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Abstract. Xagawa and Yamakawa (PQCrypto 2019) proved the trans-
formation SXY can tightly turn DS secure PKEs into IND-qCCA secure
KEMs in the quantum random oracle model (QROM). But transfor-
mations such as KC, TPunc that turn PKEs with standard security
(OW-CPA or IND-CPA) into DS secure PKEs still suffer from quadratic
security loss in the QROM. In this paper, we give a tighter security reduc-
tion for the transformation KC that turns OW-CPA secure deterministic
PKEs into modified DS secure PKEs in the QROM. We use the Measure-
Rewind-Measure One-Way to Hiding Lemma recently introduced by
Kuchta et al. (EUROCRYPT 2020) to avoid the square-root advantage
loss. Moreover, we extend it to the case that underlying PKEs are not per-
fectly correct. Combining with other transformations, we finally obtain
a generic KEM from any IND-CPA secure PKE. Our security reduction
has roughly the same tightness as the result of Kuchta et al. without any
other assumptions and we achieve the stronger IND-qCCA security. We
also give a similar result for another KEM transformation achieving the
same security notion from any OW-CPA secure deterministic PKE.

Keywords: Key encapsulation mechanism · Quantum chosen
ciphertext security · Quantum random oracle model

1 Introduction

Key encapsulation mechanism (KEM) is a foundational cryptography primitive.
It can be used to construct efficient hybrid encryption using the KEM/DEM
paradigm [8]. Indistinguishability under chosen ciphertext attacks (IND-CCA)
is widely used as the desired security notion for KEM and public-key encryp-
tion (PKE). With the development of quantum computer, we need to develop
cryptographic schemes that would be secure against both quantum and classical
computers. In this paper, we consider the indistinguishability under quantum
chosen ciphertext attacks (IND-qCCA) for KEM in the quantum random oracle
model (QROM).
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In the quantum world, one can deal with superposition states, which brings
more capabilities to the adversaries. To achieve the security against quan-
tum adversaries, we have to base our cryptographic constructions on quantum-
resistant assumptions. But it is not sufficient if adversaries can interact with hon-
est parties using quantum communication. Boneh et al. [6] argued that quantum
random oracle model should be used instead of random oracle model (ROM) [4].
In the QROM, hash functions are modeled as public oracles similarly as ROM
but with quantum access. Furthermore, Boneh and Zhandry [7] introduced the
IND-qCCA security notion for PKE, where adversaries can make quantum queries
to the decryption oracle. Their goal is to construct classical systems that remain
secure even when implemented on a quantum computer, thereby potentially giv-
ing the attacker the ability to issue quantum queries. Following it, Xagawa and
Yamakawa [22] considered the IND-qCCA security for KEM, where adversaries
can make quantum queries to the decapsulation oracle. Note that different from
PKE, there is no challenge messages queried by the adversary in the IND-CCA
game for KEM. All interactions with the adversary use quantum communication.
Therefore, the corresponding IND-qCCA security in the QROM is the security
notion against fully quantum adversaries for KEM.

To achieve the IND-CCA security, generic transformations such as Fujisaki-
Okamoto (FO) transformation [10,11] are usually used. They can transform a
weakly secure (one-wayness under chosen plaintext attacks (OW-CPA) or indis-
tinguishability under chosen plaintext attacks (IND-CPA)) PKE to a IND-CCA
one. Dent [9] gave the KEM version of FO. Hofheinz, Hövelmanns and Kiltz [12]
analyzed it in a modular way, decomposing it into two transformations named
T and U/⊥. They also introduced some variants of transformation U/⊥ named
U/⊥

m, U⊥ and U⊥
m, and they gave a detailed result about them in the classical set-

ting. Subsequent works [5,13,15–18] are devoted to the analysis in the quantum
setting. The core tool used in these analysis is the One-Way to Hiding (O2H)
Lemma [21] and its variants [2,5,12,18]. Roughly speaking, the O2H lemma can
be used to construct a one-wayness adversary from a distinguisher.

Recently, Kuchta et al. [18] introduced a new O2H variant named Measure-
Rewind-Measure One-Way to Hiding (MRM O2H) Lemma. It is the first variant
to get rid of the square-root advantage loss, and using this lemma, they gave a
security proof for FO from IND-CPA security to IND-CCA security without the
square-root advantage loss for the first time. Their security proof is nearly tight
for low query depth attacks. The case of (relatively) low query depth attacks
tends to be of high practical interest, since it corresponds, for instance, to mas-
sively parallelized attacks, which are the standard approach to deal with high
computation costs in practical cryptanalysis. However, their proof doesn’t apply
to the IND-qCCA security. As argued in [7,22], in order to be immune to quantum
superposition attacks, quantum chosen ciphertext security is worth investigating.
On the other hand, Saito, Xagawa and Yamakawa [20] introduced a new secu-
rity notion named disjoint simulatability (DS). Intuitively, disjoint simulatability
means that we can efficiently sample “fake ciphertexts” that are computation-
ally indistinguishable from real ciphertexts (“simulatability”), while the set of
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possible fake ciphertexts is required to be (almost) disjoint from the set of real
ciphertexts (“disjointness”). In addition, they gave a transformation named SXY
which can tightly turn DS secure PKEs into IND-CCA secure KEMs. Furthermore,
they find it can be easily extended to the stronger IND-qCCA security tightly
also [22]. However, transformations KC and TPunc introduced in [20] from stan-
dard secure (OW-CPA or IND-CPA) PKEs to DS secure PKEs still suffer from
quadratic security loss, so is the KEM combined with transformation SXY.

