
Chapter 8
It Started with Templates: The Future
of Profiling in Side-Channel Analysis

Lejla Batina, Milena Djukanovic, Annelie Heuser, and Stjepan Picek

Abstract Side-channel attacks (SCAs) are powerful attacks based on the infor-
mation obtained from the implementation of cryptographic devices. Profiling
side-channel attacks has received a lot of attention in recent years due to the fact that
this type of attack defines the worst-case security assumptions. The SCA community
realized that the same approach is actually used in other domains in the form of
supervised machine learning. Consequently, some researchers started experimenting
with different machine learning techniques and evaluating their effectiveness in
the SCA context. More recently, we are witnessing an increase in the use of deep
learning techniques in the SCA community with strong first results in side-channel
analyses, even in the presence of countermeasures. In this chapter, we consider
the evolution of profiling attacks, and subsequently we discuss the impacts they
have made in the data preprocessing, feature engineering, and classification phases.
We also speculate on the future directions and the best-case consequences for the
security of small devices.

8.1 Introduction

In 1996, Kocher demonstrated the possibility to recover secret data by introducing
a method for exploiting leakages from the device under attack [338]. In other
words, implementations of cryptographic algorithms leak relevant information

L. Batina
Radboud University, Nijmegen, The Netherlands

M. Djukanovic
University of Montenegro, Podgorica, Montenegro

A. Heuser
Univ Rennes, Inria, CNRS, IRISA, Rennes, France

S. Picek (�)
Delft University of Technology, Delft, The Netherlands

© The Author(s) 2021
G. Avoine, J. Hernandez-Castro (eds.), Security of Ubiquitous Computing Systems,
https://doi.org/10.1007/978-3-030-10591-4_8

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10591-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-10591-4_8

134 L. Batina et al.

about the data processed through physical side-channels such as timing [338], power
consumption [339], EM emanation [493], and sound [225].

Side-channel attacks (SCAs) exploit weaknesses in the physical implementation
of cryptographic algorithms rather than the algorithms themselves [389]. Those
weaknesses stem from the physics of the underlying computing elements, i.e.,
CMOS cells, which makes it hard to eliminate such threats.

Numerous evaluation techniques, which generally involve some form of digital
signal processing and statistical computations, have been proposed in the literature.
Some of the most important methods include Simple Power Analysis (SPA) [339],
Differential Power Analysis (DPA), and Template Attacks (TA) [135].

The SPA technique implies that the attacker aims at reconstructing the secret
key using just a single trace of side-channel information, and it often exploits
the difference in basic public-key operations such as double-and-add, or add-and-
multiply [339]. Still, SPA is not possible if the observed signal-to-noise ratio (SNR)
is not high enough. Consequently, most of the time developed countermeasures
make SPA futile.

DPA techniques are based on the evaluation of many traces with varying
input data for the targeted algorithm. After that step, a brute-force attack, testing
sub-key hypotheses, is performed on a part of the algorithm (so-called “divide
and conquer”). In the DPA approach, a large number of samples are used in
order to reduce noise by averaging, and a single-bit power model is commonly
adopted [339]. On the other hand, Correlation Power Analysis (CPA) represents a
multi-bit power model in order to reduce the influence of noise on the possibility to
execute a successful attack [115]. The main difference between these two techniques
is that DPA is based on computing the difference between two trace sets, while
CPA uses the correlation coefficient in order to calculate the dependency test. We
often also say that the two use different side-channel distinguishers. Side-channel
attacks using the above three techniques have been reported on a wide variety of
cryptographic implementations, see, e.g., [154, 402, 410, 412, 434, 500] including
some real-world applications [196].

In contrast to DPA, TA requires a profiling stage, i.e., a step during which
the cryptographic hardware is under full control of the adversary to estimate the
probability distribution of the leaked information and make better use of all the
information present in each sample [135]. In this way, TA can provide a promising
model of the real device, instead of using some a priori model.

