
Chapter 11
Finding Software Bugs in Embedded
Devices

Aurélien Francillon, Sam L. Thomas, and Andrei Costin

Abstract The goal of this chapter is to introduce the reader to the domain of bug
discovery in embedded systems which are at the core of the Internet of Things.
Embedded software has a number of particularities which makes it slightly different
to general purpose software. In particular, embedded devices are more exposed to
software attacks but have lower defense levels and are often left unattended. At the
same time, analyzing their security is more difficult because they are very “opaque”,
while the execution of custom and embedded software is often entangled with the
hardware and peripherals. These differences have an impact on our ability to find
software bugs in such systems. This chapter discusses how software vulnerabilities
can be identified, at different stages of the software life-cycle, for example during
development, during integration of the different components, during testing, during
the deployment of the device, or in the field by third parties.

11.1 The Challenges of Embedded Devices and Software

We argue that the problem of embedded software security is due to multiple factors,
including a systematic lack of transparency, control, and resistance to attacks. A
particular way to improve this is to analyze the software of these devices, with the
particular goal of identifying software vulnerabilities in order to correct them as
early as possible.

A. Francillon (�)
EURECOM, Sophia Antipolis, France
e-mail: aurelien.francillon@eurecom.fr

S. L. Thomas
University of Birmingham, Birmingham, United Kingdom

A. Costin
Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland

© The Author(s) 2021
G. Avoine, J. Hernandez-Castro (eds.), Security of Ubiquitous Computing Systems,
https://doi.org/10.1007/978-3-030-10591-4_11

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10591-4_11&domain=pdf
mailto:aurelien.francillon@eurecom.fr
https://doi.org/10.1007/978-3-030-10591-4_11


184 A. Francillon et al.

11.1.1 Lack of Transparency

Today, many smart devices are compromised during massive attacks, and may be
abused to form large botnets (networks of compromised devices). Record-high
Distributed Denial of Service (DDoS) attacks (i.e., network flooding) reportedly
generated between 620Gbps and 1 Tbps of traffic [241, 344]. These DDoS attacks
were reported to use several hundred thousand compromised embedded/smart
devices, comprising dozens of different models of Commercial Off-The-Shelf
(COTS) products like IP/CCTV cameras and home routers. Most of those devices
were compromised using default or hard-coded credentials set by the manufac-
turer [345]. Malware running on such devices has complete control over the traffic
that is generated, and most smart devices do not embed any infection detection or
prevention mechanism. Worse yet, the users or owners of the device are often not
aware of the problem, and unable to solve it. In fact, devices are not designed to
be inspected and modified by end-users (e.g., to perform forensics as discussed in
Chap. 13).

11.1.2 Lack of Control

Another important problem is that smart devices are generally provided as a fixed
software (i.e., firmware) and hardware platform, often tied to a cloud service
and bundled together as a closed system that the user has little control over. An
example of the negative consequences of this customer lock-out is the Revolv smart
thermostat. Revolv’s manufacturer was acquired by its competitor Nest, and after a
year Nest stopped the cloud service, rendering the Revolv thermostats installed in
homes impossible to use [271]. Users often have no choice regarding which software
the device should run, or which cloud service to use, or what the device should do.
Choosing, installing and using alternative software for such devices is difficult, if
not impossible, often due to the single-purpose nature of the hardware and software
design, the lack of public documentation, in addition to any anti-tampering measures
imposed by the manufacturer.

11.1.3 Lack of Resistance to Attacks

In practice, Internet scanning botnets are active enough that some devices will be
compromised within a fewminutes after being connected to the Internet [344]. To be
considered trustworthy, devices need to have a certain level of resistance to attacks.
This is astonishing, because in essence many of the recurring security issues with
smart devices have already been “solved” for many years. If vulnerabilities and
corresponding attack situations could ultimately be avoided, it is important to ask



11 Finding Software Bugs in Embedded Devices 185

who is responsible for the damage caused by compromised smart devices, beyond
the malware author. The device owner may be legally responsible, but often the end-
user does not have any means to detect or prevent such compromises, or to apply
a secure configuration. On the other hand, the manufacturers currently often have
no legal liability, and thus no incentive (e.g., economic, legal) to prevent a potential
vulnerability and compromise.