Our Contributions. In this paper, we analyze two generic KEMs and we prove
that they achieve IND-qCCA security from standard security without quadratic
security loss in the QROM. At the heart of our result is a tighter security reduc-
tion for the transformation KC. We modify the definition of DS and we use
the MRM O2H lemma to prove that the transformation KC can transform a
OW-CPA secure deterministic PKE (dPKE) into a modified DS secure PKE with-
out the square-root advantage loss. Moreover, we don’t require the underlying
PKE to be perfectly correct as before.

The first KEM we analyzed is SXY ◦ KC ◦ T and the second KEM is SXY ◦ KC.
We give an overview in Fig. 1. The upper part and the lower part of Fig. 1
are the two KEMs respectively. The second KEM is relatively simple, and it is
the combination of transformation KC and transformation SXY. Xagawa and
Yamakawa has already proved transformation SXY can tightly turn δ-correct
DS secure dPKEs into IND-qCCA secure KEMs in the QROM (Lemma 5 [22]).

IND-CPA
δ-correct rPKE

OW-CPA
dPKE

DS
dPKE

IND-qCCA
KEM

SXY

Theorem 3
KC

Theorem 1
T

Lemma 6 [5]

OW-CPA
δ-correct dPKE

DS
δ-correct dPKE

IND-qCCA
δ-correct KEM

SXY

Lemma 5 [22]
KC

Theorem 2

Fig. 1. Overview of KEMs.

In the previous security proofs of KC [17,20], some variants of O2H lem-
mas are used. However, they all incur a quadratic loss of security. The MRM
O2H lemma doesn’t suffer from it, but it requires the simulator can simulate
both G and H. In our case, the simulator doesn’t know the m∗ ∈ S, however,
the simulator can simulate G (or H) that should be reprogrammed at m∗ by
testing whether the queried m satisfies Enc(pk,m) = c∗ or not instead. With
a detailed analysis, the MRM O2H lemma can be applied to prove the second
property of DS even if the underlying PKE is not perfectly correct. But it is dif-
ficult to satisfy the first requirement of DS with imperfectly correct underlying
PKEs in KC. However, we find that the DS notion in [20] is slightly stronger,
so we make a modification to its definition to relax the requirement. With this
new DS notion, we get rid of the perfectly correctness requirement in KC. And
finally we prove that the transformation KC can turn δ-correct OW-CPA secure
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dPKEs into δ-correct DS secure dPKEs without the square-root advantage loss in
Theorem 2.1

The underlying PKE of above KEM is dPKE. If we want to let the underlying
PKE be a rPKE (randomized PKE), we can apply the transformation T first. And
this yields the first KEM. Although there exists results of transformation T that
it can turn δ-correct IND-CPA secure rPKEs into OW-CPA secure dPKEs (Lemma
6 [5]), we cannot simply append it to the proof of the second KEM. The reason is
that the concept of δ-correct doesn’t apply to the resulting dPKE of T directly,
though the resulting dPKE is not perfectly correct. So actually, Theorem 1 and
Theorem 3 are different from corresponding Theorem 2 and Lemma 5 [22]. In
the proof of Theorem 3, we use the method in [12,15] to deal with it. In the
proof of Theorem 1, we make a direct analysis to get a better result. Specifically,
we use a different Bad event than that in the proof of Theorem 2 to separate the
case that a “bad” message is chosen.

Here we give a comparison of KEM transformations from IND-CPA secure
PKEs in the QROM in Table 1. Kuchta et al.’s [18] proof of FO/⊥ achieves the
best known security bound of KEMs from IND-CPA security to IND-CCA security
in the QROM. Xagawa and Yamakawa [22] gave the first KEM to achieve the
stronger IND-qCCA security. And Jiang et al. [17] improved the security bound
of Tpunc. But the security bound of the combination scheme is still larger than
the first one in certain settings. Our proof of KEM := SXY ◦ KC ◦ T achieves the
IND-qCCA security with tighter security bound than the second one, roughly the
same as the first one. What’s more, it doesn’t need any other requirements.

Table 1. Comparison of KEM transformations from IND-CPA secure PKEs in the
QROM. The “Security bound” column shows the dependence of the approximate upper
bound on attacker’s advantage Adv(A) against the KEM in terms of the attacker advan-
tage ε against the underlying PKE, and A’s total query number q or query depth d to
quantum random oracles.

Underlying Achieved Security Other
Transformation

security security bound requirements

FO/⊥ := U/⊥ ◦ T[18] IND-CPA IND-CCA d2ε T[PKE,G] is η-injective.

SXY ◦ TPunc[17,22] IND-CPA IND-qCCA
√

qε PKE is perfectly correct.

SXY ◦ KC ◦ T [This work] IND-CPA IND-qCCA d2ε -

2 Preliminaries

2.1 Notation

For a finite set S, |S| denotes the cardinality of S, and we denote the sampling of

a uniformly random element x from S by x
$←− S, while we denote the sampling

1 In the main body of the paper, Theorem 2 actually follows Theorem 1. Here we
reverse the order of introduction.
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according to some distribution D by x ← D. US denotes the uniform distribution
over S. By �B� we denote the bit that is 1 if the Boolean statement B is true,
and otherwise 0.

