
Chapter 9
Side Channel Assessment Platforms
and Tools for Ubiquitous Systems

Apostolos P. Fournaris, Athanassios Moschos, and Nicolas Sklavos

Abstract Side Channel Attacks are nowadays considered a serious risk for many
security products and ubiquitous devices. Strong security solution providers need
to evaluate their implementations against such attacks before publishing them
on the market, thus performing a thorough assessment. However, this procedure
is not straightforward and even with the appropriate equipment, it may require
considerable time to provide results due to the slow process of collecting measure-
ments (traces) and the inflexible way of controlling the tested implementation. In
this chapter, we explore and overview the trace collection landscape for generic
devices under test (including ubiquitous systems) highlighting and overviewing the
latest trace collection toolsets and their shortcomings, but also proposing a trace
collection approach that can be applied on the most recent, open source toolsets.
We showcase our proposed approach on the FlexLeco project architecture, which
we have developed in our lab, and manage to practically describe how an evaluator
using the proposed methodology can collect traces easily and quickly without the
need to completely redesign a control mechanism for the implementation under test.

9.1 Introduction

The transition of computing devices to the ubiquitous era, where the cyber world
is merging with the physical world to bring an ever present layer of computer
intelligence to everyday life objects, is bringing, among other things, cybersecurity
and privacy into the physical world as an issue to be constantly considered.
Due to IP interconnected cyberphysical systems, attackers can gain access not
only to a victim’s data but also to the victim’s life itself, by controlling “smart”
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devices of urban and industrial systems, critical infrastructures and individual
households [540]. This highlights the need for strong security features that must
be installed on embedded systems. However, ubiquitous devices have several non-
functional constraints like small processing power, low power consumption or
small memory footprint, that prohibit the use of several traditional security and
cryptography schemes (e.g., asymmetric cryptography). This has led to the redesign
and simplification of existing security solutions (like TLS schemes and their cipher
modes) or the development of cryptography algorithms especially designed for low
performance devices (lightweight cryptography schemes [197]).

The design and evaluation of security schemes and cryptographic algorithms
must take into account several parameters that are related to a scheme’s crypto-
graphic strength (addressed by cryptanalysis, formal security verification methods
etc.), to its algorithmic performance (addressed by collecting and comparing per-
formance and resource measurements) and to its resistance against implementation
attacks like side channel and fault injection attacks [337]. Side channel attacks
(SCAs) have a leading role in the design of modern cryptosystems, since they are
the weakest point and they have been exploited by many well-known attacks in
order to break otherwise unbreakable security/cryptography algorithms. SCAs can
be easily applicable to ubiquitous, cyberphysical systems, where devices are left
unattended in potentially security “hostile” environments (in remote, secluded areas,
inside malicious user premises, etc.)

There is a broad research field related to various SCAs, aiming to exploit
various physical characteristics of a device including timing, power consumption,
electromagnetic emission, etc. The flagship SCA analysis methods are of statistical
nature and can be categorized into horizontal attacks (using one or a few collected
inputs) or vertical attacks (using many collected inputs). Among the most potent
and successful such attacks are Differential Power Analysis (DPA) or Correlation
DPA [390] as well as template, online template [58] and Mutual Information Attack
(MIA) [229]. A simple review of the above advanced SCAs reveals that all of them
require a considerable amount of collected leaked physical characteristic inputs in
order to be effective.

Assessing if a security/cryptography scheme on a ubiquitous device is SCA
resistant, is not a straightforward process. It usually follows two directions. In the
first direction, a security scheme is evaluated against specific SCAs while the second
direction is based on performing a generic information leakage assessment based on
some statistical test. Student’s or Welch t-test are two such tests that use statistical
hypothesis testing in order to detect if one of a series of sensitive intermediate
processes during a security procedure significantly influences the measurement data
or (more often in a non-specific test) detect how different is a collected trace from
random noise (indicating a bias addressed to exploitable information leakage).

Collecting inputs for SCA analysis is done using specialized equipment in a fairly
cheap and easy way. However, when a huge number of inputs need to be acquired
then the processing of an input (or trace, as they are usually denoted in the literature)
becomes a very slow and cumbersome process. A restricted number of tools that
help the acquisition of the needed traces for advanced SCA attacks exist. Most of
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them still require a considerable amount of time for trace collection and employ
custom (to the cryptosystem at hand) control mechanisms. There are open source
SCA trace collection setups widely used by the research community [451] but have
either very primitive support or are built on low-cost equipment that cannot endure
very sophisticated attacks without having software developed by an attacker [427].
Also, adjustments for different cryptographic devices under test are always needed,
sometimes to a great extent. There exist a few commercial companies in this
research field (Riscure [501], CRI[495]) that offer their own proprietary equipment
to the prospective crypto-analysts at a prohibitively high cost, affordable only by
high budget labs.