11.1.4 Organization of This Chapter

Solving these problems requires analyzing the software and firmware for the
embedded devices, and identifying and fixing their vulnerabilities. This chapter
describes the possible steps to systematically and consistently achieve this goal.
We first provide a classification of embedded systems that is well adapted to their
analysis. We then describe the possible steps for their analysis. We start with
ways to obtain the software to analyze, which is often a challenge in itself for
embedded devices. We then describe how to perform static analysis on the firmware
packages obtained, which has many advantages such as speed and scalability. We
then describe techniques which can be used to dynamically analyze the firmware,
which in contrast to static analysis has the advantage of larger code coverage and
lower false positive rates.

11.1.5 Classification of Embedded Systems

A general definition of embedded systems is hard to establish [261]. However,
two widely accepted differences separate embedded devices from modern general-
purpose computers, such as ordinary desktop PCs or smartphones, namely: (a)
they are designed to fulfill a specific purpose, and (b) they heavily interact with
the physical world via peripherals. The aforementioned two criteria cover a wide
variety of devices, ranging from hard-disk controllers to home routers, from digital
cameras to Programmable Logic Controllers (PLCs). These families can be further
classified according to several aspects, such as their actual computing power [171],
the extent to which they interact with their computing and physical environment,
their field of usage, or the timing constraints imposed on them.

Unfortunately, these classifications tell us very little about the type of security
mechanisms that are available on a given device. Muench et al. [430] classifies
embedded systems according to the type of operating system (OS) they use. While
the operating system is certainly not the only source of security features, it provides
several security primitives, handles recovery from faulty states, and often serves as a



186 A. Francillon et al.

building block for additional and more complex security mechanisms. We therefore
classify embedded devices using the following taxonomy:

Type-0: Multipurpose / non-embedded systems.
We use Type-0 in order to reference traditional general-purpose sys-
tems.

Type-I: General purpose OS-based devices (e.g., Linux-based).
The Linux OS kernel is widely used in the embedded world. How-
ever, in comparison to the traditional GNU/Linux found on desktops
and servers, embedded systems typically follow more minimalist
approaches. For example, a very common configuration that can be
found in consumer-oriented products as well as in Industrial Control
Systems (ICS) is based on the Linux kernel coupled with BusyBox
and uClibc.

Type-II: Embedded OS-based devices.
These dedicated operating systems targeted at embedded devices sys-
tems are particularly suitable for devices with low computation power,
which is typically enforced on embedded systems for cost reasons.
Operating systems such as uClinux or FreeRTOS are suitable for
systems without a Memory Management Unit (MMU) and are usually
adopted on single-purpose user electronics, such as IP cameras, DVD
players and Set-Top Boxes (STB).

Type-III: Devices without OS-Abstraction.
These devices adopt a so called “monolithic firmware”, whose opera-
tion is typically based on a single control loop and interrupts triggered
by the peripherals in order to handle external events. Monolithic
firmware can be found in a large variety of controllers of hardware
components, such as CD-readers, WiFi-cards or GPS-dongles.

11.2 Obtaining Firmware and Its Components

Even though complete black box analysis of embedded devices is possible to some
degree and in certain situations, obtaining the firmware significantly helps and
makes more advanced analyses possible. There are two main ways to obtain the
firmware for a given device—as a firmware package (e.g., online, support media)
and through extraction from the device itself.

11.2.1 Collecting Firmware Packages

The environments in which embedded systems are deployed are heterogeneous,
spanning a variety of devices, vendors, CPU/hardware architectures, instruction



11 Finding Software Bugs in Embedded Devices 187

sets, operating systems, and custom components. This makes the task of compiling
a representative and balanced dataset of firmware packages a difficult problem to
solve. The lack of centralized points of collection, such as the ones provided by
software/app marketplaces, antivirus vendors, or public sandboxes in the malware
analysis field, makes it difficult for researchers to gather large and well triaged
datasets. Firmware often needs to be downloaded from vendor Web pages and FTP
sites, and it is not always simple, even for a human, to tell whether or not two
firmware packages are for the same physical device.

One challenge often encountered in firmware analysis and reverse engineering
processes is the difficulty of reliably extracting meta-data from a firmware package.
This meta-data might include, the device’s vendor, its product code and purpose, its
firmware version, or its processor architecture, among countless other details.