We denote deterministic computation of an algorithm A on input x by
y := A(x). We denote algorithms with access to an oracle O by AO. Unless
stated otherwise, we assume all our algorithms to be probabilistic and denote
the computation by y ← A(x). We also use the notation y := A(x; r) to make
the randomness r explicit. By Time(A) we denote the running time of A.

Some algorithms such as Gen need a security parameter λ ∈ N as input.
However, we usually omit it for simplicity. We say a function is negligible in λ if
f(λ) = λ−ω(1). PPT stands for probabilistic polynomial time.

2.2 Quantum Computation

We refer to [19] for basic of quantum computation. In this subsection we mainly
present several useful lemmas.

Quantum Random Oracle Model. Following [3,6], we review a quantum
oracle O as a mapping

|x〉 |y〉 → |x〉 |y ⊕ O(x)〉 ,

where O : {0, 1}n → {0, 1}m, x ∈ {0, 1}n and y ∈ {0, 1}m. Roughly speaking,
the quantum random oracle model (QROM) is an idealized model where a hash
function is modeled as a publicly and quantumly accessible random oracle, while
adversaries are only given classical oracle access in the classical random oracle
model (ROM).

Lemma 1 ([20, Lemma 2.2]). Let l be an integer. Let H : {0, 1}l ×X → Y and
H′ : X → Y be two independent random oracles. If an unbounded time quantum
adversary A makes a query to H at most qH times, then we have

∣
∣
∣Pr[1 ← AH,H(s,·)|s ← {0, 1}l] − Pr[1 ← AH,H′

]
∣
∣
∣ ≤ qH · 2

−l+1
2

where all oracle accesses of A can be quantum.

Lemma 2 (Generic Distinguishing Problem with Bounded Probabili-
ties [1,13,14]). Let X be a finite set, and let λ ∈ [0, 1]. F1 : X → {0, 1} is the
following function: For each x ∈ X, F1(x) = 1 with probability λx (λx ≤ λ), and
F1(x) = 0 else. F2 is the constant zero function. Then, for any algorithm A issu-
ing at most q quantum queries to F1 or F2, |Pr[1 ← AF1 ] − Pr[1 ← AF2 ]| ≤ 8q2λ.

Lemma 3 (Measure-Rewind-Measure One-Way to Hiding [18, Lemma
3.3]). Let G,H : X → Y be random functions, z be a random value, and S ⊆ X
be a random set such that G(x) = H(x) for every x /∈ S. The tuple (G,H, S, z)
may have arbitrary joint distribution. Furthermore, let AO be a quantum oracle
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algorithm which queries oracle O with query depth d. Then we can construct an
algorithm DG,H(z) such that Time(DG,H) ≈ 2 · Time(AO)2 and

Adv(AO) ≤ 4d · Adv(DG,H).

Here Adv(AO) := |Pleft − Pright| with

Pleft := Pr
H,z

[1 ← AH(z)], Pright := Pr
G,z

[1 ← AG(z)],

and

Adv(DG,H) := Pr
G,H,S,z

[T ∩ S �= ∅|T ← DG,H(z)].

2.3 Public-Key Encryption

Definition 1 (PKE). A (randomized) public-key encryption scheme ((r)PKE) is
defined over a message space M, a ciphertext space C, a public key space PK and
a secret key space SK. It consists of a triple of algorithms PKE = (Gen,Enc,Dec)
defined as follows.

– Gen → (pk, sk) is a randomized algorithm that returns a public key pk ∈ PK
and a secret key sk ∈ SK.

– Enc(pk,m) → c is a randomized algorithm that takes as input a public key
pk and a message m ∈ M, and outputs a ciphertext c ∈ C. If necessary, we
make the used randomness of Enc explicit by writing c := Enc(pk,m; r), where

r
$←− R and R is the randomness space.

– Dec(sk, c) → m/ ⊥ is a deterministic algorithm that takes as input a secret
key sk ∈ SK and a ciphertext c ∈ C and returns either a message m ∈ M or
a failure symbol ⊥ /∈ M.

A deterministic public-key encryption scheme (dPKE) is defined the same way,
except that Enc is a deterministic algorithm.

Definition 2 (Correctness [12]). A public-key encryption scheme PKE is δ-
correct if

E
[

max
m∈M

Pr[Dec(sk, c) �= m|c ← Enc(pk,m)]
]

≤ δ,

where the expectation is taken over (pk, sk) ← Gen. We say the PKE is perfectly
correct if δ = 0.

Remark 1. Above correctness definition is in the standard model, there is no
random oracle relative to the PKE. But we still use this definition in the random
oracle model if random oracles have no effect on it.
2 Actually, from the proof of lemma 3.2 and lemma 3.3 in [18], we

have Time(DG,H) ≈ Time(BG,H
i ) + Time(CG,H

i ) ≈ Time(BG,H
i ) +(

Time(BG,H
i ) + 2

(
Time(AO

i ) − Time(BG,H
i )

))
≈ 2 · Time(AO).
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Let PKE = (Gen,Enc,Dec) be a public-key encryption scheme with message
space M. We now define three security notions for it. We say the PKE is
GOAL-ATK secure if AdvGOAL

PKE,A-ATK is negligible for any PPT adversary A.

Definition 3 (OW-CPA). The One-Wayness under Chosen Plaintext Attacks
(OW-CPA) game for PKE is defined in Fig. 2, and the OW-CPA advantage of an
adversary A against PKE is defined as AdvOW-CPA

PKE,A := Pr[OW-CPAA
PKE ⇒ 1].