In this chapter we review the latest commercial, open source and experimental
trace acquisition tools and focus on their benefits and drawbacks. We also highlight
the need for a cheap, fast and automated process for sending and receiving data
between a Device under Test (DUT) and a controller. We comment on the impor-
tance of efficient control loops of DUT in order to speed-up the trace acquisition
process. Finally, we propose and describe a three step approach for controlling,
functionally validating and SCA assessing a DUT that goes beyond the traditional
control model that other solutions follow. Finally, we describe the use of our solution
using an open source hardware/software trace acquisition platform that we have
developed in our lab (FlexLeco project [427]) that consolidates the latest trends in
trace collection tools and platforms.

The rest of the chapter is organized as follows. In Sect. 9.2, the major SCA
categories and leakage assessment methodologies are described and evaluated
according to the number of traces needed. In Sect. 9.3 we overview existing open
source and commercial trace collection platforms and toolsets, and the proposed
trace collection approach is described. In Sect. 9.4, we describe the use of the
proposed approach on the FlexLeco project architecture, and discuss the benefits
of the solution. In Sect. 9.4 conclusions are provided.

9.2 Side Channel Attacks, Leakage Assessment Methods
and Problems

A typical side-channel attack (SCA) measurement and analysis setup consists of
several components, including measuring equipment (e.g., a digital signal oscillo-
scope), a DUT controller component that handles attacker-to-DUT communication
as well as a Personal Computer (PC). The PC is used by an attacker/evaluator for
providing input to the controller and for analyzing, with the help of programming
tools, the collected leakage trace measurements by applying signal processing
techniques on them [390]. Possible additions to this classic SCA measurement
collection and analysis setup could be some kind of pre-amplifier to boost the signals
acquired by the measuring equipment (e.g., an oscilloscope), a differential cable
to help reduce acquired measurements noise, electromagnetic probes for acquiring
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electromagnetic emanation signals, and some kind of tool that will speed up leakage
trace capturing.

There are a large variety of DUTs that can be assessed for their SCA resistance
using the above setup. Under the ubiquitous computing framework, small embedded
system devices (e.g., RFID tags, wireless sensor network nodes, smart card devices),
having lightweight versions of cryptographic algorithms, are the most prominent
candidates to have SCA vulnerabilities. Assessing the SCA resistance of such
devices can be achieved by evaluating the device when it is deployed and is fully
operational (in that case the DUT is the whole device) or can be achieved by
evaluating individually, in a controlled environment, a specific cryptography or
security implementation that is meant to be deployed on the ubiquitous device. In
the first case, SCA assessment is very hard to perform since, apart from security
functions, on the DUT there are many operations, unrelated to security, that are
being executed in parallel [219]. Such operations can be considered as hard-to-
remove noise inside the collected traces [219]. In the second case, the DUT is not the
full ubiquitous device but a specific security hardware or software implementation
deployed on this device. No other operations are executed in the second case control
environment, thus noise is minimized, enabling the evaluator to test many SCA
resistance scenarios in depth.

When trace collection is needed for SCA analysis or assessment, the
attacker/evaluator needs to pass the cryptography/security algorithm’s expected
input data each time from his control point (usually a personal computer) to the
control component, which is responsible for sending the data to the DUT for one
security/cryptography process to begin. After having set the right settings in the
oscilloscope (e.g., sampling rate, time window capture, resolution capture) the
attacker arms it. The attacker then sends a command to the DUT, for it to start
performing the evaluated security process. Before the start of the process the DUT
sends a triggering signal to the oscilloscope, warning it that the process is about
to start and a trace capture must be performed. As soon as the trigger signal
reaches the oscilloscope, it captures a leakage trace measurement (e.g., power
consumption or the electromagnetic emanation, depending on the used probes) of
the DUT. The attacker/evaluator then requests from the oscilloscope the captured
trace for analysis at his PC. When the captured trace reaches the PC, various signal
processing techniques are applied on it and it is used for side-channel analysis
of the DUT. The above procedure (called loop round) is repeated for each new
security/cryptography process we want the DUT to perform.

9.2.1 Side Channel Attack Categories

Adopting the formulation approach described in [60, 61, 220] we can model each
security/cryptography computation C as a series of n different Oi operations (for
i ∈ {0, 1, . . . n − 1}) that each require inputs Xi (thus Oi(Xi)). We can also assume
that each operation output can be considered as input to another operation during
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the C computation. Each operation Oi is linked to an information leakage variable
Li . A side channel attack is possible if there is some secret information s that is
shared between Oi and its leakage Li . The ultimate goal of a side channel analysis
is, by using some strategy, to deduce s from a series of information leakage Li

values [220]. To achieve that we collect leakage traces L which are sequences (in
time) L = {L0, L1, . . . Ln−1} and try to associate them with the computation C as
a sequence of operations C = {O0,O1, . . . On−1}.

