Skip to main content
Log in

Higher Order Collocation Methods for Nonlocal Problems and Their Asymptotic Compatibility

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

We study the convergence and asymptotic compatibility of higher order collocation methods for nonlocal operators inspired by peridynamics, a nonlocal formulation of continuum mechanics. We prove that the methods are optimally convergent with respect to the polynomial degree of the approximation. A numerical method is said to be asymptotically compatible if the sequence of approximate solutions of the nonlocal problem converges to the solution of the corresponding local problem as the horizon and the grid sizes simultaneously approach zero. We carry out a calibration process via Taylor series expansions and a scaling of the nonlocal operator via a strain energy density argument to ensure that the resulting collocation methods are asymptotically compatible. We find that, for polynomial degrees greater than or equal to two, there exists a calibration constant independent of the horizon size and the grid size such that the resulting collocation methods for the nonlocal diffusion are asymptotically compatible. We verify these findings through extensive numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Here, the derivation is independent of the choice of the polynomial order p and the kernel function C, so we denote the calibration constant simply with \(\gamma\) rather than the pedantic notation \(\gamma _p^C\).

References

  1. Aksoylu, B., Gazonas, G.A.: Inhomogeneous local boundary conditions in nonlocal problems. In: Proceedings of ECCOMAS2018, 6th European Conference on Computational Mechanics (ECCM 6) and 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11–15 June 2018, Glasgow, UK (In press)

  2. Aksoylu, B., Gazonas, G.A.: On nonlocal problems with inhomogeneous local boundary conditions. J. Peridyn. Nonlocal Model (In press)

  3. Aksoylu, B., Celiker, F.: Comparison of nonlocal operators utilizing perturbation analysis. In: Karasozen, B., Manguogiu, M., Tezer-Sezgin, M., Goktepe, S. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2015. Lecture Notes in Computational Science and Engineering, vol. 112, pp. 589–606. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-39929-4_57

    Chapter  Google Scholar 

  4. Aksoylu, B., Celiker, F.: Nonlocal problems with local Dirichlet and Neumann boundary conditions. J. Mech. Mater. Struct. 12(4), 425–437 (2017). https://doi.org/10.2140/jomms.2017.12.425

    Article  MathSciNet  Google Scholar 

  5. Aksoylu, B., Kaya, A.: Conditioning and error analysis of nonlocal problems with local boundary conditions. J. Comput. Appl. Math. 335, 1–19 (2018). https://doi.org/10.1016/j.cam.2017.11.023

    Article  MathSciNet  MATH  Google Scholar 

  6. Aksoylu, B., Unlu, Z.: Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces. SIAM J. Numer. Anal. 52(2), 653–677 (2014). https://doi.org/10.1137/13092407X

    Article  MathSciNet  MATH  Google Scholar 

  7. Aksoylu, B., Beyer, H.R., Celiker, F.: Application and implementation of incorporating local boundary conditions into nonlocal problems. Numer. Funct. Anal. Optim. 38(9), 1077–1114 (2017). https://doi.org/10.1080/01630563.2017.1320674

    Article  MathSciNet  MATH  Google Scholar 

  8. Aksoylu, B., Beyer, H.R., Celiker, F.: Theoretical foundations of incorporating local boundary conditions into nonlocal problems. Rep. Math. Phys. 40(1), 39–71 (2017). https://doi.org/10.1016/S0034-4877(17)30061-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Aksoylu, B., Celiker, F., Kilicer, O.: Nonlocal operators with local boundary conditions: an overview. In: Voyiadjis, G. (eds.) Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pp. 1293–1330. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-58729-5_34

    Chapter  MATH  Google Scholar 

  10. Aksoylu, B., Celiker, F., Kilicer, O.: Nonlocal problems with local boundary conditions in higher dimensions. Adv. Comp. Math. 45(1), 453–492 (2019). https://doi.org/10.1007/s10444-018-9624-6

    Article  MATH  Google Scholar 

  11. Atkinson, K., Han, W.: Theoretical Numerical Analysis. Springer, New York (2009)

    MATH  Google Scholar 

  12. Beyer, H.R., Aksoylu, B., Celiker, F.: On a class of nonlocal wave equations from applications. J. Math. Phys. 57(6), 062902 (2016). https://doi.org/10.1063/1.4953252

    Article  MathSciNet  MATH  Google Scholar 

  13. Cortazar, C., Elgueta, M., Rossi, J.D., Wolanski, N.: How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems. Arch. Rational Mech. Anal. 187(1), 137–156 (2008). https://doi.org/10.1007/s00205-007-0062-8

    Article  MathSciNet  MATH  Google Scholar 

  14. D’Elia, M., Tian, X., Yu, Y.: A physically-consistent, flexible and efficient strategy to convert local boundary conditions into nonlocal volume constraints (2019). arXiv:1906.04259 (Preprint)