11.2.2 Extracting Firmware from Devices

Obtaining the firmware from an online repository as a firmware package is conve-
nient and thus preferred, however it is not always possible. First, the firmware may
not be available, e.g., because there is no update yet, nor one planned. Sometimes the
firmware is only distributed through authorized and qualified maintenance agents,
e.g., in case of industrial or critical systems. It is also common that the firmware
is not distributed at all in an attempt to prevent counterfeit products, reverse
engineering of the software or protecting its security.

In such cases the best (and sometimes the only) solution is to extract the firmware
from the device itself. There are multiple possible ways to approach this ([529]
and [564] provide a detailed overview of the process), each approach having its
own set of benefits and issues. In the simplest case, the firmware can be extracted
by connecting to a debug interface (e.g., JTAG, and serial ports such as UART,
SPI, I2C). It is important to note that JTAG is a low level protocol and many
different mechanisms can be implemented on top of it. Debug mechanisms allow
dumping some memories (e.g., ROM, RAM or Flash memories behind a Flash
controller), but not necessarily others. When Flash memory is soldered onto a
Printed Circuit Board (PCB) and is independent from the processor, it is possible to
de-solder it and extract its contents using a Flash programmer/reader. Unfortunately,
the variety of Flash memory standards, types and pinouts is huge. One can design
their own Flash chip adapter for reading and dumping the memory contents (e.g.,
code, data) [75]. However, some cheap universal programmers may be sufficient for
dumping sufficiently many models of Flash memories [38]. Finally, the advanced
Flash programmers support even hundreds of thousands of different Flash memory
models [198].

However, when the device is a Flash microcontroller, the Flash memory is
integrated within the microcontroller and is typically not directly accessible. In
such cases, the microcontrollers themselves provide mechanisms to access Flash
memory areas, but often such mechanisms come with some Flash area protection



188 A. Francillon et al.

mechanisms, which are often arbitrary and microcontroller specific. Such protection
mechanisms can sometimes be bypassed due to vulnerabilities in the implementa-
tion of the protections themselves [447, 556]. However, such attacks may not always
succeed, and one may be left with using more costly invasive hardware attacks
such as Linear Code Extraction (LCE) [549] or direct memory readout using a
microscope [158] as the only option available.

11.2.3 Unpacking Firmware

The next step towards the analysis of a firmware package is to unpack and extract
the files or resources it contains. The output of this phase largely depends on the
type of firmware, as well as the unpacking and extraction tools employed. In some
examples, executable code and resources (such as graphics files or HTML code)
might be embedded directly into a binary blob that is designed to be directly copied
into memory by a bootloader and then executed. Some other firmware packages
are distributed in a compressed and obfuscated package which contains a block-
by-block image copy of the Flash memory. Such an image may consist of several
partitions containing a bootloader, a kernel, a file system, or any combination of
these.

11.2.4 Firmware Unpacking Frameworks

The main tools to unpack arbitrary firmware packages are: binwalk [263],
FRAK [161], Binary Analysis Toolkit (BAT) [558] and Firmware.RE [155]
(Table 11.1 compares the performance of each framework):

• Binwalk is perhaps the best known and most used firmware unpacking tool
developed by Craig Heffner [263]. It uses pattern matching to locate and carve
files from a binary blob. Additionally, it also extracts some meta-data such as
license strings.

• FRAK is an unpacking toolkit first presented by Cui et al. [162]. It reportedly1

supports a limited number of device vendors and models, such as HP printers
and Multi-Function Peripherals (MFP).

• The Binary Analysis Toolkit (BAT), formerly known as GPLtool, was originally
designed by Armijn Hemel and Tjaldur software in order to detect GPL license
violations [269, 558]. To do so, it recursively extracts files from a binary blob
and matches strings with a database of known strings from GPL projects and
licenses. BAT also supports file carving similar to binwalk, as well as a very
flexible plugin-oriented extension interface.

1Even though the authors mention that the tool would be made publicly available, it has yet to be
released.