SCAs follow either the vertical or horizontal leakage collection and analysis
strategy, as originally described in [60]. In the vertical approach, the implementation
is used N times using either the same or different inputs each time in order to
collect leakage traces. Each trace is associated with the j -th execution of the
computation. In the horizontal approach, leakage traces and related analysis is
collected/performed from a single execution of the computation and each trace
corresponds to a different time period within the time frame of this execution. As
expected, in horizontal attacks the implementation input is always the same.

By associating and distinguishing specific patterns of Oi operations (consisting
of a single or multiple operations) in a leakage trace L, an attacker can recover the
secret s. Such an attack approach is typically followed in simple SCAs (SSCAs) that
are mostly horizontal attacks meaning that they are mounted using a single leakage
trace that is processed in time. Vertical SSCAs that need more than one leakage
trace rely on comparative analysis for pattern matching between computations with
different inputs. Vertical SSCAs require a few hundred leakage traces to be collected
considering that averaging technique for noise reduction is applied between leakage
traces of the same computation.

There exist several countermeasures that can thwart SSCAs, thus, more advanced
attacks have been devised (i.e., Advanced SCAs (ASCAs)). ASCAs do not focus
only on single operations or series of operations (e.g., Oi) but also on the
computation operands (i.e., the operation inputs Xi) [61, 220]. ASCAs are focused
on a specific subset of the calculation C (e.g., some Oi operations that are strongly
associated with s) and examine how this subset behaves over a large collection of
(e.g., N ) leakage traces Lj associated with computations Cj with different inputs
(where j ∈ {1, . . . , N}). ASCAs on this subset of operations and associated leakage
traces, exploit the statistical dependency between the calculation C for all Xj and
the secret s. ASCAs follow the hypothesis test principle [60, 335] where a series of
hypothesis ś on s (usually on some bit j of s i.e., śj=0 or 1) are made and a series
of leakage prediction values are found based on each of these hypotheses using an
appropriate prediction model. The values of each hypothesis are evaluated against
all actual leakage traces using an appropriate distinguisher δ for all inputs Xi so as
to decide which hypothesis is correct.

Most ASCAs are of vertical nature and their success is highly related to the
number of processed leakage traces. The most widely used ASCA vertical attack is
Differential Attack (DSCA) originally proposed by Kocher in [336], which was later
expanded into the more sophisticated Correlation SCA (requiring fewer traces to
reveal the secret than DSCA) [21] and the collision correlation attack [99, 210, 425],
which can be mounted even if the attacker does not have full control of the



152 A. P. Fournaris et al.

implementation inputs. There are, however, also horizontal ASCAs that apply
differential or correlation statistics on a single leakage trace assuming that a subset
of operations associated with the secret s appear many times in this trace. Finally,
ASCAs can bypass strong SCA countermeasures (e.g., randomization/blinding) by
combining horizontal and vertical approaches [59, 210, 220].

Following the above categorization (Vertical vs. Horizontal, SSCA vs. ASCA),
we can include profiling SCAs like Template Attacks or Machine Learning
Attacks [367] among the vertical ASCAs. Profiling attacks operate in two phases:
Initially, they need to collect a series of leakage traces from a device under the full
control of the attacker (with known inputs and secrets) so as to create a leakage
model. In the second phase, the leakage model is used as a template or as the
training set of a machine learning algorithm in order to recover a secret from a
series of traces collected from a device (similar to the one used for profiling) not
under attacker control.

9.2.2 Leakage Assessment Using t-Test

In addition to SCA resistance assessment based on the success of various SCAs, a
generic methodology for finding information leakage from a DUT has been gaining
ground. The dominant, generic, leakage assessment methodologies are based on
Student’s t-distribution following specific and non-specific t-tests [67, 516]. The
goal is to detect any type of information leakage that occurs during the computation
of security/cryptography functions in the DUT, at a certain n-th SCA order.
[An SCA attack of order n appears when there exists an n set of intermediate
variables that appear during the computation of the algorithm, such that knowing
a few key bits (in practice fewer than 32 bits) allows us to decide whether two
inputs (respectively two outputs) give the same value for a known function of
these n variables.] Any sensitive computational intermediate operation Oi series
that appears on the side channel as significantly different from random noise
can potentially be detected using the above leakage assessment approach without
conducting any specific SCA. This significant difference is enough to mark a DUT
implementation as leaky and SCA insecure.

