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Abstract Three important aspects of ground-motion modelling for regional or port-
folio risk analyses are discussed. The first issue is the treatment of discretisation of
continuous ground-motion fields for generating spatially correlated discrete fields.
Shortcomings of the present approach in which correlation models based upon point
estimates of ground motions are used to represent correlations within and between
spatial regions are highlighted. It is shown that risk results will be dependent upon
the chosen spatial resolution if the effects of discretisation are not adequately treated.
Two aspects of non-ergodic groundmotion modelling are then discussed. Correlation
models generally used within risk modelling are traditionally based upon very simple
partitioning of ground-motion residuals. As regional risk analyses move to non-
ergodic applications where systematic site effects are considered, these correlation
models (both inter-period and spatial models) need to be revised. The nature of these
revisions are shown herein. Finally, evidence for significantly reduced between-event
variability within earthquake sequences is presented. The ability to progressively
constrain location and sequence-dependent systematic offsets from ergodic models
as earthquake sequences develop can have significant implications for aftershock
risk assessments.

8.1 Introduction

Seismic risk analyses have traditionally been built upon existing tools developed
for the purposes of evaluating seismic hazard. These seismic hazard analyses are
always conducted for a single spatial location and have traditionally made use of
the ergodic assumption (Anderson and Brune 1999), with exceptions being limited
to high-level applications for critical facilities such as nuclear power plants, e.g.,
Rodriguez-Marek et al. (2014).
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For regional, or large-portfolio, risk analyses, ground-motion demands need to be
prescribed at multiple spatial locations simultaneously, and these spatial locations
often represent broader spatial regions around those locations within the analysis
framework. Issues associated with the discretisation of ground-motion fields and
exposure distributions are often over-looked. In particular, ground motion fields are
developed using statistical properties between individual points, rather than between
spatial regions (Stafford 2012).

The ergodic assumption, in the context of ground-motion modelling, is the
assumption that the statistical properties of ground-motions at one particular loca-
tion can be represented by pooling data from many different spatial locations with
nominally similar characteristics. This assumption is necessary because individual
sites have insufficient numbers of ground-motion recordings to permit robust site-
specific ground-motion models to be developed. As the data comes from nomi-
nally similar spatial locations, the actual differences from site-to-site and region-to-
region that remain within the data has impacts upon both the median predictions of
ground-motion models and the associated variability derived from the data.

The application of the ergodic assumption therefore enables large databases of
empirical observations to be compiled, and for robust ground-motion models to then
be derived. However, the associated cost is that the derived ergodic ground-motion
model is calibrated to this ergodic database rather than to the target site, and to the
most relevant rupture scenarios that drive the hazard and risk at this site. Recent
efforts (Kuehn et al. 2016; Landwehr et al. 2016; Stafford 2014; Stafford 2019) have
looked to develop ground-motion models that make use of ergodic databases, but
still allow for site- or region-specific features to be accounted for within partially
non-ergodic frameworks. An aspect of non-ergodic ground-motion modelling that
has received limited attention thus far is the impact that relaxing the assumption has
upon correlation models that are required within risk analyses.

The present chapter focusses upon aspects of these two issues: impacts of spatial
discretisation upon correlation models; and, non-ergodic ground-motion modelling
issues, with a particular focus upon spatial correlation and aftershock sequences. The
following section, Sect. 8.2, discusses the impacts of discretisation upon correlations
that are required within risk analyses. Thereafter, Sect. 8.3 discusses the impacts of
non-ergodic ground-motion models upon spatial correlations. Section 8.4 then looks
at how non-ergodic concepts can be used to refine aftershock risk analyses, before
the chapter closes with some high-level conclusions.

8.2 Correlations Among Intensity Measures

Models that have been published to represent correlations among intensity measures
fall into two broad classes: those that represent correlations between two different
intensity measures at a single spatial location, e.g., Baker and Bradley (2017); Baker
and Jayaram (2008), and those that represent the spatial location of two intensity
measures (potentially the same intensity measure) at two different spatial locations,
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e.g., Foulser Piggott and Stafford (2012); Jayaram and Baker (2009). These models
are all derived on the basis of point observations of intensity measure fields because
recording instruments at themselves located at particular points in space.