11 Finding Software Bugs in Embedded Devices 189

Table 11.1 Comparison of the unpacking performance of Binwalk, BAT, FRAK and
Firmware.RE on a few example firmware packages (according to [155])

Device Vendor OS Binwalk BAT FRAK Firmware.RE

PC Intel BIOS ✗ ✗ ✗ ✗

Camera STL Linux ✗ ✓ ✗ ✓

Router Bintec – ✗ ✗ ✗ ✗

ADSL gateway Zyxel ZynOS ✓ ✓ ✗ ✓

PLC Siemens – ✓ ✓ ✗ ✓

DSLAM – – ✓ ✓ ✗ ✓

PC Intel BIOS ✓ ✓ ✗ ✓

ISDN server Planet – ✓ ✓ ✗ ✓

Voip Asotel Vxworks ✓ ✓ ✗ ✓

Modem – – ✗ ✗ ✗ ✓

Home automation Belkin Linux ✗ ✗ ✗ ✓

55% 64% 0% 82%

• Firmware.RE [155] extends BAT with additional unpacking methods and specific
analyses to perform automated large-scale analyses. When released, it achieved
a lower false positive rate when unpacking firmware compared to binwalk.

11.2.5 Modifying and Repacking Firmware

Modifying and repacking a firmware could be one optional step during the analysis
of the firmware and device security. The modifications could be performed either
at the level of the entire firmware package, or at the level of individually unpacked
files (that are finally repacked back into a firmware package). Such a step could be
useful in testing several things. First, it can check whether a particular firmware has
error, modification and authenticity checks for new versions of firmware. If such
checks are missing or improperly implemented, the firmware update mechanism
can then be used as an attack vector, or as a way to perform further analysis
of the system [57, 162]. Second, it can be used to augment the firmware with
additional security-related functionality, such as exploits, benign malware and more
advanced analysis tools. For example, this could be useful when there are no
other ways to deliver an exploit (e.g., non-network local exploits such as kernel
privilege escalation), or provide some (partial) form of introspection into the running
device/firmware [163].

The firmware-mod-kit tool [262] is perhaps the most well-known (and pos-
sibly among the very few) firmware modification tools. Unfortunately, it supports a
limited number of firmware formats, and while it can be extended to support more
formats, to do so requires substantial manual effort. Further, for some formats it
relies on external tools to perform some of the repacking. These tools are developed



190 A. Francillon et al.

and maintained by different persons or entities in different shapes and forms, thus
there is no uniform way to modify and repack firmware packages.

11.3 Static Firmware Analysis

Once the code is extracted further analysis can be performed. There are two main
classes of analysis that can be preformed on a generic computing system—static
analysis and dynamic analysis. In principle, the distinction between the two is
easy: in static analysis the code is analyzed without executing it, but instead only
reasoning about it, while in the dynamic setting the analysis is performed on the
code while it is executed. With more advanced analysis techniques, however, this
frontier is slightly blurred. For example, symbolic execution allows one to analyze
software by considering some variables to have an unknown value (i.e., they are
unconstrained). Symbolic execution is sometimes considered static analysis and
at other times dynamic analysis. In this section, we will first describe simple
static analysis which can be efficiently performed on firmware packages, then we
will discuss more advanced static analysis approaches. Finally, we will cover the
limitations of static analysis and in the next section focus on the dynamic analysis
on firmware packages.

11.3.1 Simple Static Analysis on Firmware Packages

11.3.1.1 Configuration Analysis

For a large majority of complex embedded devices (i.e., those of Type-I as described
in Sect. 11.1.5), while service configuration is stored within the file-system of the
device, user-configurable information is often stored elsewhere—within a region of
memory called Non-Volatile Random Access Memory (NVRAM) which retains its
state between power cycles (similar to Flash memory in some ways). Many devices
treat NVRAM as a key-value store and include utilities such as nvram-get and
nvram-set, as well as dedicated libraries to get and set values stored there. On
a router, for example, the current Wi-Fi passphrase and web-based configuration
interface credentials, will often be stored within the NVRAM, which will be queried
by software in order to facilitate the authentication of the device and its services.