Test Vector Leakage Assessment (TVLA) is one of the most promising, generic,
non-specific leakage detection techniques, initially proposed by Cryptography
Research (CRI) [67]. The method is practically used as the first action towards
assessing a system’s SCA leakage. It consists of a univariate test that is performed
on a series of traces obtained from a DUT. The DUT implementation is evaluated
as non-leaky if the test throughout the duration of the DUT trace remains below
a certain threshold, independently of the leakage model that might be used. More
precisely, we test the case where there is no leakage (null hypothesis) versus the
case where there is some leakage at a certain intermediate point L(t) at time t .
Let ntr be the number of traces that the evaluator collects and ns the number of
samples in each trace. Following the notation of [597], and assuming that we have
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N traces of ns samples each, let L = {L1, . . . , Lns } be the leakage traces of a
security/cryptography implementation, having mean values L̄i . For the traces null
hypothesis to be true the expected leakage value L̄exp should be the same as the
measured value, if there is no leakage, i.e., L̄exp = L̄i ∀i ∈ {1, . . . , ns}. In
practice, to perform the TVLA we conduct two experiments. In both experiments,
we collect N/2 traces where the variable to be leakage assessed has a known, fixed,
value and N/2 traces where this variable has a random value. This trace collection
is done in an interleaved way by randomly choosing to acquire either a fixed trace
or a random trace each time. After collecting the necessary traces, we perform a
Welch’s t-test as described in [516] and check the outcome against a threshold.

TVLA and all similar leakage assessment tests can provide an initial indication
regarding SCA leakage but require huge amounts of collected traces in order to
provide an accurate assessment result. In the case of symmetric key cryptography
algorithms (e.g., in AES implementations) this number is in the order of millions
(in [516]N =100M traces for an AES evaluation). This number is reduced in Public
Key algorithms (in the order of thousands of traces) yet still is hard to collect since
each public key algorithm implementation trace consists of a very large number of
samples ns . From a trace collection perspective, TVLA is a very slow assessment
method due to this high N number, and can become very frustrating for an SCA
evaluator.

9.2.3 Practical Considerations in SCA Trace Collection

When, in practice, the above described SCA attacks are applied to actual, raw
collected traces using real hardware or software implementations, their success rate
is very low. This happens since in a trace, leakage information is mingled with a
considerable amount of SCA-useless signals that we can consider here as “noise”.
Noise, as very accurately described in [411], can be external, intrinsic, quantization
or algorithmic. External noise that is picked up from external to the DUT sources
as well as intrinsic noise, due to the DUT’s physical characteristics (capacitance,
conduction, transistor, non-linear behavior, etc.), are not under the control of the
attacker and the DUT SCA resistance designer, and must be removed or reduced
by some appropriate trace preprocessing technique. On the other hand, quantization
noise can be considerably reduced by using better trace collection equipment (with
small A/D quantization for example). Algorithmic noise is usually designer infused
on a DUT in an effort to increase randomness in data processing but also infused by
computation functionalities unrelated to security, such as interrupts, pipelining, OS
system calls, etc., these can very often appear in ubiquitous devices.

In order to practically make a successful SCA, noise cancellation techniques
must be applied during or after trace collection in order to have clear and useful
leakage traces. Traditional noise reduction techniques can be applied on traces
after collection based on low-, band- or high-pass filtering after finding dominant
frequencies using, for example, Fast Fourier Transform analysis or based on trace
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resampling where sample windows are specified and they are replaced by their
average value [501]. However, many researchers apply the averaging technique to
increase the signal-to-noise ratio and mount a successful attack. Using averaging,
we collect T leakage traces with the same inputs and secret, then average them
sample-per-sample to come up with a single, averaged leakage trace that contains a
lot less noise than each individual trace itself. The technique is very popular (almost
mandatory) in embedded system SCAs to remove noise, but it increases the needed
number of collected traces by a factor of T since we need T trace collections for
each SCA useful, averaged, leakage trace.

Another practical factor to be considered during trace collection, which also
has an impact on the number of collected traces, is trace misalignment. This phe-
nomenon happens when, after triggering a security/cryptography computation, the
various Oi operations do not always appear at the same point in time in all leakage
traces of this computation, even if the same inputs and secret are used. Misalignment
can appear frequently in software based security computations (a common case
in ubiquitous devices) since such computations run in parallel to other security-
unrelated processes, or random events may happen that influence the computa-
tion execution sequence. Misalignment can also appear in hardware-implemented
security computations when related SCA countermeasures are introduced in the
computation flow. To solve the problem, SCA theory states that traces should
be realigned using postcollection trace processing techniques [390]. However, in
practice, for several cases of ubiquitous devices, traces are so misaligned that they
become SCA useless and cannot be effectively realigned. Thus, there is a percentage
of collected traces that due to misalignment should be discarded. This makes it
imperative to collect more traces than those needed, having in mind that some of
them will be useless due to misalignment. A rule of thumb in such cases is to
collect 20% more traces than needed. This percentage can increase to 50% in highly
misaligned traces (usually on ubiquitous software implementations).