  15. Du, Q., Yang, J.: Asymptotically compatible fourier spectral approximations of nonlocal Allen–Cahn equations. SIAM J. Numer. Anal. 54(3), 1899–1919 (2016)

    Article  MathSciNet  Google Scholar 

  16. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54, 667–696 (2012)

    Article  MathSciNet  Google Scholar 

  17. Du, Q., Lu, X.H., Lu, J., Tian, X.: A quasinonlocal coupling method for nonlocal and local diffusion models. SIAM J. Numer. Anal. 56(3), 1386–1404 (2018)

    Article  MathSciNet  Google Scholar 

  18. Du, Q., Ju, L., Lu, J.: A discontinuous Galerkin method for one-dimensional time-dependent nonlocal diffusion problems. Math. Comput. 88(315), 123–147 (2019)

    Article  MathSciNet  Google Scholar 

  19. Seleson, P., Parks, M.L.: On the role of the influence function in the peridynamic theory. Int. J. Multiscale Comput. Eng. 9(6), 689–706 (2011)

    Article  Google Scholar 

  20. Silling, S.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  Google Scholar 

  21. Silling, S.A.: Introduction to peridynamics. In: Bobaru, F., Foster, J.T., Geubelle, P.H., Silling, S.A. (eds.) Handbook of Peridynamic Modeling, Advances in Applied Mathematics, pp. 25–60. Chapman and Hall, London (2017). https://doi.org/10.1201/9781315373331

    Chapter  Google Scholar 

  22. Tao, Y., Tian, X., Du, Q.: Nonlocal diffusion and peridynamic models with Neumann type constraints and their numerical approximations. Appl. Math. Comput. 305, 282–298 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Tian, X., Du, Q.: Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51(6), 3458–3482 (2013)

    Article  MathSciNet  Google Scholar 

  24. Tian, X., Du, Q.: Asymptotically compatible schemes and applications to robust discretization of nonlocal problems. SIAM J. Numer. Anal. 52(4), 1641–1665 (2014)

    Article  MathSciNet  Google Scholar 

  25. Tian, H., Ju, L., Du, Q.: Nonlocal convection–diffusion problems and finite element approximations. Comput. Methods Appl. Mech. Eng. 289, 60–78 (2015)

    Article  MathSciNet  Google Scholar 

  26. Tian, X., Du, Q., Gunzburger, M.: Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains. Adv. Comput. Math. 42(6), 1363–1380 (2016)

    Article  MathSciNet  Google Scholar 

  27. Tian, H., Ju, L., Du, Q.: A conservative nonlocal convection–diffusion model and asymptotically compatible finite difference discretization. Comput. Methods Appl. Mech. Eng. 320, 46–67 (2017)

    Article  MathSciNet  Google Scholar 

  28. You, H., Lu, X., Trask, N., Yu, Y.: An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems (2019). arXiv:1908.03853 (Preprint)

  29. Zhang, X., Wu, J., Ju, L.: An accurate and asymptotically compatible collocation scheme for nonlocal diffusion problems. Appl. Numer. Math. 133, 52–68 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Burak Aksoylu’s research was sponsored by the CCDC Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-16-2-0008. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Aksoylu.

Ethics declarations

Conflict of interest

On behalf of all authors, Burak Aksoylu states that there is no conflict of interest.

Appendix A: the case of \(p=1\)

Appendix A: the case of \(p=1\)

For \(p=1\), we provide Expansions A1 and A2 to show that one cannot find a calibration constant \(\gamma _1\) independent of \(\delta\) and h.

  • Expansion A1 The case of p = 1, R = 1, 3-point stencil bulk.

Due to \(p=1, R=1\), one has \({\mathcal {J}}_i := \{ i-1, i, i+1 \}\); see Fig. 7a. Obtain an explicit expression of \(A_{i,j}\) in h and define

$$\begin{aligned} {\mathbf {A}}_{{\mathcal {J}}_i}&:= \left[ A_{i,i-1}, A_{i,i}, A_{i,i+1} \right] \end{aligned}$$
(A1)
$$\begin{aligned}&= \left[ -\frac{h}{2}, h, -\frac{h}{2} \right], \end{aligned}$$
(A2)
$$\begin{aligned} {\mathbf {v}}_{{\mathcal {J}}_i}&:= \left[ v(x_{i-1}), v(x_i), v(x_{i+1}) \right] = \left[ v(x_{i}-h), v(x_i), v(x_{i}+h) \right] . \end{aligned}$$
(A3)