All other device configuration, without performing a firmware upgrade, will be
static. As a result of this, any, e.g., hard-coded passwords or certificates (as noted
in [151]), can be leveraged by an adversary to compromise a device. To this end,
Costin et al. [155] show many instances where devices are configured with user
accounts and passwords that are weak, missing entirely, or stored in plain-text.
Therefore, a first step in static analysis of firmware is to examine the configuration
of its services: to check for improperly configured services, e.g., due to use of



11 Finding Software Bugs in Embedded Devices 191

mount -t proc proc /proc
mount -t ramfs ramfs /var
mkdir /var/tmp
mkdir /var/ppp/
mkdir /var/log
mkdir /var/run
mkdir /var/lock
mkdir /var/flash
#iwcontrol is required for RTL8185 Wireless driver
#iwcontrol auth &

#busybox insmod /lib/modules/2.4.26-uc0/kernel/drivers/usb/quickcam.o

/bin/webs -u root -d /www -i /var/run/thttpd.pid &
#ifconfig wlan0 up promisc

Fig. 11.1 Example of a boot script taken from an IP camera

unsafe defaults and hard-coded credentials. Configuration files are of further use
in estimating the set of programs utilized and the initial global configuration of a
device, in the absence of physical access to it. For example, by examination of its
boot scripts, we are able to learn which services present in its firmware (among
potentially hundreds) are actually utilized by the device, this can aid in reducing the
amount of time taken by more complex analysis approaches described later.

Manual methods are often sufficient for analysis of a few firmware images
and, with limited scope, analysis of things such as the device’s configuration. For
example, to estimate the set of processes started by a firmware one can inspect the
contents of a boot script, e.g., /etc/rcS.

Figure 11.1 details such a boot script taken from the firmware of an IP camera.
We are able to observe that the device’s primary functionality is orchestrated by
the /bin/webs binary, which we would then analyze further using the methods
detailed in Sect. 11.3.2.

11.3.1.2 Software Version Analysis

Many devices are not designed to receive firmware updates. This prohibits patching
against known security vulnerabilities and can often render a device useless to an
end-user. This prevents abusing the firmware update as an attack vector. However,
when a vulnerability is discovered, the only effective mitigation is to replace the
device with a new one.

Many devices are designed to be updated and vendors provide firmware updates.
However, the mechanisms for applying those updates are often not standardized and
are largely ad-hoc. They also heavily rely on the end-user’s diligence (to identify that
an update is available) and action (to actually apply the updates). The end-result of
this is that an overwhelming majority of devices are left unpatched against known
vulnerabilities. Thus, a further step in the analysis of firmware is to identify the



192 A. Francillon et al.

versions of software (both programs and libraries) it contains, and correlate those
versions with known vulnerabilities (e.g., CVE database).

There are several possible approaches to perform this. For example, [155] use
fuzzy hashing [340, 507] as a method to correlate files in firmware images. The
effectiveness of the approach was demonstrated in several examples, in particular
uncovering many IoT and embedded devices being so-called “white label” prod-
ucts.2 Finally, machine learning can be used to identify firmware images [157] or
to search for known vulnerabilities [585].

11.3.2 Static Code Analysis of Firmware Packages

Developing tools for performing automated static code analysis on embedded device
firmware presents a number of complexities compared to performing analyses on
software for commodity PC systems (i.e., Type-0 devices). The first challenge is the
diversity of CPU architectures. This alone restricts the amount of existing tooling
that can be used, and when attempting large scale analysis tools will inevitably
have to deal with firmware from a number of distinct architectures. To facilitate
the analysis in this case, the algorithms will either have to be reimplemented for
each architecture being analyzed, or the architecture-specific disassembled firmware
instructions will have to be lifted to a common, so-called Intermediate Language
(IL) or Intermediate Representation (IR). A further difficulty for more simple
devices (e.g., those of Type-III) is the often non-standard means by which different
device firmware executes (e.g., it could be interrupt driven) and interacts with the
memory and external peripherals. More complex firmware (e.g., that of Type-I
devices) tends to more closely follow the execution behavior of more conventional
devices (those of Type-0).

11.3.2.1 Code Analysis of Embedded Firmware

Despite the increased complexity of performing automated analysis of embedded
device firmware, a number of techniques have been proposed for both targeted and
large-scale static analysis. Eschweiler et al. [202] and Feng et al. [212] use numeric
feature vectors to perform graph-based program comparisons [191] efficiently.
They encode control-flow and instruction information in these feature vectors to
identify known vulnerabilities in device firmware. Both methods provide a means
of querying a data-set of binaries using a reference vulnerability as input and
identifying the subset of binaries that contain constructs that are similar (but not
necessarily the same) to those of the input vulnerability. The work in [585] improves
the performance of these approaches by relying on Neural Networks.

2Generic products which are sold under a known brand.