9.3 Side Channel Attack Trace Collection Platforms

There exist several Security Test Labs and individual researchers who have proposed
and manufactured their own ad hoc hardware boards [399, 532, 565] for trace collec-
tion. In the years following the discovery of SCAs, several Side-Channel Analysis
measurement boards and evaluation setups emerged in the security community. The
purpose of such boards is to provide a common platform for the aspiring attackers
to mount their attacks and help them get low noise measurements in an easy way.
Typically, they accommodate a general purpose device (a microprocessor, an ASIC,
or an FPGA) serving as the DUT, connected with a controlling device (control
component) on the same board (mainly some sort of microcontroller). There were
also boards that accommodated signal-enhancing mechanisms on the same board to
ease the oscilloscope’s work [117]. Gradually the quality of the boards improved
to such a degree that several of them found their way to the market for commercial
use, with significant success.
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There is limited variety of commercial SCA boards, each with its pros and cons.
The Cryptographic Engineering Research Group (CERG) presented the FOBOS
board [565, 566], which consists of two FPGA’s, one for handling control tasks
and one for the implementation of the cryptographic algorithm. The FOBOS
board contains a Digital Clock Manager that produces frequencies in the range
of 31.25 kHz up to 50MHz for the Victim Board. The communication with the
Control FPGA is performed through a software control loop that is responsible
for transmitting the appropriate commands and the necessary data to the victim
FPGA. The software loop is also responsible for the communication with the
oscilloscope (currently supporting only Agilent oscilloscopes). Unfortunately, the
FOBOS approach relies on old FPGA boards, is not capable of automated multiple
trace collection through the provided control loop, is only applicable to a specific
type of oscilloscope, and involves the PC in each trace collection (part of the control
loop) which considerably burdens the collection speed.

The Tamper-resistance Standardization Research Committee (TSRC) released
two trace collection hardware boards [399]. The first is INSTAC-8 which uses an
8-bit microcontroller and the second is INSTAC-32 with a 32-bit microcontroller
as the control component and an FPGA chip as the DUT. Unfortunately, very
limited information is provided on the clock frequencies and the communication
methods that those two boards employed. Similarly to FOBOS, they also featured
some custom-made software loops for the communication between the users and
the victim chips. An evolution of the above approaches is the Sakura-Sasebo
Project [354], which provides several choices regarding measurement boards.
Initially, low-end-based chip boards were implemented, leading to the Sasebo-G,
Sasebo-GII and Sasebo-W solutions, which for several years constituted the most
widely used platforms for trace collection. Later, more sophisticated versions of
those boards were launched, the Sakura-G, Sakura-X and Sakura-W. Both Sakura-
G and Sakura-X contain two FPGAs each (a Control FPGA acting as the control
component and a cryptography FPGA acting as the DUT), making them perfect
for evaluation of hardware-implemented cryptographic algorithms, while Sakura-W
was suitable for evaluation of smartcard security. Unfortunately, the boards are still
supported by a primitive interface on the Control FPGA that enables the interfacing
of a particular cryptographic algorithm with limited key-length. Also, the provided
software loop in charge of data and command transmission to the Cryptographic
FPGA is slow, oriented towards a specific algorithm with fixed key-length, and
offers through a PC program very basic functionality only for a single trace capture
per loop round.

An attempt to remedy this issue was made in the IAMeter project, which is
focused exclusively on developing an efficient control loop for commercial and
custom FPGA board platforms (including the Sasebo-G and GII boards) [307].
However, even this attempt can provide only a single trace collection per loop round,
it is not capable of adjusting/controlling the DUT clock, and it relies heavily on
PC-based configurations (including Python scripts along with MySQL databases
queries) which slow the trace collection as a whole.
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Recently, in an effort to provide a cheap SCA setup, the ChipWhisperer
project [450] managed to provide a diverse tool-chain for embedded hardware
security research. The ChipWhisperer featuring a CW1173-Lite board is suitable
for capturing traces and attacking software cryptographic algorithms implemented
in its Atmel XMEGAmicrocontroller, and it was recently upgraded to the CW1200-
Pro version that offers additional ease-of-use on the process. ChipWhisperer though
also provides the CW305-Artix FPGA board that specifically targets attacks on
hardware cryptographic algorithms implemented in its ARTIX 7 FPGA as well as
the OpenADC dongle that enables trace capturing directly from hardware devices
(without the need for an oscilloscope). Both CW1173 and CW305 allow the
modification of Victim’s Chip frequency (e.g., the frequency range for the CW305-
Artix board starts from 5MHz and goes up to 160MHz due to the onboard PLL
(Phase Locked Loop)). The communication between the user and the Victim Chip
in both boards relies on a software control loop called Chipwhipserer-Capture. This
is a PC-based loop responsible for sending the appropriate data and commands to
the Victim board. In the case of the CW305-Artix FPGA board the PC software
loop is assisted by an onboard AVR microprocessor (partially acting as a control
component).