GAME OW-CPAA
PKE GAME IND-CPAA

PKE

(pk, sk) ← Gen (pk, sk) ← Gen

m∗ $←− M b
$←− {0, 1}

c∗ ← Enc(pk,m∗) (m∗
0, m

∗
1, st) ← A1(pk)

m ← A(pk, c∗) c∗ ← Enc(pk,m∗
b)

return m = m∗ b ← A2(pk, c∗, st)
return b = b

Fig. 2. Games OW-CPA and IND-CPA for PKE.

Definition 4 (IND-CPA). The Indistinguishability under Chosen Plaintext
Attacks (IND-CPA) game for PKE is defined in Fig. 2, and the IND-CPA advan-
tage of an adversary A = (A1,A2) against PKE is defined as AdvIND-CPA

PKE,A :=
2|Pr[IND-CPAA

PKE ⇒ 1] − 1/2|.
Definition 5 (IND-qCCA [7]). The Indistinguishability under quantum Cho-
sen Ciphertext Attacks (IND-qCCA) game for PKE is defined in Fig. 3, and the
IND-qCCA advantage of an adversary A = (A1,A2) against PKE is defined as
AdvIND-qCCA

PKE,A := |Pr[IND-qCCAA
PKE ⇒ 1] − 1/2|.

GAME IND-qCCAA
PKE Deca( c,m ψc,m |c, m )

(pk, sk) ← Gen return c,m ψc,m |c, m ⊕ fa(c)

b
$←− {0, 1}

(m∗
0, m

∗
1, st) ← ADec⊥

1 (pk) fa(c)
c∗ ← Enc(pk, m∗

b) if c = a

b ← ADecc∗
2 (pk, c∗, st) return m :=⊥

return b = b else return m := Dec(sk, c)

Fig. 3. Game IND-qCCA for PKE.

Saito, Xagawa and Yamakawa [20] introduced a new security notion named
DS for dPKE. Here we give a modified version and we keep the name unchanged
in this paper.
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Definition 6 (DS, modified from [20]). Let DM denote an efficiently sam-
pleable distribution on a set M. A deterministic public-key encryption scheme
PKE = (Gen,Enc,Dec) with plaintext and ciphertext spaces M and C is DM-
disjoint-simulatable (DS) if there exists a PPT algorithm S that satisfies the
followings.

– Disjointness:

DisjPKE,S := Pr[c∗ ∈ Enc(pk,M)|(pk, sk) ← Gen, c∗ ← S(pk)]

is negligible.
– Ciphertext-indistinguishability: For any PPT adversary A,

AdvDS-IND
PKE,DM,A,S :=

∣
∣
∣
∣

Pr[1 ← A(pk, c∗)|(pk, sk) ← Gen,m∗ ← DM, c∗ := Enc(pk,m∗)]
−Pr[1 ← A(pk, c∗)|(pk, sk) ← Gen, c∗ ← S(pk)]

∣
∣
∣
∣

is negligible.

Remark 2. In the original definition of DS, the first condition is “statistical dis-
jointness”:

DisjPKE,S := max
(pk,sk)∈Gen(1λ;R)

Pr[c∗ ∈ Enc(pk,M)|c∗ ← S(pk)]

is negligible, where λ is the security parameter and R denotes the randomness
space for Gen. We relax this condition to “disjointness” as we find it is sufficient
to prove those theorems we needed.

2.4 Key Encapsulation Mechanism

Definition 7 (KEM). A key encapsulation mechanism (KEM) is defined over a
key space K, a ciphertext space C, a public key space PK and a secret key space
SK. It consists of a triple of algorithms KEM = (Gene,Enca,Deca) defined as
follows.

– Gene → (pk, sk) is a randomized algorithm that returns a public key pk ∈ PK
and a secret key sk ∈ SK.

– Enca(pk) → (c, k) is a randomized algorithm that takes as input a public key
pk and outputs a ciphertext c ∈ C as well as a key k ∈ K.

– Deca(sk, c) → k/ ⊥ is a deterministic algorithm that takes as input a secret
key sk ∈ SK and a ciphertext c ∈ C and returns either a key k ∈ K or a
failure symbol ⊥ /∈ K.

Definition 8 (Correctness [12]). A key encapsulation mechanism KEM is δ-
correct if

Pr[Deca(sk, c) �= k|(pk, sk) ← Gene, (c, k) ← Enca(pk)] ≤ δ.



QCCA-Secure Generic KEM with Tighter Security in the QROM 11

Let KEM = (Gene,Enca,Deca) be a key encapsulation mechanism with key
space K. Following the definition of IND-qCCA for PKE, the KEM version for it
can be defined similarly. We say the KEM is IND-qCCA secure if AdvIND-qCCA

KEM,A is
negligible for any PPT adversary A.

Definition 9 (IND-qCCA [22]). The IND-qCCA game for KEM is defined in
Fig. 4, and the IND-qCCA advantage of an adversary A against KEM is defined
as AdvIND-qCCA

KEM,A := |Pr[IND-qCCAA
KEM ⇒ 1] − 1/2|.

GAME IND-qCCAA
KEM Decaa( c,k ψc,k |c, k )

(pk, sk) ← Gene return c,k ψc,k |c, k ⊕ fa(c)

b
$←− {0, 1}

(c∗, k∗
0) ← Enca(pk) fa(c)

k∗
1

$←− K if c = a

b ← ADecac∗ (pk, c∗, k∗
b ) return k :=⊥

return b = b else return k := Deca(sk, c)

Fig. 4. Game IND-qCCA for KEM.