However, within portfolio risk analyses it is not usually feasible to perform calcu-
lations for each structure within the portfolio. Rather, buildings are grouped into a set
of structural classes that have different representative structural characteristics, and
intensity measures are computed at distinct locations that actually represent discrete
spatial regions. Ideally, the results of a risk analysis that one obtained from consid-
ering every building within the portfolio should be the same (or, on average, very
similar) to that obtained from working with discrete building classes and spatially-
discretised fields of intensity measures. The only way that this ideal scenario can be
achieved is if a great deal of care is taken to ensure the appropriate mapping between
correlations and covariances between points and those over spatial regions. Previous
attempts to look at the influence of spatial discretisation upon risk results (Bal et al.
2010) have not appropriately dealt with the relation between point-to-point spatial
correlations and region-to-region correlations.

The types of correlations that may need to be considered within a regional risk
analysis are shown schematically in Fig. 8.1. In this figure, ground-motions are
computed at the white nodal locations within each grey cell. These cells can contain
multiple structures. The leftmost panel shows a case where we have buildings from
the same class present within a single cell. Given that all of these buildings have
the same fragility curves, requiring the same intensity measure as an input, and
that this intensity measure is only predicted at a single location within the cell, the
demands upon all buildings within the cell are treated as being identical. Clearly,
that modelling representation is not consistent with reality, and the quality of the
assumption degrades as the spatial resolution reduces.

To enable our risk results to scale appropriately for different spatial correlations
we need to account for the spatial differences in building locations within a given cell.

‘Same’ ‘Same’ buildings, Different Different buildings,
. bml’dlngs‘,. different positions . bwl‘dlngs_,. different positions
same’ position 'same’ position

p (T2} ATy @1 })=1 p (T @i} {Th@2}) < 1 p({Ti, 21} {To @1 }) < 1 p{Tn e} {Towa}) <1

» »

No correlation Only spatial Only inter-IM Spatial and inter-
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Fig. 8.1 Correlation cases to consider in portfolio risk analyses. Common assumptions about the
correlations made in each case are annotated above and below each panel



172 P. J. Stafford

This is true for all cases shown in Fig. 8.1 and influences the effective correlations
that we use for buildings of the same class, and of different classes. When also
considering spatial correlations across different cells we also need to account for the
different site-to-site distances that can arise across those two cells.

To explain these issues more formally, the next section introduces how correlations
between two points are traditionally handled, and then explains what the impact of
spatial discretisation is for these models.

8.2.1 Point-Wise Correlations

Figure 8.1 showed that we need to have general correlation models that describe
correlations between two buildings, characterised by response periods 7; and T;!,
and located at sites x,, and x,, respectively. That is, we need to define the correlation
between the intensity measures In Sa({T';, X, }) and In Sa({7}, X, }).

Although more elaborate approaches are also available (Loth and Baker 2013), the
conventional way to represent this correlation is to combine inter-period correlation
models (Baker and Bradley 2017; Baker and Jayaram 2008) with spatial correlation
models at a given period (Jayaram and Baker 2009). This Markovian approximation
(Goda and Hong 2008) is represented in Eq. 8.1

p([Tx ) T3, )) ~ o1 T)) x plsy. x| max(1. ) 8.1

This approach is conventionally adopted within portfolio risk analyses. Buildings
are assigned to discrete building classes, and each class has a fragility curve devel-
oped for it that utilises at least one intensity measure as an input. The risk analysis
framework uses Monte Carlo simulation to generate spatially-correlated ground-
motion fields at individual co-ordinates, and the motions at these coordinates are
input to fragility curves to establish the demands for all buildings in each class.