Complete measurement and evaluation setups are provided by experienced
security test laboratories with longtime presence in the hardware security com-
munity. BrightSight delivers the Sideways acquisition center. CRI-Rambus offers
the DPA Workstation [495] which is a complete platform that enables the testing
and analyzing of cryptographic chips and systems vulnerabilities, to power and
electromagnetic (EM) side-channel attacks. Finally, Riscure launched the Inspec-
tor [501] which is an integrated test tool for side channel analysis and fault
injection attacks on security devices. The above commercial setups offer SCA
resistance evaluation/assessment on individual security/cryptography hardware and
software implementations as well as on fully working DUT ubiquitous devices (e.g.,
embedded systems).

The gap between the measurement boards and the complete evaluation setups is
huge when it comes to cost. Trace collection and SCA evaluation setups providing
a complete package that includes measurement collection, side-channel attacks
and DUT security analysis, have a considerable cost. On the other side, the cost
of the measurement boards is much more affordable, nonetheless exploiting their
capabilities to the full extent is not always supported by their manufacturers in terms
of software or hardware tools.

9.3.1 Proposing a Fast Trace Collection Approach Beyond
the Traditional Model

As the need for a huge number of traces for SCA evaluation and leakage assessment
becomes considerable (in the presence of DUT with SCA countermeasures) the
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traditional SCA trace collection control loop model is not fast enough for efficient,
practical, trace acquisition. The main bottleneck in such control loops is the
presence of a PC device for providing inputs, collecting outputs and controlling each
execution of the DUT security/cryptography implementation [427]. The solutions
presented in the previous subsection, although they do not manage to eliminate
the need for a PC inside the control loop, clearly indicate a tendency to migrate
traditional PC-related functionality to other hardware or software entities that are
closely associated with the DUT. In some solutions, the control loop operations
are implemented in hardware and are downloaded on a dedicated control FPGA
that is physically connected to the DUT. This is done in the Sasebo/Sakura project
and in some ChipWhisperer (NewAE) technologies, just to name some examples.
Hardware, however, is not flexible and thus cannot be easily adapted to different
algorithms or assessment techniques. Similarly, control loop functionality is par-
tially migrated on dedicated control loop ASIC microcontrollers or microprocessors
that operate alongside a PC in order to implement the DUT control in software. Such
solutions lack speed when transmitting DUT test vectors to the DUT itself since PC
usage is still needed.

Therefore, it has become apparent that a different, updated approach to realize
DUT control loops for SCA evaluation and leakage assessment is needed. In
this work, considering the previous paragraph’s described hardware and software
control loop limitations, we propose an approach that relies on a hardware/software
co-design solution for controlling the trace acquisition process. Extending and
generalizing the work in [427], we propose a three-step SCA trace collection
process. For this process to be possible, the control loop is not executed on a PC
but exclusively on a microcontroller that is directly connected to the DUT. The
microcontroller can be an ASIC (hard-core) or FPGA based (softcore) depending
on the SCA trace collection board at hand. Using software that is executable on the
microcontroller we gain the flexibility of a software control loop solution. Using
the microprocessor that is directly connected (through a bus interface) to the DUT
we gain very high control loop speed, which is not achievable using PC-based
control loops. More information on such an architecture can be found in the use
case example presented below.

In the first step of the proposed control trace collection process, denoted as the
design phase, the evaluator can describe in a programming or scripting language
(e.g., C, Python, JavaScript), using some developed Application Program Interface
(API), the SCA trace acquisition experiment that needs to be performed. The
experiment includes inputs that need to be provided to the DUT, specification
of the security/cryptography operations that need to be executed, the execution
sequence, the delay between experiment executions (in case the experiment needs
to be executed more than once) and DUT output storage. The goal of the design
phase is to fully specify the inputs, parameters and execution sequences of the
experiment. The outcome of this phase is an executable file that can be transmitted
to the microcontroller bootloader for execution.

The second step of the proposed control trace collection process, denoted as
the execution phase, is focused on the execution of the designed experiment. This
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phase does not include any non-trivial transmission delays between the control loop
entity (i.e., the microcontroller) and the DUT, since the bus connecting them is
extremely fast, in contrast to the PC-based control loop where such transmission
is done serially. During execution, the microcontroller control loop is responsible
for transmitting the appropriate signals to the DUT so as to execute one or multiple
times a security/cryptography operation as well as to generate appropriate trigger
signals for trace collection by a DSO.

In the final step of the proposed control trace collection process, denoted as the
trace processing phase, the execution of the experiment has been concluded and the
experiment traces have been collected by the DSO. In this phase, post-collection
operations are performed on the collected traces, like averaging and alignment but
also operations related to the specificities of a particular experiment. This phase is
performed on the DSO or on a PC with an appropriate digital signal processing
toolbox, and it can be slow (depending on the post-collection operations that are
executed). However, the performance delay is considerably smaller than when a PC
is included in the control loop during an experiment.