TA is the best (optimal) technique from an information-theoretic point of view if
the attacker has an unbounded number of traces and the noise follows the Gaussian
distribution [277, 367]. After the template attack, the stochastic attack emerged
using linear regression in the profiling phase [515]. In the years that followed,
researchers recognized certain shortcomings of template attacks and tried to modify
them in order to deal better with the complexity and portability issues. An example
of such an approach is the pooled template attack where only one pooled covariance
matrix is used in order to cope with statistical difficulties [142]. Alongside such
techniques, the SCA community realized that a similar approach to profiling is
used in other domains in the form of supervised machine learning. Consequently,

8 It Started with Templates: The Future of Profiling in Side-Channel Analysis 135

some researchers started experimenting with different machine learning (ML)
techniques and evaluating their effectiveness in the SCA context. Although mainly
considering distinct scenarios and various ML techniques, all those papers tend
to establish different use cases where ML techniques can outperform the template
attack and establish themselves as the best choice for profiled SCA. More recently,
we are witnessing the relevance of deep learning (DL) techniques in the SCA
community with strong results in side-channel analyses, even in the presence of
countermeasures.

8.2 Profiled Side-Channel Attacks

Profiled side-channel attacks estimate the worst-case security risk by considering
the most powerful side-channel attacker. In particular, one assumes that an attacker
can possess an additional device of which he or she has nearly full control. From this
device, he obtains leakage measurements and is able to control the used secret key
or at least knows which one is used. Knowing the secret key enables him to calculate
intermediate processed values that involve the secret key for which he is estimating
models. These models can then be used in the attacking phase to predict which
intermediate values are processed and therefore carry information about the secret
key. Commonly used models are the identity value or Hamming weight/distance.

Uniformly Distributed Classes Targeting intermediate variables, e.g., when
loaded or manipulated on the device and resulting mostly in 2n uniformly distributed
classes where n is the number of bits of the intermediate variable.

Binomial Distributed Classes The Hamming Weight (HW) or the Hamming
Distance (HD) of a uniformly distributed intermediate variable results in n + 1
binomially distributed classes.

8.2.1 Definition of Profiling Attacks

In this section, we consider side-channel attacks on block ciphers for which a
divide and conquer approach can be utilized. Note that, as there exist operations
within the block cipher which manipulate each block/chunk (e.g., bytes in Advanced
Encryption Standard (AES)) independently and most importantly involving only
one block/chunk of the secret key, an attacker only needs to make hypotheses about
the secret key block/chunk instead of the complete secret key at once.

More formally, let k∗ denote (a chunk of) the fixed secret cryptographic key that
is stored on the device and let t denote (a chunk of) the plaintext or ciphertext of
the cryptographic algorithm. The mapping y maps the plaintext or the ciphertext

136 L. Batina et al.

t ∈ T and the key k∗ ∈ K to an intermediate value that is assumed to relate to the
deterministic part of the measured leakage x. For example,

y(t, k) = Sbox[T ⊕ k], (8.1)

where Sbox[·] is a substitution operation. The measured leakage x can then be
written as

x = ϕ(y(t, k∗)) + r, (8.2)

where r denotes independent additive noise and ϕ is a device-specific (unknown)
deterministic function mapping the intermediate variable to the leakage space.
In the rest of this chapter, we are particularly interested in multivariate leakage
x = x1, . . . , xD , where D is the number of time samples, i.e., features (also called
attributes or points of interest).

Now, it is considered that the attacker has the following information at his
disposal to conduct the attack:

• profiling phase: N traces (measurements) xp1 , . . . , xpN
, the secret key

k∗
p, and plaintexts/ciphertexts tp1, . . . , tpN

, such that he can calculate
y(tp1 , k

∗
p), . . . , y(tpN

, k∗
p).

• attacking phase: Q traces xa1 , . . . , xaQ
(independent from the profiling traces),

plaintexts/ciphertexts ta1, . . . , taQ
.