8.2.2 Effects of Spatial Discretization

Consider again the leftmost panel of Fig. 8.1 in which we have multiple buildings
of the same class located within a single cell. In reality, each building occupies
a different spatial position and will receive its own value of spectral acceleration.
These acceleration values will be correlated spatially over the cell because there
will be commonalities associated with source amplitudes, wave propagation paths,
and site conditions. The particular amplitude experienced by each building depends

"Here, we are assuming that ground-motions are described by spectral accelerations. Note that T;
and T can be equal, to either represent buildings from the same class, or different classes with the
same characteristic response period.
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upon the particular realisation of the random field as well as its actual location within
the cell. As spatial correlation models show decreasing correlation with increasing
separation distance (Jayaram and Baker 2009), the further a building is located from
the point within the cell where the ground-motion field is defined, the weaker the
correlation. When looking at the variability in intensity measure amplitudes over the
field, current approaches account for the point-to-point correlations between the grid
points in each cell, but do not also account for the additional variability that arises
over a cell. This additional variability can be computed using Eq. 8.2, which makes
use of an effective correlation, p.g, for the cell.

Agp(x) ~ ¢(x),/1 — ngf (8.2)

In Eq. 8.2, ¢ (x) is the within-event standard deviation of motions at the grid point
for the cell.

To compute the effective correlation, consider the generic geometry shown in
Fig. 8.2. The cell has an area of AxAy and the grid point is indicated by the black
dot. In this schematic we use a rectangular cell and locate the grid point in the
geometric centroid, but there is no requirement to do this generally.

The effective correlation is then computed as the expected value of the correlation
for all possible spatial combinations of locations over the cell, as shown in Eq. 8.3.

1
a1, 1) = S //// p(T xi ) To xoaDdridadyidys  (8.3)

Note that the default approach in traditional studies is to effectively assume perfect
correlation of p = 1 for the motions over the cell, while the expression in Eq. 8.3

Fig. 8.2 Geometry of spatial X
cells for computation of
within-cell correlation
adjustments

Y12
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will always be less than unity for any finite cell size. Importantly, for the exponential
spatial correlation models that are normally used, the larger the cell size, the smaller
the effective correlation.

An important corollary of Eq. 8.3 is that inter-period correlations, that are used
to represent correlations among building classes, need to be reduced from their
commonly adopted values. Note that when multiple response periods are used as
inputs for a fragility function for the same building class, no modification is required
as in this case the multiple periods represent multiple attributes of the building at a
single location. However, when single spectral ordinates represent different building
types, and the exact locations of these buildings are unknown within the cell, we
have to reflect the fact that there are many possible combinations of relative locations
within the cell that would be associated with different correlation values.

Figure 8.3 demonstrates how the inter-period correlation values of Baker and
Jayaram (2008) are modified to account for spatial cell size in a regular square
grid of dimension Ax = Ay. One can appreciate that significant reductions in the
correlations arise as the nominal cell size increases, i.e., as the spatial resolution
decreases.

The next case to consider is the situation where we are interested in the correlations
between potentially different intensity measures in different spatial cells. The relevant
geometry in this case is shown in Fig. 8.4.

Now the effective correlation is defined by Eq. 8.4, in which the cell sizes are
assumed equal for both cells with dimensions Dx x Dy and the relative positions are
defined by Ax and Ay. As before, the sizes of each cell can easily be different, the
key concept is that we integrate to ensure that all possible combinations of spatial
locations between cells are considered. The + = Ax, Ay specification on the integral
limits is simply shorthand to denote the relative shift in the x, and y, co-ordinates
relative to x; and y;.

1
peit(T1, 1) = ——= //// pUx1, y1}, (X0, 2}, Th, To)dxi1dx,dyidy, (8.4)
Dny +=AXA}‘

Figure 8.5 shows the impact of Eq. 8.4 when applied to a regular grid with relative
cell offsets equal to integer multiples of the cell dimensions, i.e., Ax = iD, fori € Z,
and similar in the y-direction. Again, the impact of the spatial discretisation increases
as the resolution decreases.