9.4 A Use Case of a Flexible and Fast Platform for DUT SCA
Evaluation

To showcase the applicability and effectiveness of the above-proposed three-step
trace collection architecture and mechanism in action, we focus on the Flexible
Leakage Collection (FlexLeco) project, which was recently published in [427]. the
FlexLeco project was designed to match the latest trace collection challenges and
to introduce a unified mechanism for applying various trace collection scenarios. It
provides an architecture that tries to blend the reconfigurability of Software Control
loops with the speed of Hardware Control loops. Taking advantage of the latest
trace collection boards that utilize schemes with two FPGAs (one acting as the
Control Unit and the other as the Device Under Test), the project created two generic
hardware interfaces that enable fast communication between the two FPGAs, and
managed to include an embedded softcore processor inside the Control FPGA,
which is in charge of the Control Loop during the execution of trace collection
scenarios. The project is currently instantiated on the boards of the Sakura/Sasebo
project (Sakura-X and Sakura-G), but it can be modified to fit any board that adopts
the approach of two distinct, hardware-isolated FPGA chips.

The FlexLeco architecture of Fig. 9.1, consists of two generic interfaces and an
embedded softcore processor. Inside the Cryptographic FPGA a generic crypto-
graphic interface is implemented for the communication of the Control Unit with the
DUT. This interface contains two variable memory spaces (called “Hyperegisters”)
that handle the inputs and outputs of the DUT.

Inside the control FPGA exists a generic control interface that is directly
connected with the embedded microprocessor (a Xilinx Microblaze for the Spartan-
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Fig. 9.1 General architecture

6 Control FPGA of the Sakura-X board), residing in the same FPGA. With
this approach, the softcore microprocessor undertakes the duty of control and
communication with the Cryptographic FPGA, through a hardware Finite State
Machine implemented inside the control interface, which utilizes a custom hardware
protocol between the two FPGAs. Data inputs to the DUT can be provided by the
softcore processor, as well as from a hardware Pseudo Random Generator (PRNG)
module (to support TVLA leakage assessment scenarios). The communication
between the two FPGAs is performed using a 16-bit address bus, a 16-bit data bus
for sending data to the crypto side and a 16-bit data bus for receiving data from the
Cryptographic FPGA side.

The use of an embedded system design inside the control FPGA provides support
for the proposed three-step trace collection approach thus allowing the execution
of a software API on the microprocessor for the realization of the trace collection
control loop. This API consists of reusable code functions that fit multiple trace
collection scenarios and DUTs. Through these functions the control FPGA remains
unchanged (no need for redesign or reprogram), regardless of the DUT inside the
cryptographic FPGA, as it can be quickly reconfigured only by passing certain
values to software registers inside the control interface. By setting code values to
these registers, the control interface’s Finite State Machine is ready to serve any
updated cryptographic component inside the cryptographic FPGA. In this way, the
control component can be permanently be downloaded inside the control FPGA’s
flash memory, thus negating the inflexibility issues that other hardware control loops
present in their adaptability to different DUTs and scenarios.

The above-mentioned software API provides functions that, beside the ini-
tialization of the control loop, set up the leakage trace collection parameters
(inputs/outputs number, bit-length, randomness), trigger encryption/decryption,
send or receive plaintext/ciphertext values to FIFOs, and register and randomize
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input values.1 By doing so, the attacker/evaluator can use the API functions to
create any SCA or leakage assessment scenario to be executed inside the softcore
microprocessor, omitting the slow, PC-based software control loops. In that sense,
the FlexLeco solution fully supports and favors the design phase of the proposed
trace collection approach of this chapter and provides to an SCA evaluator all the
tools required to design diverse and complex SCA evaluation experiments.

The cryptographic interface on the cryptography FPGA side is primarily
designed for testing specific security/cryptography hardware implementations.
It is an open source HDL (Hardware Design Language) design that can be adapted
to the DUT’s cryptographic algorithm specifications during design time. By simply
assigning appropriate values for five HDL generic parameters, the number of inputs,
outputs and their bit length is adjusted to that of the DUT’s algorithm. The generic
interface is synthesized and downloaded whenever a new hardware implemented
cryptography algorithm is tested.

Inside the cryptographic interface, a Digital Clock Manager has been included
that provides different clock frequencies to the DUT and the interface. The
frequency of the interface is the same as that of the other one inside the control
FPGA, while the frequency of the DUT can be clocked as high as the component’s
critical path and the FPGA chip’s functional specifications allow (or as low as the
attacker/evaluator desires). By raising the frequency of the DUT, the evaluator is
now able to use DSOs with low memory size buffers, thus fitting more traces on
the time interval the DSO offers (as long as the DSO’s sampling frequency allows
it). The DCM’s output frequencies update is a straightforward process done by
changing a single parameter during the cryptographic FPGA’s synthesis phase.