3 Tighter Proofs for the Transformation KC

In this section, we give a tighter security reduction for the transformation KC
[20] that transforms OW-CPA secure dPKEs into DS secure dPKEs without the
perfect correctness requirement of underlying PKEs.

Transformation KC. To a deterministic public-key encryption scheme PKE =
(Gen,Enc,Dec) with message space M, and a hash function H : M → {0, 1}n,
we associate PKE′ := KC[PKE,H]. The algorithms of PKE′ = (Gen′,Enc′,Dec′)
are defined in Fig. 5.

Gen Enc (pk,m) Dec (sk, (c, d)) S(pk)
(pk, sk) ← Gen c := Enc(pk, m) m := Dec(sk, c) m∗ ← UM
return (pk, sk) d := H(m) if m =⊥ or H(m ) = d c∗ := Enc(pk,m∗)

return (c, d) return ⊥ d∗ $←− {0, 1}n

else return m return (c∗, d∗)

Fig. 5. PKE′ = (Gen′,Enc′,Dec′) := KC[PKE,H] with simulator S.

Before we prove the security of KC, we first review the transformation T
introduced in [12].
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Transformation T. To a public-key encryption scheme PKE0 = (Gen0,Enc0,
Dec0) with message space M and randomness space R, and a hash function G :
M → R, we associate PKE := T[PKE0,G]. The algorithms of PKE = (Gen,Enc,
Dec) are defined in Fig. 6.

Gen Enc(pk,m) Dec(sk, c)
(pk, sk) ← Gen0 c := Enc0(pk, m;G(m)) m := Dec0(sk, c)
return (pk, sk) return c if m =⊥ or Enc0(pk, m ;G(m )) = c

return ⊥
else return m

Fig. 6. PKE = (Gen,Enc,Dec) := T[PKE0,G].

Next, we give a lemma related to the transformation T. It roughly speaks that
there is a high probability the ciphertext corresponding to a randomly chosen
message has only one preimage with regard to PKE := T[PKE0,G].

Lemma 4. Let PKE0 = (Gen0,Enc0,Dec0) be a δ-correct rPKE with message
space M and randomness space R. We define a set with respect to fixed (pk, sk)
and G ∈ ΩG :

Scollision
(pk,sk),G := {m ∈ M|∃m′ �= m,Enc0(pk,m′;G(m′)) = Enc0(pk,m;G(m))},

where ΩG denotes the set of all functions G : M → R.
Then we have

Pr[m ∈ Scollision
(pk,sk),G|(pk, sk) ← Gen0,G

$←− ΩG,m
$←− M] ≤ 2δ.

Proof. From the definition of δ-correct, we have

E
(pk,sk)←Gen0

[

max
m∈M

Pr[Dec0(sk, c) �= m|c ← Enc0(pk,m)]
]

≤ δ.

The inequality still holds when the m is chosen at random, i.e.,

E
(pk,sk)←Gen0

[

E
m

$←−M
Pr[Dec0(sk, c) �= m|c ← Enc0(pk,m)]

]

≤ δ.

We represent above inequality in a different form with equivalent meaning:

Pr[Dec0(sk, c) �= m|(pk, sk) ← Gen0,m
$←− M, c ← Enc0(pk,m)] ≤ δ.

Then we make the randomness used by Enc0 explicit:

Pr[Dec0(sk,Enc0(pk,m; r)) �= m|(pk, sk) ← Gen0,m
$←− M, r

$←− R] ≤ δ.
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It equals that:

Pr[Dec0(sk,Enc0(pk,m;G(m))) �= m|(pk, sk) ← Gen0,m
$←− M,G

$←− ΩG] ≤ δ.

Here we define a set in which messages are incorrectly decrypted with respect
to fixed (pk, sk) and G:

Serror
(pk,sk),G := {m ∈ M|Dec0(sk,Enc0(pk,m;G(m))) �= m}.

Finally, we have

Pr[m ∈ Scollision
(pk,sk),G|(pk, sk) ← Gen0,G

$←− ΩG,m
$←− M]

≤ 2Pr[m ∈ Scollision
(pk,sk),G ∩ Serror

(pk,sk),G|(pk, sk) ← Gen0,G
$←− ΩG,m

$←− M]

≤ 2Pr[m ∈ Serror
(pk,sk),G|(pk, sk) ← Gen0,G

$←− ΩG,m
$←− M]

= 2Pr[Dec0(sk,Enc0(pk,m;G(m))) �= m|(pk, sk) ← Gen0,m
$←− M,G

$←− ΩG]
≤ 2δ,

where the first inequality follows from the fact that m is chosen randomly and
|Scollision

(pk,sk),G \ Serror
(pk,sk),G| ≤ |Scollision

(pk,sk),G ∩ Serror
(pk,sk),G| for fixed (pk, sk) and G. ��

Now we are ready to prove the security of KC in the QROM. In particular,
we prove it in two cases. The first case is that the underlying dPKE is derived
from T, as opposed to a general δ-correct dPKE in the second case. In both cases,
underlying PKEs don’t need to be perfectly correct.

Previous proofs [17,20] use some variants of O2H lemma, but they all incur a
quadratic loss of security. Kuchta et al. [18] recently introduced the MRM O2H
lemma (Lemma 3) without the square-root advantage loss. We apply it to KC
and we avoid the square-root advantage loss in the proof accordingly.