Note that the importance of considering these spatially discrete effects is that it
allows one to work at a lower spatial resolution whilst still reflecting the appropriate
levels of variability being input into fragility functions. In all of the cases considered
in this section, as the cell size tends to zero we recover the expressions for the
point-to-point cases (and continuous ground-motion fields).
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Fig. 8.3 Impact of spatial discretisation size upon the effective inter-period correlations of response
spectral ordinates. The upper panel shows conditioning upon a period of 0.1 s, while the lower panel
shows conditioning upon a period of 1.0 s
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Fig. 8.5 Effective between-cell correlations, accounting for spatial discretisation. 6 = 0 indicates
that the cells all have the same y co-ordinates and we consider relative positions in the x-direction
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8.3 Impact of the Ergodic Assumption upon Correlation
Models

As previously mentioned, an ergodic dataset will make use of data from many
different spatial locations and ground-motion models derived from this data therefore
contain a degree of site-to-site variability that will not exist at a given site location.
Correlation models that have been developed in the literature have, for the most part,
been computed using a simple partitioning of ground-motion variability into just
between-event, §p, and within-event, §y, components, as shown in Eq. 8.5.

Inim(x) = w(x; rup) + 8 + dw (%) (8.5)

Here, u(x; rup) is the mean logarithmic intensity measure at site x for rupture
scenario rup, and we indicate that 65 and §y (x) are independent, and dependent of
position, respectively.

Contrast this with amodel in which systematic site effects, §525(x), are also consid-
ered. Now, the event-and-site corrected within-event residuals are represented by
dw,, (X), as shown in Eq. 8.6.

Inim(x) = w(x; rup) + dp + 8s25(X) + dw,, (X) (8.6)

Between-event residuals are perfectly correlated (ignoring any parameterisation
of nonlinear site effects) for all observations from a given event, so we focus upon
the remaining within event correlations.

8.4 Correlations Between Spectral Ordinates at a Point

When deriving correlation models from ergodic datasets, the general expression for
the within-event inter-period correlation is given by:

p(T,.T}) = ps2s(T;, Tj)¢szs(ﬂ)¢52;((7£§q;£j35(ﬂa T)¢ss(T)dss(T;) 8.7)

where ¢g5(T) is the between site variability at period T, and ¢ss(7) is the single-
station variability at period 7. Almost all published correlation models are based
upon this framework, with only a couple of exceptions (Kotha et al. 2017; Stafford
2017).

As shown in Stafford (2017), the pg,s terms are relatively strong and represent
different resonance and impedance effects that arise from sites with the same Vg 39
values. Under a non-ergodic framework in which these systematic site effects are
accounted for, the overall correlation changes from p — pgg, and to weaker levels of
correlation. However, this then requires that the spatial variations of the systematic
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site terms are evaluated. Currently this is very rare, but at least one regional risk
model (Bommer et al. 2017) has attempted this and future applications are sure to
move in this direction.

Note that when systematic site effects are accounted for, all of the expressions
of the previous section related to spatial discretisation operate on these reduced
correlation values. Therefore, we have compounded effects of weaker correlations
and discretisation effects. At the same time we have systematic deviations from
ergodic median predictions that reflect the systematic site response. Ultimately, what
is happening is that we are transferring apparent aleatory variability out of the ergodic
ground-motion model and into epistemic uncertainty within a partially non-ergodic
model.

8.4.1 Spatial Correlations Between Spectral Ordinates

Turning now to the case where spatial correlations are considered, Eq. 8.8 shows the
general expression to define the correlation from correlated random variables 6 g25(X)
and S, (X) at two spatial locations.

_ ps2s (Xi, Xj)Psas (X ) Psas (X)) + pss(Xi, X;)dss (X)) dss (X))
dx)P(x))

p(X,', Xj) (88)

As with models for inter-period correlations at a point, spatial correlation models
like Jayaram and Baker (2009) work on within-event residuals according to Eq. 8.5.
These models generally use exponential correlation models to represent this spatial
variability. In the case of Jayaram and Baker (2009), the authors find that the correla-
tion length depends upon characteristics of the site conditions, namely, whether site
conditions are clustered or not. These correlation lengths are shown in Fig. 8.6.