Presenting such flexibility and scalability, the FlexLeCo mechanism allows the
evaluator to perform various trace collection scenarios like a Single-Encryption, a
Single-Encryption with Rapid Block Mode (if an oscilloscope with such a feature
is available) and a Multi-encryption mode [427], for different DUTs and with
minimum overhead between the mode updates.

During any trace-collection scenario (Fig. 9.1), at design phase, the softcore
microprocessor is set up so as to initiate communication transactions with the
cryptographic FPGA, in which it either reads and sends the contents of the
corresponding test vector records (i.e., plaintexts) or signals a random value
generation (using an API function or the hardware PRNG) and transmits it to the
DUT. We can design an experiment where this procedure continues until all of the
test vectors on the microprocessor’s memory have been sent to the cryptographic
device (DUT) or until the needed number of random inputs is reached. After the
design phase, the actual experiment is executed in the softcore microprocessor and
post-collection operations may be performed. As an example of such postcollection
operations, we showcase the Multi-encryption scenario, detailed in [427], which
is enabled in the FlexLeco project in case an RBM (Rapid Block Mode) Digital

1Both software- and hardware-based randomization is supported through the PRNG module.
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Fig. 9.2 Multi-encryption trace with 1000 AES encryptions
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Fig. 9.3 Post-collection extraction outcome as a single AES leakage trace

Signal Oscilloscope is not available to the evaluator. During this scenario, the DSO
starts capturing a continuous waveform (Fig. 9.2) of leakage traces starting from the
first de/encryption and continuing for all de/encryptions until the end of the DSO’s
chosen time window. By setting up the appropriate time window, after execution
phase, we capture a single continuous waveform that should contain the leakage
traces of all the cryptographic processes we have instructed the DUT to execute.
The split of this continuous multi-encryption waveform into individual single
de/encryption traces is done during the trace processing phase. The outcome single
encryption trace from this post-collection operation can be seen in Fig. 9.3. The
whole process is considerably faster than if we tried to capture each de/encryption
trace autonomously during the execution phase [427].

To qualitatively compare the proposed three-step trace collection approach of
Sect. 9.3.1 as was realized using the FlexLeco project, we present Table 9.1 where
our approach is compared with recent open source trace collection projects in terms
of flexibility, usability and various post-collection feature supports. The presented
results are collected from actual experimentation of the authors with the compared
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Table 9.1 Leakage trace collection architectures qualitative features comparisons

Collection setup Flexibility Single encr. Multi-encr. Averaging Ease-of use Clock control

FlexLeco three
step approach

High Yes Yes Yes High 5–230MHz

Sakura/Sasebo
[353]

No Yes No No None No

ChipWhisperer
[451]

Moderateb Yes Partialc Yes Moderate b 5–160MHz

FOBOS [565] No Yes No No Minimuma Max.
50MHz

a Hardware interfaces are unique for each cryptography DUT
bHard to implement software control loop and tedious, time-consuming interfacing of different
cryptographic DUTs
cMulti-encryption only with constant or random plaintexts

projects or from personal communication with the projects’ developers. The table
indicates that the three-step approach is flexible enough to rival existing and well-
established solutions offered to the SCA community by Sakura and ChipWhisperer.

9.5 Conclusions

In this book chapter we focused on an important aspect of SCA analysis, evaluation
and leakage assessment, which is the efficient and easy collection of needed SCA
traces. We presented the traditional mechanism for collecting traces from DUT
ubiquitous devices and commented on the drawbacks of this approach. After briefly
describing dominant SCA attack categories and leakage assessment methodologies
in view of their needed number of traces, considering also the high level of trace
noise and possible misalignments that are ever present in ubiquitous devices, we
concluded that the traditional model is not practically useful for ubiquitous systems
SCA evaluation. To further explore the recent SCA trace collection and analysis
landscape, we described the most prominent open source and commercial toolsets,
both research and commercial. Most have shortcomings in terms of controlling
in a flexible and easy manner the DUT to be SCA evaluated, thus giving us the
motivation to propose a three-step trace collection methodology using a design, an
execution, and a trace processing phase. To validate the applicability, efficiency, and
ease-of-use of this proposed approach, we applied it to the FlexLeco project open
source solution, which is highly compatible with our proposal. Using this use case
we managed to easily design experiments and collect results even when we applied
complex design scenarios, like the multi-encryption mode where multiple inputs
are provided on the DUT, multiple traces are collected as one, and the actual single
traces (that are usable for SCA evaluation or leakage assessment) are extracted after
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postprocessing. To conclude, the evaluation of our proposal and the exploration of
the recent toolset landscape indicate that there is a need for a different model for
trace collection. In this model, the trace collection DUT control functionality is
migrated close to the DUT (on a device physically connected to the DUT) and not
on a remote control entity (like a PC).
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