11 Finding Software Bugs in Embedded Devices 193

11.3.2.2 Discovering Backdoors with Static Analysis

Aside from vulnerability discovery, a small body of work has attempted to auto-
matically identify backdoor-like constructs in device firmware. Static analysis is
most suited to detecting such constructs due to the fact it can achieve full program
coverage. Dynamic analysis is less adequate in this case, as it relies solely on
execution traces that can be captured and analyzed stemming from triggering
standard program behaviors (which, by definition [551], a backdoor is not).

HumIDIFy3 [552] uses a combination of Machine Learning (ML) and static
analysis to identify anomalous and unexpected behavior in services commonly
found in Linux-based firmware. ML is used first to identify the type of firmware
binaries, e.g., a web-server, this then drives classification-specific static analysis
on each binary. HumIDIFy attempts to validate that binaries do not perform any
functionality outside of what is expected of the type of software they are identified
as. For example, HumIDIFy is able to detect a backdoor within a web-server taken
from Tenda router firmware4 that contains an additional UDP listening thread which
executes shell commands provided to it (without authentication) as the root user.

Stringer5 [550] attempts to locate backdoor-like behavior in Linux-based
firmware. It automatically discovers comparisons with static data that leads to
execution of unique program functionality, which models the situation of a backdoor
providing access to undocumented functionality via a hard-coded credential pair
or undocumented command. Stringer provides an ordering of the functions within
a binary based on how much their control-flow is influenced by static data
comparisons that guard access to functionality not otherwise reachable. The authors
demonstrate Stringer is able to detect both undocumented functionality and hard-
coded credential backdoors in devices from a number of manufacturers.

Firmalice [528] is a tool for detecting authentication bypass vulnerabilities and
backdoors within firmware by symbolic execution. It takes a so-called security
policy as input, which specifies a condition a program (or firmware) will exhibit
when it has reached an authenticated state. Using this security policy, it attempts to
prove that it is possible to reach an authenticated state by discovering an input that
when given to the program satisfies the conditions to reach that state. To discover
such an input, Firmalice employs symbolic execution on a program slice taken from
a program point acting as an input source to the point reached that signals the
program is in an authenticated state. If it is able to satisfy all of the constraints such
that a path exists between these two points, and an input variable can be concretised
that satisfies those constraints, then it has discovered an authentication bypass
backdoor (and a triggering input)—such an input will not be discoverable in a non-
backdoored authentication routine. Unfortunately, Firmalice requires a degree of
manual intervention to perform its analysis, such as identifying the security policy,

3Available as open-source: https://github.com/BaDSeED-SEC/HumIDIFy.
4http://www.devttys0.com/2013/10/from-china-with-love/.
5Available as open-source: https://github.com/BaDSeED-SEC/strngr.

https://github.com/BaDSeED-SEC/HumIDIFy
http://www.devttys0.com/2013/10/from-china-with-love/
https://github.com/BaDSeED-SEC/strngr


194 A. Francillon et al.

input points and privileged program locations. It is therefore not easily adaptable for
large-scale analysis.

11.3.2.3 Example Static Analysis to Discover Code Parsers

In order to interact with remote servers or connecting clients (e.g., for remote config-
uration), most firmware for networked embedded devices will contain client/server
components, e.g., a web-server, or proprietary, domain-specific client/server soft-
ware. In all cases, the firmware itself or software contained within it (for more
complex devices) will implement parsers for handling the messages of the protocols
required to communicate with corresponding client/server entities. Such parsers are
a common source of bugs, whether their implementation incorrectly handles input
in a way that causes a memory corruption, or permits an invalid state transition
in a protocol’s state machine logic. Thus, identifying these constructs in binary
software is useful as a premise to performing targeted analyses. To this end,
Cojocar et al. [150], propose PIE, a tool to automatically detect parsing routines
in firmware binaries. PIE utilizes a supervised learning classifier trained on a
number of simple features of the LLVM IL representation of firmware components
known to contain parsing logic. Such features include: basic block count, number
of incoming edges to blocks, and number of callers (for functions). PIE provides
a means to identify specific functions responsible for performing parsing within
an input firmware package, or software component. Stringer [550], described
in Sect. 11.3.2.2, similarly provides a means of automatically identifying parser
routines (for text-based input); in addition to identifying routines, it is also able
to identify the individual (text-based) commands, processed by the parser.