Theorem 1 (Security of KC in the QROM, Case 1). Let PKE be a dPKE
transformed from PKE0 by T, i.e., PKE := T[PKE0,G]. PKE0 is a δ-correct rPKE
with message space M and randomness space R. Let G : M → R, H : M →
{0, 1}n be hash functions modeled as quantum random oracles. PKE′ := KC[PKE,
H] and S is the algorithm defined in Fig. 5. Then we have DisjPKE′,S ≤ 2−n +2δ.
Moreover, for any adversary A against the DS-IND security of PKE′ issuing
quantum queries to H with depth dH, there exists an adversary B against the
OW-CPA security of PKE such that

AdvDS-IND
PKE′,UM,A,S ≤ 4dH · (AdvOW-CPA

PKE,B + 2δ)

and Time(B) ≈ 2 · Time(A).

Proof. We first define two events:

Bad := [m∗ ∈ Scollision
(pk,sk),G|(pk, sk) ← Gen,G

$←− ΩG,m∗ $←− M],
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where Scollision
(pk,sk),G is defined in Lemma 4, and Lemma 4 says that Pr[Bad] ≤ 2δ as

Gen equals Gen0;

Disj := [(c∗, d∗) ∈ Enc′(pk,M)|(pk, sk) ← Gen′, (c∗, d∗) ← S(pk)].

Then, we have

DisjPKE′,S = Pr[Disj]

= Pr[Disj ∧ Bad] + Pr[Disj ∧ Bad]

≤ Pr[Disj ∧ Bad] + Pr[Bad]

≤ 2−n + 2δ,

where the first equality follows from the definition of DS and the last inequality
follows from the fact that if Bad doesn’t happen, the only possibility that Disj
happens is the second part d∗ of the element returned by S collides with the
unique value which is H(m∗). The probability of this is 2−n as d∗ is chosen
uniformly at random.

To prove the rest of the theorem, we consider games in Fig. 7. From the
definition of DS, we have

AdvDS-IND
PKE′,UM,A,S = |Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]|.

GAMES G0 − G2

(pk, sk) ← Gen; H
$←− ΩH

G
$←− ΩG

m∗ $←− M
c∗ := Enc(pk,m∗) = Enc0(pk, m∗;G(m∗))
d∗ := H(m∗) //G0, G2

d∗ $←− {0, 1}n //G1

H := H; Sc∗ := {m ∈ M|Enc(pk, m) = c∗} //G2

for each m ∈ Sc∗ , H (m) $←− {0, 1}n //G2

b ← AH,G(pk, (c∗, d∗)) //G0 − G1

b ← AH ,G(pk, (c∗, d∗)) //G2

return b

Fig. 7. Games G0 − G2 for the proof of Theorem 1.

Notice that H′, d∗ in game G2 are randomly distributed as H, d∗ in game G1,
and they are independent of each other and A’s other view (G, pk, c∗) in both G1

and G2, that is, the environments of A in G1 and G2 have the same distribution.
It follows that

Pr[GA
1 ⇒ 1] = Pr[GA

2 ⇒ 1].
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The only difference between game G0 and game G2 is that A is interacted
with H or H′ respectively. Therefore, applying Lemma 3 with X = M, Y =
{0, 1}n, G = H,H = H′, S = Sc∗ , z = (G, pk, (c∗, d∗))3 and A, we can construct
algorithm D, with run-time ≈ 2 ·Time(A) and making oracle calls to H, H′ and
G in game G3, such that

|Pr[GA
0 ⇒ 1] − Pr[GA

2 ⇒ 1]| ≤ 4dH · Pr[T ∩ Sc∗ �= ∅],

where T is the output of D and game G3 is described in Fig. 8.

GAME G3

(pk, sk) ← Gen; H
$←− ΩH

G
$←− ΩG

m∗ $←− M
c∗ := Enc(pk, m∗) = Enc0(pk, m∗;G(m∗))
d∗ := H(m∗)
H := H; Sc∗ := {m ∈ M|Enc(pk, m) = c∗}
for each m ∈ Sc∗ , H (m) $←− {0, 1}n

T ← DH,H ,G(pk, (c∗, d∗))
if T ∩ Sc∗ = ∅

m := any element ∈ T ∩ Sc∗

else m :=⊥
return m = m∗

Fig. 8. Game G3 for the proof of Theorem 1.

The game G3 actually can be seen as the OW-CPA game for PKE, in which
an adversary B invokes the algorithm D. More specifically, the OW-CPA game
for PKE and the adversary B against PKE we construct are described in Fig. 9.
We note that B cannot directly compute H(m∗) because m∗ is unknown for B,
but B can choose a random value d∗ ∈ {0, 1}n as H(m∗) in advance and simulate
H using it, i.e., B returns d∗ if Enc(pk,m) = c∗, else returns H(m), where m is
D’s query to H. Furthermore, if Bad doesn’t happen, the set Sc∗ has only one
element, m∗, and the environments of D in game G3 and game OW-CPAB

PKE have
the same distribution. In other words, B can simulate the environment for D as

3 Like the note of [2, Theorem 1], if we want to consider an adversary AH,F (), we can
instead write AH(F ) where F is a complete (exponential size) description of F since
there is no assumption on the size of z. From another point of view, we can simply
extend the Lemma 3 to cover this case explicitly by letting D forward A’s queries
to the additional oracles and send the replies back to A.
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in game G3 perfectly in the case that Bad doesn’t happen. Therefore, we have

AdvOW-CPA
PKE,B = Pr[OW-CPAB

PKE ⇒ 1]

= Pr[B ⇒ m∗]

≥ Pr[B ⇒ m∗ ∧ Bad]

= Pr[T ∩ Sc∗ �= ∅ ∧ Bad],

where the final equality holds for the same reason that if Bad doesn’t happen,
the set Sc∗ has only one element, m∗.