In the attacking phase the goal is to make predictions about y(ta1 , k
∗
a), . . . ,

y(taN
, k∗

a), where k∗
a is the secret key on the attacking device. Note, even before

running the attack, there are several steps one could do in order to make the attack
more powerful. These phases are depicted in Fig. 8.1.

8.2.2 Data Preprocessing

In the data preprocessing phase, the aim is to prepare the data in a way to increase
the performance of side-channel analysis. There are several papers considering
various data augmentation techniques in order to artificially generate measurements
so as to increase the size of the profiling dataset. Cagli et al. propose two data

Fig. 8.1 Depiction of an end-to-end profiling attack

8 It Started with Templates: The Future of Profiling in Side-Channel Analysis 137

augmentation techniques they call Shifting and Add-Remove [122]. They use
convolutional neural networks (CNN) and find data augmentation to significantly
improve the performance of CNN. Pu et al. use a data augmentation technique
where they randomly shift each measurement in order to increase the number
of measurements available in the profiling phase [489]. They report that even
such simple augmentation can effectively improve the performance of profiling
SCA. Picek et al. experiment with several data augmentation and class balancing
techniques in order to decrease the influence of highly unbalanced datasets that
occur when considering HW/HD models [478]. They show that by using a well-
known machine learning technique called SMOTE, it is possible to reduce the
number of measurements needed for a successful attack by up to 10 times. Kim et
al. investigate how the addition of artificial noise to the input signal can be beneficial
to the performance of the neural network [329].

8.2.3 Feature Engineering

When discussing the feature engineering tasks, we can recognize a few directions
that researchers follow in the context of SCA:

• feature selection. Here, the most important subsets of features are selected. We
can distinguish between filter, wrapper, and hybrid techniques.

• dimensionality reduction. The original features are transformed into new fea-
tures. A common example of such a technique is Principal Component Analysis
(PCA) [25].

When discussing feature engineering, it is important to mention the curse of
dimensionality. This describes the effects of an exponential increase in volume
associated with the increase in the dimensions [71]. As a consequence, as the
dimensionality of the problem increases, the classifier’s performance increases until
the optimal feature subset is reached. Further increasing the dimensionality without
increasing the number of training samples results in a decrease in the classifier
performance.

In the SCA community, there are several standard techniques to conduct feature
selection:

• Pearson Correlation Coefficient. The Pearson correlation coefficient measures the
linear dependence between two variables, x and y, in the range [−1, 1], where
1 is a total positive linear correlation, 0 is no linear correlation, and −1 means
a total negative linear correlation. The Pearson correlation for a sample of the
entire population is defined by [301]:

Pearson(x, y) =
∑N

i=1((xi − x̄)(yi − ȳ))
√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
, (8.3)

138 L. Batina et al.

where x̄ and ȳ are the empirical means of x and y, respectively.
• SOSD. In [230], the authors proposed as a selection method the sum of squared

differences, simply as:

SOSD(x, y) =
∑

i,j>i

(x̄yi
− x̄yj

)2, (8.4)

where x̄yi
is the mean of the traces where the model equals yi . Because of the

square term, SOSD is always positive. Another advantage of using the square is
that it enlarges big differences.

• SOST. SOST is the normalized version of SOSD [230] and is thus equivalent by
the pairwise student T-test:

SOST (x, y) =
∑

i,j>i

⎛

⎝(x̄yi
− x̄yj

)/

√
√
√
√σ 2

yi

nyi

+ σ 2
yj

nyj

⎞

⎠

2

(8.5)

with nyi
and nyj

being the number of traces where the model equals to yi and yj ,
respectively.

