j.1574-6976.1994.tb00137.x

    Article  Google Scholar 

  • Zou P, Borovok I, de Orue Ortiz, Lucana D, Muller D, Schrempf H (1999) The mycelium-associated Streptomyces reticuli catalase-peroxidase, its gene and regulation by FurS. Microbiology 145(Pt 3):549–559. https://doi.org/10.1099/13500872-145-3-549

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India, Delhi, for providing the instrumentation (BT/PR/4555/INF/22/126/2010 dated 30-09-2010) and bioinformatics infrastructure facility. Authors also thankful to the UGC-UPE fellowships and Post Graduate Department of Studies in Microbiology and Biotechnology, Karnatak University, Dharwad for providing the laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Satapute.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest connected to the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satapute, P., Sanakal, R.D., Mulla, S.I. et al. Molecular interaction of the triazole fungicide propiconazole with homology modelled superoxide dismutase and catalase. Environmental Sustainability 2, 429–439 (2019). https://doi.org/10.1007/s42398-019-00083-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-019-00083-z

Keywords

Navigation