GAME OW-CPAB
PKE BG(pk, c∗)

(pk, sk) ← Gen H
$←− ΩH; d∗ $←− {0, 1}n

G
$←− ΩG H := H ; Sc∗ := {m ∈ M|Enc(pk,m) = c∗}

m∗ $←− M for each m ∈ Sc∗ , H(m) := d∗

c∗ := Enc(pk, m∗) T ← DH,H ,G(pk, (c∗, d∗))
= Enc0(pk, m∗;G(m∗)) if T ∩ Sc∗ = ∅

m ← BG(pk, c∗) return any element ∈ T ∩ Sc∗

return m = m∗ else return ⊥

Fig. 9. Game OW-CPAB
PKE for the proof of Theorem 1.

Combining above formulas with the following simple inequality:

Pr[T ∩ Sc∗ �= ∅] ≤ Pr[T ∩ Sc∗ �= ∅ ∧ Bad] + Pr[Bad],

we finally obtain

AdvDS-IND
PKE′,UM,A,S = |Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]|

= |Pr[GA
0 ⇒ 1] − Pr[GA

2 ⇒ 1]|
≤ 4dH · Pr[T ∩ Sc∗ �= ∅]

≤ 4dH · (Pr[T ∩ Sc∗ �= ∅ ∧ Bad] + Pr[Bad])

≤ 4dH · (AdvOW-CPA
PKE,B + 2δ).

��
Theorem 2 (Security of KC in the QROM, Case 2). Let PKE be a δ-correct
dPKE with message space M. Let H : M → {0, 1}n be a hash function modeled
as a quantum random oracle. PKE′ := KC[PKE,H] and S is the algorithm defined
in Fig. 5. Then we have DisjPKE′,S ≤ 2−n + δ. Moreover, for any adversary A
against the DS-IND security of PKE′ issuing quantum queries to H with depth
dH, there exists an adversary B against the OW-CPA security of PKE such that

AdvDS-IND
PKE′,UM,A,S ≤ 4dH · (AdvOW-CPA

PKE,B + δ)

and Time(B) ≈ 2 · Time(A).
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Proof. The proof is essentially the same as Theorem 1’s proof, except for the
definition of Bad:

Bad := [∃m ∈ M, Dec(sk,Enc(pk,m)) �= m|(pk, sk) ← Gen].

From the fact that PKE is deterministic and the definition of δ-correct, we
have

Pr[Bad] ≤ δ.

Then, we complete the proof. ��
Remark 3. PKE′ remains δ-correct.

4 QCCA-Secure Generic KEM in the QROM

In this section, we prove that DS secure dPKEs can be converted to IND-qCCA
secure KEMs by transformation SXY [20] in the QROM. In particular, we also
consider two cases corresponding to the two cases in Sect. 3. The first case is
that the underlying dPKE is derived from KC ◦ T4, as opposed to a general δ-
correct dPKE in the second case. In both cases, underlying PKEs don’t need to
be perfectly correct. Note that the second case was proved in [22], we present it
here as a lemma.

At the end, we combine results in this paper and get two IND-qCCA secure
generic KEMs without quadratic security loss in the QROM. One is based on
rPKEs and the other is based on dPKEs.

Transformation SXY. To a deterministic public-key encryption scheme PKE′ =
(Gen′,Enc′,Dec′) with message space M and ciphertext space C, and two hash
functions H1 : M → K, H2 : {0, 1}l×C → K, we associate KEM := SXY[PKE′,H1,
H2]. The algorithms of KEM = (Gene,Enca,Deca) are defined in Fig. 10.

Gene Enca(pk) Deca((sk, s), c)
(pk, sk) ← Gen m ← DM m := Dec (sk, c)

s
$←− {0, 1}l c := Enc (pk, m) if m =⊥ or Enc (pk, m ) = c

return (pk, (sk, s)) k := H1(m) return k := H2(s, c)
return (c, k) else return k := H1(m )

Fig. 10. KEM = (Gene,Enca,Deca) := SXY[PKE′,H1,H2].

4 T is the point and KC can be replaced by other suitable transformations.
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Theorem 3 (IND-qCCA Security of SXY in the QROM, Case 1). Let PKE′

be a dPKE transformed from PKE0 by KC ◦ T, i.e., PKE′ := KC[T[PKE0,G],H].
PKE0 is a δ-correct rPKE with message space M, ciphertext space C and ran-
domness space R. Let G : M → R, H : M → {0, 1}n, H1 : M → K, H2 :
{0, 1}l ×C ×{0, 1}n → K be hash functions modeled as quantum random oracles.
Suppose that PKE′ is DM-disjoint-simulatable with a simulator S. Then for any
adversary A against the IND-qCCA security of KEM := SXY[PKE′,H1,H2] issu-
ing qG and qH2 quantum queries to G and H2, there exists an adversary B against
the DS-IND security of PKE′ such that

AdvIND-qCCA
KEM,A ≤ AdvDS-IND

PKE′,DM,B,S + DisjPKE′,S + qH2 · 2
−l+1

2 + (16q2G + 2) · δ

and Time(B) ≈ Time(A).