There are several more relevant works in the domain of feature selection and
SCA. The work of Lerman et al. [367] compared template attacks and machine
learning on dimensionality reduction. They concluded that template attacks are the
method of choice as long as a limited number of features can be identified in leakage
traces containing most of the relevant information. Zheng et al. looked into feature
selection techniques but they did not consider machine learning options [600].
Picek et al. conducted a detailed analysis of various feature selection techniques
where some are also based on machine learning (so-called wrapper and hybrid
methods) [477]. They concluded that commonly used feature selection techniques
in SCA are rarely the best ones and they mentioned L1 regularization as a powerful
feature selector in many scenarios.

8.3 Template Attacks

In this section, we start by explaining the details of template attacks, and after that
we give details about two techniques that emerged from template attacks—pooled
template attacks and stochastic attacks.

8 It Started with Templates: The Future of Profiling in Side-Channel Analysis 139

8.3.1 Context of Template Attack

In the pioneering template attacks article of Chari, Rao, and Rohatgi, it is shown that
template attacks apply advanced statistical methods and can break implementations
secure against other forms of side-channel attacks [135].

In some works template attacks are built to classify the state of a byte, e.g., a
key byte in RC4 [135, 498]. The weakness of these papers is the need to create
256 templates for each byte. Additionally, the template building process can only be
guided by partial attack results. In [498], the authors reduce the number of points of
a trace by using an efficient algorithm instead of the standard principal component
analysis method, which increases the speed of selecting points of interest. Also, by
introducing a preprocessing phase with the use of discrete Fourier transformation
on traces, the authors improve the template attack results in practice.

Agrawal et al. develop two new attack techniques that extend the work of the
previously mentioned research results [11]. The first is a single-bit template attack
technique that creates templates from peaks observed in a DPA attack resulting
with a high probability value of a single DPA-targeted bit. Their second, template-
enhanced DPA attack technique can be used to attack DPA protected cards and
consists of two steps: a profiling phase and a hypothesis testing phase. In the first,
profiling phase, the attacker, who is in possession of a smart card with a biased RNG,
builds templates, and in the hypothesis testing phase the attacker uses previously
built templates to mount a DPA-like attack on a target card which is identical to
the test smart card, but has a perfect RNG. The authors illustrate these two attack
techniques considering unprotected implementations of DES and AES on smart
cards.

Archambeau et al. take template attacks techniques a step further by transforming
leakage traces in order to identify important features (i.e., transformed time instants)
and their number automatically. Actually, they use the optimal linear combination
of the relevant time samples and execute template attacks in the principal subspace
of the mean traces creating a new approach, the principal subspace-based template
attack (PSTA) [25]. The authors validate this approach by attacking the RC4 stream
cipher implementation and an FPGA implementation of AES.

In the literature, the main focus is on template attacks aiming at recovering
the secret key of a cryptographic core from measurements of its dynamic power
consumption. But with scaling of technology, static power consumption grows faster
and creates new issues in the security of smart card hardware. Therefore, Bellizia et
al. proposed Template Attack Exploiting Static Power (TAESP) in order to extract
information from a hardware implementation of a cryptographic algorithm using
temperature-dependence of static currents as a source of information leakage [70].

140 L. Batina et al.

8.3.2 Standard Template Attack

The template attack is based on the Bayesian rule and works under the simplifying
assumption that the measurements are mutually independent among the D features
given the target class. More precisely, given the vector of N observed attribute
values x, the posterior probability for each class value y is computed as:

p(Y = y|X = x) = p(Y = y)p(X = x|Y = y)

p(X = x)
, (8.6)

where X = x represents the event that X1 = x1 ∧ X2 = x2 ∧ . . . ∧ XN = xN .
Note that the class variable Y and the measurement X are not of the same type:

Y is discrete while X is continuous. So, the discrete probability p(Y = y) is equal
to its sample frequency where p(X = x|Y = y) displays a density function. In most
state-of-the-art models p(X = x|Y = y) is assumed to be based on a (multivariate)
normal distribution and is thus parameterized by its mean and its covariance matrix:

p(X = x|Y = y) = 1
√

(2π)D|Σy |
e− 1

2 (x−x̄y)T Σ−1
y (x−x̄y). (8.7)