Using Taylor series expansions,

$$\begin{aligned} v(x_i-h)&= v(x_i) +v'(x_i)(-h) + v''(x_i)\frac{(-h)^2}{2} + v'''(x_i)\frac{(-h)^3}{6}+{\mathcal {O}}(h^4), \\ v(x_i+h)&= v(x_i) +v'(x_i)h + v''(x_i)\frac{h^2}{2} + v'''(x_i)\frac{h^3}{6}+ {\mathcal {O}}(h^4), \end{aligned}$$

we obtain

$$\begin{aligned} -v(x_i-h) + 2 v(x_i) - v(x_i+h)= & {} \, -v''(x_i)h^2 + {\mathcal {O}}(h^4), \end{aligned}$$
(A4)
$$\begin{aligned} \frac{\gamma _1}{\delta ^3} \sum _{j \in \{i-1,i,i+1\}} A_{ij} v(x_j)= & {} \, \frac{\gamma _1}{\delta ^3} {\mathbf {A}}_{{\mathcal {J}}_i} \cdot {\mathbf {v}}_{{\mathcal {J}}_i} \quad \text {by } (\text{A1}) \text { and } (\text{A3}),\nonumber \\= & {} \, \frac{\gamma _1}{h^2} \left[ -\frac{1}{2}, 1 -\frac{1}{2} \right] \cdot {\mathbf {v}}_{{\mathcal {J}}_i} \quad \text {by } (\text{A2}) \text { and since } \delta =h, \nonumber \\= & {} \, \frac{\gamma _1}{2h^2} \left[ -v''(x_i) h^2 + {\mathcal {O}}(h^4) \right] \quad \text {by } (\text{A4}), \nonumber \\= & {} \, \frac{\gamma _1}{2} \left[ -v''(x_i) +{\mathcal {O}}(h^2) \right] \nonumber \\= & {} \, -v''(x_i) +{\mathcal {O}}(h^2) \quad \text {by setting } \gamma _1=2. \end{aligned}$$
  • Expansion A2 The case of p = 1, R = 2, 5-point stencil bulk.

Due to \(R=2\), one has \({\mathcal {J}}_i := \{ i-2, \cdots , i+2 \}\); see Fig. 7b. Obtain an explicit expression of \(A_{i,j}\) in h and define

$$\begin{aligned} {\mathbf {A}}_{{\mathcal {J}}_i}&:= \left[ A_{i,i-2}, \cdots , A_{i,i+2} \right] \end{aligned}$$
(A5)
$$\begin{aligned}&= \left[ -\frac{h}{2}, -h, 3h, -h, -\frac{h}{2} \right], \end{aligned}$$
(A6)
$$\begin{aligned} {\mathbf {v}}_{{\mathcal {J}}_i}&:= \left[ v(x_{i-2}), \cdots , v(x_{i+2}) \right] = \left[ v(x_i-2h), \cdots , v(x_i+2h) \right] . \end{aligned}$$
(A7)

Then,

$$\begin{aligned} \frac{\gamma _2}{\delta ^3} \sum _{j \in {\mathcal {J}}_i} A_{ij} v(x_j)&= \frac{\gamma _2}{\delta ^3} {\mathbf {A}}_{{\mathcal {J}}_i} \cdot {\mathbf {v}}_{{\mathcal {J}}_i} \quad&\text {by } (\text{A5}) \text { and } (\text{A7}), \\&= \frac{\gamma _1}{h^2} \left[ -\frac{1}{16}, -\frac{1}{8}, \frac{3}{8}, -\frac{1}{8}, -\frac{1}{16} \right] \cdot {\mathbf {v}}_{{\mathcal {J}}_i} \quad&\text {by } (\text{A6}) \text { and since } \delta =2h, \\&=\frac{3 \gamma _1}{8 h^2} \left[ -v''(x_i) h^2 + {\mathcal {O}}(h^4) \right] \quad&\text {by Taylor series expansion, }\\&= -v''(x_i) +{\mathcal {O}}(h^2) \quad&\text {by setting } \gamma _1=\frac{8}{3}. \end{aligned}$$
Fig. 7
figure 7

Horizon (indicated by shaded gray) and the basis functions intersecting the horizon \(p=1\)

We end up with \(\gamma _1=2\) and \(\gamma _1=\frac{8}{3}\) in Expansions A1 and A2, respectively. Other expansions that we do not report here using various values of \(\delta\) and h lead to different values of \(\gamma _1\). The dependence of \(\gamma _1\) on \(\delta\) and h disqualifies the collocation method with \(p=1\) as an asymptotically compatible discretization for our governing operators \(\mathcal {M}_\mathtt{BC}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksoylu, B., Celiker, F. & Gazonas, G.A. Higher Order Collocation Methods for Nonlocal Problems and Their Asymptotic Compatibility. Commun. Appl. Math. Comput. 2, 261–303 (2020). https://doi.org/10.1007/s42967-019-00051-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-00051-8

Keywords

Mathematics Subject Classification

Navigation