11.4 Dynamic Firmware Analysis

Static analysis is indeed a robust technique that can help discover a wide range
of vulnerability classes, such as misconfigurations or backdoors. However, it is
not necessarily best suited for other types of vulnerabilities, especially when they
depend on the complex runtime state of the program.

Similar to static analysis, powerful dynamic analysis techniques and tools have
been developed for traditional systems and general purpose computers. However,
the unique characteristics and challenges of the embedded systems make it difficult,
if not impossible, to directly apply those proven methods. To this end, there are
several distinct directions for dynamic analysis of embedded systems and we briefly
discuss them below.



11 Finding Software Bugs in Embedded Devices 195

11.4.1 Device-Interactive Dynamic Analysis Without
Emulation

When the device is present for analysis, the simplest form of device-interactive
dynamic analysis is to test the devices in a “black-box” manner. The general
idea of this approach is to setup and run the devices under analysis as in normal
operation (e.g., connect to Ethernet LAN, WLAN, smartphone), and then test it
with various tools and manual techniques (e.g., generic or specialized fuzzers,
web penetration) and observe their behavior via externally observable side-effects
such as device reboots, network daemon crashes, or XSS artifacts [439]. Similar
approaches and results were reported by several independent and complementary
works [259, 280, 292].

While being simple and easy to perform, this type of dynamic analysis has certain
limitations, some of which are due to the “black-box” nature of the approach. For
example, it is challenging to know what is happening with the entire system/device
while the dynamic analysis is performed, i.e., the introspection of the system is
missing or is hard to achieve. Also, in this approach it is not easy to control in
detail what specifically is being executed and analyzed, the analysis being mostly
driven by the data and actions fed to the device. In addition to this, some types of
vulnerabilities might not have side-effects that are immediately [430] or externally
visible (e.g., a crash of a daemon which does not necessarily expose a network port),
therefore those bugs could be missed or misinterpreted during the analysis.

11.4.2 Device-Interactive Dynamic Analysis with Emulation

As an extension to the aforementioned approach, emulation can be coupled with
device-interactive dynamic analysis to provide the required depth and breadth,
therefore outperforming other static or dynamic analysis methods. The general idea
of this approach is to split the execution of the embedded firmware between the
analysis host and the actual running device. The analysis host is connected to the
device via a debug (e.g., JTAG) or serial (e.g., UART) interface. Therefore one
requirement is that the device under analysis must provide at least such an interface,
whether documented or not. The analysis host then runs a dynamic analysis
environment which is typically an emulator (e.g., QEMU-based) augmented or
extended with additional layers and plugins such as symbolic execution and taint
analysis. The analysis host has access to the execution and memory states both for
the emulator and for the running device. The firmware is being analyzed first in
the extended emulator environment. During the firmware emulation and analysis,
certain parts of the analyzed firmware are transferred for execution by the analysis
host from the emulator to the running device. This is sometimes required, for
example, when the firmware needs to perform an I/O operation with a peripheral
present on the devices but not in the emulator. The execution and state transfer to



196 A. Francillon et al.

and from the device occur via the connected debug or serial interface. On the one
hand, by using this approach it is possible to control exactly what is to be analyzed
because the emulator is under the full supervision of the analysis host. On the other
hand, this approach enables broader and deeper coverage of the execution because
the device can complement the execution of firmware parts that are impossible to
execute within the emulator.

This is the approach followed by Avatar [591] which aims at providing symbolic
execution with S2E [140], while Avatar2 [429] focuses on better interoperability
with more tools. Prospect [312] explores forwarding at the system calls level and
Surrogates [341] provides a very fast debug interface. Inception [125] provides an
analysis environment to use during testing when source code is available.

11.4.3 Device-Less Dynamic Analysis and Emulation

Performing dynamic analysis in a device-interactive manner certainly has its
benefits, however such an approach has a number of limitations and is hard to
fully automate. Firstly, it is not easy to scale the human operator’s interventions
and expertise required for many of the tasks related to the approach of device
interaction with emulation. Secondly, it is challenging to automate and scale the
logistics operations related to acquisition, tear-down, connection, configuration and
reset of a large number of devices. Therefore, dynamic analysis techniques that are
easier and more feasible to scale and automate are required. One such technique is
the device-less analysis based on full or partial emulation.