8.3.3 Pooled Template Attack

In practice, the estimation of the covariance matrices for each class value y can be
ill-posed mainly due to an insufficient number of traces for each class. The authors
of [142] propose to use only one pooled covariance matrix to cope with statistical
difficulties and thus a lower efficiency. Accordingly, Eq. (8.7) changes to

p(X = x|Y = y) = 1
√

(2π)D|Σ |e
− 1

2 (x−x̄y)T Σ−1(x−x̄y). (8.8)

The works in, e.g., [142, 476, 477, 481] showed that indeed the pooled version is
more efficient, in particular for a smaller number of traces in the profiling phase.

8.3.4 Stochastic Attack

Compared to TA, the stochastic attack (SA) utilizes linear regression instead of
probability density estimation [515]. One critical aspect of SA is the choice of
regressors (aka base functions), as for example shown in [275]. A natural choice
in the context of side-channel analysis is the bitwise selection of the intermediate

8 It Started with Templates: The Future of Profiling in Side-Channel Analysis 141

variable, i.e., let [·]b define the function selecting the bth bit and using the same
intermediate variable as in Sect. 8.2.1 then

([Sbox[T ⊕ k]]1 [Sbox[T ⊕ k]]2 . . . [Sbox[T ⊕ k]]n) (8.9)

is an n-dimensional vector used as regressors. One benefit of SA is the constructive
feedback of side-channel leakage detection it might bring to the evaluator (see,
e.g., [278]).

8.4 Machine Learning-Based Attacks

Machine learning encompasses a number of methods used for classification,
clustering, regression, feature selection, and other knowledge discovering meth-
ods [423]. A typical division of machine learning algorithms is into supervised,
semi-supervised, and unsupervised approaches. Each of those paradigms can also be
used in SCAs—supervised (profiling) attacks, semi-supervised attacks (profiling),
unsupervised (non-profiling) attacks.

In Fig. 8.2, we depict differences in the supervised and semi-supervised cases.

Supervised Techniques
The supervised approach assumes that the attacker first possesses a device similar to
the one under attack. Having this additional device, he is then able to build a precise
profiling model using a set of measurements while knowing the plaintext/ciphertext
and the secret key of this device. In the second step, the attacker uses the earlier
profiling model to reveal the secret key of the device under attack. For this, he
additionally measures a new set of traces, but as the key is secret he has no further
information about the intermediate processed data and thus builds hypotheses. The
only information that the attacker transfers between the profiling phase and the
attacking phase is the profiling model he builds.

When considering supervised machine learning and SCA, in recent years there
have been numerous papers considering various targets, machine learning algo-
rithms, and scenarios. Actually, the most common denominator for most of the work

traces

labels

algorithm model

traces

hypothetical
labels

algorithm
secret

Attacking phase

traces

labels

algorithm model

traces

hypothetical
labels

algorithm
secret

traces

Attacking phase

Fig. 8.2 Profiling side-channel scenario: supervised (left), semi-supervised (right)

142 L. Batina et al.

is the fact that they attack AES [235, 274, 279, 285, 363–365, 367, 475, 476, 479,
481]. More recently, deep learning (DL) techniques started to capture the attention
of the SCA community. Accordingly, the first results confirmed expectations,
with most of the early attention being paid to convolutional convolutional neural
networks [122, 329, 386, 482].

As far as we know, when considering machine learning-based attacks on other
ciphers, there are only a few papers. Heuser et al. consider Internet of Things
scenarios and lightweight ciphers where they compare 11 lightweight ciphers and
AES in terms of their SCA resilience and conclude that lightweight ciphers cannot
be considered to be significantly less resilient than AES [274, 276].