From the framework of Eq. 8.8, it can be appreciated what effect they are really
observing. Let the separation distance between two sites be defined as A = llx; —
x;ll, and assume that exponential correlation models hold for both components of the
within-event residuals:

A A
ps2s(Xi, x;) = exp[—g} and pss(X;, X;) = exp[—;} (8.9)

The overall correlation can then be expressed as:

Psos (X)) sas (X)) CXP(— %) + ¢ss(x)pss(x;) exp(— %)
¢(Xi)¢(xj)

p(A) = (8.10)

Consider limiting cases in which we have full correlation of the systematic site
effects r¢ — 00 (psps — 1), and the case in which we have no correlation at all
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Fig. 8.6 Correlation lengths within the Jayaram Baker (2009) spatial correlation model

among the site effects r¢ — 0 (ps2s — 0). In the first case, for r¢ — oo we have:

D525 (Xi)Ps2s (X)) + Pss(Xi)pss(x;) CXP(—A>

rw

p(A;rg — 00) = (8.11)
¢(Xi)¢(xj)
In the second case, for r¢ — 0 we have:
bss(X)¢ss(x;) exp(—%)
p(Asrs —> 0) = (8.12)

P (x)9(x;)

The effects of these different conditions, as well as the case where r¢ = ry
(equivalent to not decomposing within-event residuals for systematic site effects)
are shown in Fig. 8.7. For r¢ — oo we see that even for very large separation
distances we will never tend to zero correlation because we will always have p ~
@ s25lP>. Conversely, for rs — 0 we have a nugget effect as when A — 0 we have
p ~ P2ss/p?. Some studies, such as Stafford et al. (2019), have observed evidence
for such nugget effects, but the authors at the time did not fully appreciate the origin
of these effects.

Asergodic datasets have different degrees of inherent clustering and hence implicit
rs values, the spatial correlations across site zones can vary significantly (Stafford
et al. 2019). When modelling systematic site effects, the above effects need to be
taken into account. This point applies both to the derivation of the models in the first
instance (taking into account the systematic site terms), as well as during application
where the differences in correlations among site zones should be accounted for.
Note that for risk analyses working with site zonation models, the spatial correlation
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Fig. 8.7 Impact of spatial correlation of systematic site response upon overall spatial correlations

between cells of the systematic site effects should be close to zero (if not actually
zero), if the two cells are not in the same zone.

8.5 Non-ergodic Risk Analyses for Seismic Sequences

The final contribution of the present chapter is to discuss issues of non-ergodic
ground-motion models relevant for aftershock risk assessments. Studies such as
Kuehn et al. (2016); Lee et al. (2020) have shown that systematic source effects
from different events can be spatially correlated. However, ergodic datasets rarely
have large numbers of events at close spatial locations and so the between-event
variability of published models is greater than what should be expected within a
single small spatial region. In addition to this, studies (e.g., Kanamori et al. 1993)
have discussed the effects that time has upon healing faults and changing frictional
characteristics. Therefore, during aftershock sequences, particularly when events are
re-rupturing portions of a previously ruptured surface, the frictional characteristics
of the rupture surfaces may have less variability than in an ergodic database.

A reasonable working hypothesis is therefore that between-event variability in a
small spatial region is lower than the published ergodic values, and that aftershock
sequences may have even lower between event variability again. This is important
because within a Bayesian updating framework (Stafford 2019) it is possible to
actively refine existing ground-motion models as new data becomes available. As
a result, aftershock risk analyses can adapt during the sequence to improve risk
assessments associated with a given sequence.
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Fig. 8.8 Shallow crustal earthquakes in New Zealand (left), and two key clusters (right) in the
Canterbury (red) and Marlborough (green) sequences

To investigate whether we see empirical evidence for this hypothesis, the New
Zealand strong ground-motion database is analysed here. On the left of Fig. 8.8, all
of the crustal events for which strong-motion records are available are shown. A
declustering algorithm (Gardner and Knopoff 1974) is then applied to this data and
the two largest clusters of events are extracted. These two clusters correspond the
Canterbury and Marlborough sequences and are shown on the right of Fig. 8.8.

A closer view of the spatio-temporal evolution of these earthquake sequences is
provided in Fig. 8.9.