Davidson et al. [175] presented the FIE tool that detects bugs in firmware of the
MSP430 microcontroller family. FIE leverages KLEE [120] to perform symbolic
execution of firmware in order to detect memory safety violations (e.g., buffer
overflows and out-of-bounds memory accesses), and misuse of peripherals (e.g.,
attempted writes to read-only memory). FIE needs the availability of the source
code, which is uncommon, and is able to handle a variety of the nuances and
challenges faced during automated analysis of firmware, especially when dealing
with firmware for Type-III devices. However, when reading I/O from a device,
the values read are always assumed to return unconstrained (completely symbolic)
values which leads to a state explosion problem. This limits the size of the programs
which can be analyzed.

In [156], the authors perform device-less dynamic security analysis via
automated and large-scale emulation of embedded firmware. Similarly, FIRMA-
DYNE [137] presents an automated and scalable system for performing emulation
and dynamic analysis of Linux-based embedded firmware.

The general idea of both works is to crawl and then unpack firmware packages
into minimal root filesystems (i.e., rootfs) that can subsequently be virtualized
and executed as a whole via “system emulation” (as opposed to “user emulation”)
using for example QEMU [69]. The emulator is first used to start an architecture-
specific emulation host OS, such as Debian for ARM or MIPS depending on the



11 Finding Software Bugs in Embedded Devices 197

architecture of the device whose firmware is being dynamically analyzed. Then the
firmware root filesystem is uploaded to the emulation host OS, where its Linux
boot sequence scripts are initiated, most likely in a chroot environment under the
emulation host OS. Once the firmware’s Linux boot sequence concludes, various
services (e.g., a web server, SSH, telnet, and FTP) of the device/firmware under
analysis should be running, and are ready for logging, tracing, instrumentation and
debugging. The work in [137] extends this approach by running a custom operating
system kernel which is able to emulate some of the missing drivers.

11.5 Conclusion

We have provided a short overview of the field: from our excursus, it is clear that
analyzing the software of IoT/embedded devices and finding security vulnerabilities
within them is still a challenging task. While multiple directions and techniques are
being actively explored and developed within the field, more research, insights and
tools are still required.

Unfortunately, the existing proven techniques (e.g., static, dynamic, hybrid
analysis) cannot be applied in a straightforward manner to embedded devices
and their software/firmware. One reason for this is the high heterogeneity and
fragmentation of the technological space that supports embedded/IoT systems.
Another reason is the “opaque” nature of embedded devices, which can be seen as
akin to the “security by obscurity” principle. Such reasons make embedded systems
harder to analyze compared to more traditional systems.

Indeed, the current embedded firmware “population” may still contain many
latent backdoors and vulnerabilities, both known and unknown. However, as
we detailed in this chapter, positive and promising avenues for the detection
of embedded software bugs are becoming increasingly available. Such avenues
include large-scale analysis and correlation techniques, hybrid/dynamic analysis
of emulated firmware or running devices, and advanced techniques to specifically
detect backdoors.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	11 Finding Software Bugs in Embedded Devices
	11.1 The Challenges of Embedded Devices and Software
	11.1.1 Lack of Transparency
	11.1.2 Lack of Control
	11.1.3 Lack of Resistance to Attacks
	11.1.4 Organization of This Chapter
	11.1.5 Classification of Embedded Systems

	11.2 Obtaining Firmware and Its Components
	11.2.1 Collecting Firmware Packages
	11.2.2 Extracting Firmware from Devices
	11.2.3 Unpacking Firmware
	11.2.4 Firmware Unpacking Frameworks
	11.2.5 Modifying and Repacking Firmware

	11.3 Static Firmware Analysis
	11.3.1 Simple Static Analysis on Firmware Packages
	11.3.1.1 Configuration Analysis
	11.3.1.2 Software Version Analysis

	11.3.2 Static Code Analysis of Firmware Packages
	11.3.2.1 Code Analysis of Embedded Firmware
	11.3.2.2 Discovering Backdoors with Static Analysis
	11.3.2.3 Example Static Analysis to Discover Code Parsers


	11.4 Dynamic Firmware Analysis
	11.4.1 Device-Interactive Dynamic Analysis Without Emulation
	11.4.2 Device-Interactive Dynamic Analysis with Emulation
	11.4.3 Device-Less Dynamic Analysis and Emulation

	11.5 Conclusion