Semi-supervised Techniques
Semi-supervised learning is positioned in the middle between supervised and
unsupervised learning. There, the basic idea is to take advantage of a large quantity
of unlabeled data during a supervised learning procedure [517]. This approach
assumes that the attacker is able to possess a device to conduct a profiling phase but
has limited capacities. This may reflect a more realistic scenario in some practical
applications, as the attacker may be limited by time or resources, or also face
implemented countermeasures, which prevent him from taking an arbitrarily large
amount of side-channel measurements while knowing the secret key of the device.

The first application of semi-supervised SCA was done by Lerman et al.,
where the authors conclude that the semi-supervised setting cannot compete with
a supervised setting [366]. Note, the authors compared the supervised attack with
n + m labeled traces for all classes with a semi-supervised attack with n labeled
traces for one class and m unlabeled traces for other unknown classes (i.e., in total
n + m traces). Picek et al. conduct an analysis of two semi-supervised paradigms
(self-training and graph-based learning) where they show that it is possible to
improve the accuracy of classifiers if semi-supervised learning is used [480]. What
is especially interesting is that they show how semi-supervised learning is able to
significantly improve the behavior of the template attack when the profiling set is
(very) small.

8.4.1 Conducting Sound Machine Learning Analysis

Since it is not possible (in general) to expect machine learning techniques to give us
theoretical observations or proofs of results, we need to rely on a set of procedures
to run experiments such that the results are convincing and easy to reproduce. In the
next section, we briefly discuss several steps to be considered in order to make the
analysis more reproducible.

Datasets
When preparing the data for machine learning analysis, it is necessary to discuss
the number of measurements, the number of features, and the number of classes
(if known). Additionally, if the data come from different distributions, one needs to

8 It Started with Templates: The Future of Profiling in Side-Channel Analysis 143

discuss those. If not all data from datasets are used, it is necessary to state how the
samples are chosen and how many are used in the experiments. One needs to define
the level of noise appearing in the data in a clearly reproducible way, e.g., using the
signal-to-noise ratio (SNR). Finally, if some feature engineering procedure is used,
it needs to be clearly stated in order to know what features are used in the end.

Algorithms
When discussing the choice of algorithms, first it is necessary either to specify which
framework and algorithms are used or provide pseudo-code (for example, when
custom algorithms are used). As a rule of thumb, more than one algorithm should
always be used: the algorithms should ideally belong to different machine learning
approaches (e.g., a decision tree method like Random Forest and a kernel method
like Support Vector Machine (SVM)). Next, all parameters that uniquely define the
algorithm need to be enumerated.

Experiments
Regarding the experiments, it is first necessary to discuss how the data are divided
into training and testing sets. Then, for the training phase, one needs to define the
test options (e.g., whether to use the whole dataset or cross-validation, etc.) After
that, for each algorithm, one needs to define a set of parameter values to conduct the
tuning phase. There are different options for tuning, but we consider starting with
the default parameters as a reasonable approach and continue varying them until
there is no more improvement. Naturally, this should be done in a reasonable way,
since the tuning phase is the most expensive from the computational perspective and
it is usually not practical to test all combinations of parameters.

Results
For the tuning phase, it is usually sufficient to report the accuracy. For the testing
results, one should report the accuracy but also some other metric like the area under
the ROC curve (AUC) or the F-measure. The area under the ROC curve is used
to measure the accuracy and is calculated via Mann-Whitney statistics [580]; the
ROC curve is the ratio between the true positive rate and the false positive rate.
An AUC close to 1 represents a good test, while a value close to 0.5 represents a
random guess. The F-measure is the harmonic mean of the precision and recall,
where precision is the ratio between true positive (TP, the number of examples
predicted positive that are actually positive) and predicted positive. The recall is
the ratio between true positives and actual positives [488]. Both the F-Measure and
the AUC can help in situations where accuracy can be misleading, i.e., where we
are also interested in the number of false positive and false negative values.