For the total database of all crustal events, the NGA-West2 model of Chiou and
Youngs (2014) was used to define total residuals that were then partitioned via a mixed
effects regression analysis to obtain variance components. The betweenevent resid-
uals for the events in the Canterbury and Marlborough clusters were then extracted
and their distribution was compared to the overall between-event variability for the
entire database.

Figure 8.10 shows the temporal evolution of the event terms for the Canterbury
sequence at two different response periods. The horizontal dashed lines show the
total between-event variability for the entire database considered, while the blue
lines show loess fits to the data. The shaded region shows the prediction interval for
this local fit and it is very clear that this band is significantly narrower than the overall
between-event variability.

However, Fig. 8.10 also shows that event terms within the sequence can fluctuate
to span a significant portion of the overall ergodic variability.

Similar results can be seen in Fig. 8.11 for the Marlborough sequence. However,
in this case we see less temporal fluctuation and a more consistent offset at negative
between-event residuals. Of course, just two sequences have been investigated here,
but it is important to point out that they have not been identified on the basis of
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them having any particular characteristics. They are simply the two largest clusters
that could be extracted from the available New Zealand strong-motion database. In
that sense, the results presented here can be thought of in a similar vein to a blind
prediction. That is, a hypothesis was formulated via a thought experiment, and the
results obtained are entirely consistent with expectations from that experiment.

In Figs. 8.10 and 8.11, just two periods are shown, but additional summarising
results are presented in Fig. 8.12. In Fig. 8.12, the standard deviation of the event
terms in the Canterbury and Marlborough sequences are compared to the between-
event variability computed from a mixed effects regression analysis using all of the
New Zealand crustal data. The standard deviations for the individual sequences are
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computed from event terms extracted from the same analysis used to define the
overall variability for the entire database.

The results in Fig. 8.12 show a significant reduction at short periods, but it must
also be appreciated that it is a significant reduction from a very large level of between
event variability for this database. That said, the values for the Canterbury sequence
hover around the 0.3 level in natural logarithmic units and this is smaller than typical
ergodic values.”

Itis also important to highlight that these sequences also contain many, many more
events than those shown here. Those additional events did not have their strong-
motion data processed as part of the New Zealand database analysed here, but in
principle a significantly greater amount of data could be available, albeit from small
magnitude events, to help constrain the properties of the sequence. Under the assump-
tion that the event terms from the smaller events correlate with those of the larger
events, the addition of this weaker motion data could significantly improve one’s
ability of constrain features of the particular sequence.

This includes overall regional and sequence-specific offsets from ergodic models,
as well as systematic site effects. Correlations among these systematic effects, as
well as residual correlations can also be updated during the sequence. Within the

2The total residuals have been obtained from a bias-corrected version of the Chiou and Youngs
(2014) model, and this model reports published values of between-event standard deviation that are
around 30% greater than what has been found here in the Canterbury sequence.
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Bayesian updating framework presented by Stafford (2019), these characteristics
can be progressively updated as events occur such that systematic terms become
more constrained during the sequence.

Naturally, further work is required to analyse many more sequences to test whether
the evidence presented here persists more generally. However, it is clear that some
features of these findings, particular the reduction of between-event variability arising
from spatially correlated source effects will prove to be a more general finding.

8.6 Conclusions

Regional and portfolio risk analyses have traditionally made use of groundmotion
model components that have primarily been derived for use in hazard applications.
There are attributes of these components that are not ideally suited for use within
risk analyses and this chapter has highlighted some of these issues. In particular, the
increasing use of partially non-ergodic approaches within ground-motion modelling
has implications for how covariances among intensity measures are represented. The
vast majority, if not all, risk analyses currently conducted do not properly account
for these effects when attempting to move towards partially non-ergodic approaches.
The chapter has shown pathways to address these issues and has also introduced
evidence to suggest that withinsequence between-event variability may be over-
estimated. This latter point has implications for aftershock risk analyses. However,
the potential benefits of working with a reduced variability may be offset by epistemic
uncertainty for the earliest events in the sequence.
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