144 L. Batina et al.

8.5 Performance Metrics

When considering profiling SCA, there are three performance metrics we mention:
accuracy, guessing entropy, and success rate. The accuracy is the proportion between
the correctly classified measurements and all measurements:

ACC = T P + T N

T P + T N + FP + FN
. (8.10)

TP refers to true positive (correctly classified positive), TN to true negative
(correctly classified negative), FP to false positive (falsely classified positive), and
FN to false negative (falsely classified negative) instances. TP, TN, FP, and FN are
well-defined for hypothesis testing and binary classification problems. In the multi-
class classification, they are defined in a one class vs. all other classes manner, and
are calculated from the confusion matrix.

A side-channel adversary AEK,L conducts an experiment ExpAEK,L
, with time-

complexity τ , memory complexity m, and making Q queries to the target imple-
mentation of the cryptographic algorithm. The attack outputs a guessing vector g of
length o, and is considered a success if g contains correct key k∗. o is also known
as the order of the success rate. The oth order success rate of the side channel attack
AEK,L is defined as:

SRo
AEK ,L

(τ,m, k∗) = Pr[ExpAEK,L
= 1] (8.11)

The Guessing entropy measures the average number of key candidates to test
after the attack. The Guessing entropy of the adversary AEk,L against a key class
variable S is defined as:

GEAEK,L
(τ,m, k∗) = E[ExpAEK,L

] (8.12)

8.6 Countermeasures Against SCA

There are various countermeasures against SCAs that have been proposed over the
years. A general approach focuses on decreasing the information gathered from the
measurements:

• Noise Addition. Introducing external noise in the side-channel, shuffling the
operations or inserting dummy operations in cryptographic implementations is
often used as a countermeasure against SCAs. The basic objective is to reduce
the signal-to-noise ratio (SNR) and thereby decrease the information gathered
from measurements. Still, as shown already by Durvaux et al. [194], these
countermeasures become insecure with increasing attack time.

8 It Started with Templates: The Future of Profiling in Side-Channel Analysis 145

• Dynamic and Differential CMOS Logic. Tiri et al. [557] proposed Sense
Amplifier Based Logic (SABL)—a logic style that uses a fixed amount of charge
for every transition, including the degenerated events in which a gate does not
change state.

• Leakage Resilience. Another countermeasure, typically applied at the system
level, focuses on restricting the number of usages of the same key for an
algorithm. Still, generation and synchronization of new keys have practical
issues. Dziembowski et al. introduced a technique called leakage resilience,
which relocates this problem to the protocol level by introducing an algorithm
to generate these keys [195].

• Masking. One of the most efficient and powerful approaches against SCAs is
masking [134, 243], which aims to break the correlation between the power traces
and the intermediate values of the computations. This method achieves security
by randomizing the intermediate values using secret sharing and carrying out all
the computations on the shared values.

8.7 Conclusions

In this chapter, we discussed profiling side-channel attacks where we started with
data preprocessing and feature engineering. Then we presented several template-
like techniques and afterward machine learning techniques. Next, we discussed how
to conduct a sound machine learning analysis that should result in reproducible
experiments. We finished the chapter with a short discussion on how to test the
performance of SCA and what are some of the possible countermeasures to make
such attacks more difficult.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	8 It Started with Templates: The Future of Profiling in Side-Channel Analysis
	8.1 Introduction
	8.2 Profiled Side-Channel Attacks
	8.2.1 Definition of Profiling Attacks
	8.2.2 Data Preprocessing
	8.2.3 Feature Engineering

	8.3 Template Attacks
	8.3.1 Context of Template Attack
	8.3.2 Standard Template Attack
	8.3.3 Pooled Template Attack
	8.3.4 Stochastic Attack

	8.4 Machine Learning-Based Attacks
	8.4.1 Conducting Sound Machine Learning Analysis

	8.5 Performance Metrics
	8.6 Countermeasures Against SCA
	8.7 Conclusions