Proof. We use a game-hopping proof. The proof is essentially the same as the
following Lemma 5 [22]’s proof, except for two more games. We insert game G0.5

and G3.5 into G0, G1 and G3, G4 respectively. Besides, we replace the event Acc
with another event Bad. The overview of all games is given in Table 2.

Table 2. Summary of games for the proof of Theorem 3.

Decryption of

Game H1 c∗ k∗
0 k∗

1 valid c invalid c G/G′ justification

G0 H1(·) Enc′(pk, m∗) H1(m
∗) random H1(m) H2(s, c) G

G0.5 H1(·) Enc′(pk, m∗) H1(m
∗) random H1(m) H2(s, c) G′ Lemma 2

G1 H1(·) Enc′(pk, m∗) H1(m
∗) random H1(m) Hq(c) G′ Lemma 1

G1.5 H′
q(Enc

′(pk, ·)) Enc′(pk, m∗) H1(m
∗) random H1(m) Hq(c) G′ Bad

G2 Hq(Enc
′(pk, ·)) Enc′(pk, m∗) H1(m

∗) random H1(m) Hq(c) G′ Bad

G3 Hq(Enc
′(pk, ·)) Enc′(pk, m∗) Hq(c

∗) random Hq(c) Hq(c) G′ Conceptual

G3.5 Hq(Enc
′(pk, ·)) Enc′(pk, m∗) Hq(c

∗) random Hq(c) Hq(c) G Lemma 2

G4 Hq(Enc
′(pk, ·)) S(pk) Hq(c

∗) random Hq(c) Hq(c) G DS-IND

GAME G0: This is the original game, IND-qCCAA
KEM.

Let G′ be a random function such that G′(m) is sampled according to the uni-
form distribution over Rgood

(pk,sk),m
:= {r ∈ R|Dec0(sk,Enc0(pk,m; r)) = m}. Let

ΩG′ be the set of all functions G′. Define δ(pk,sk),m =
|R\Rgood

(pk,sk),m
|

|R| as the frac-
tion of bad randomness and δ(pk,sk) = maxm∈M δ(pk,sk),m. With this notation
δ = E[δ(pk,sk)], where the expectation is taken over (pk, sk) ← Gen0.

GAME G0.5: This game is the same as G0 except that we replace G by G′

that uniformly samples from “good” randomness at random, i.e., G′ $←− ΩG′ .
GAME G1: This game is the same as G0.5 except that H2(s, c) in the decap-

sulation oracle is replaced with Hq(c) where Hq : C × {0, 1}n → K is another
random oracle. We remark that A is not given direct access to Hq.

GAME G1.5: This game is the same as G1 except that the random oracle
H1(·) is simulated by H′

q(Enc
′(pk, ·)) where H′

q is yet another random oracle. We
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remark that the decapsulation oracle and generation of k∗
0 also use H′

q(Enc
′(pk, ·))

as H1(·) and that A is not given direct access to H′
q.

GAME G2: This game is the same as G1.5 except that the random oracle
H1(·) is simulated by Hq(Enc′(pk, ·)) instead of H′

q(Enc
′(pk, ·)). We remark that

the decapsulation oracle and generation of k∗
0 also use Hq(Enc′(pk, ·)) as H1(·).

GAME G3: This game is the same as G2 except that k∗
0 is set as Hq(c∗) and

the decapsulation oracle always returns Hq(c) as long as c �= c∗. We denote the
modified decapsulation oracle by Deca′.

GAME G3.5: This game is the same as G3 except that we switch G′ back
to the ideal random oracle G.

GAME G4: This game is the same as G3.5 except that c∗ is set as S(pk).
The above completes the descriptions of games. We clearly have

AdvIND-qCCA
KEM,A = |Pr[G0 ⇒ 1] − 1/2|

by the definition. We bound this by the following claims.

Claim 1. We have

|Pr[G0 ⇒ 1] − Pr[G0.5 ⇒ 1]| ≤ 8q2Gδ,

|Pr[G3 ⇒ 1] − Pr[G3.5 ⇒ 1]| ≤ 8q2Gδ.

Proof. Following the same analysis as in the proof of [15, Theorem 1], we can
show that the distinguishing problem between G0 and G0.5 is essentially the dis-
tinguishing problem between G and G′, which can be converted into a distinguish-
ing problem between F1 and F2, where F1 is a function such that F1(m) is sampled
according to Bernoulli distribution Bδ(pk,sk),m

, i.e., Pr[F1(m) = 1] = δ(pk,sk),m

and Pr[F1(m) = 0] = 1−δ(pk,sk),m, and F2 is a constant function that always out-
puts 0 for any input. Thus, conditioned on a fixed (pk, sk) we obtain by Lemma
2, |Pr[G0 ⇒ 1|(pk, sk)]−Pr[G0.5 ⇒ 1|(pk, sk)]| ≤ 8q2Gδ(pk,sk). By averaging over
(pk, sk) ← Gen0 we finally obtain

|Pr[G0 ⇒ 1] − Pr[G0.5 ⇒ 1]| ≤ 8q2GE[δ(pk,sk)] = 8q2Gδ.

In the same way, we have

|Pr[G3 ⇒ 1] − Pr[G3.5 ⇒ 1]| ≤ 8q2Gδ.

��
Claim 2. We have

|Pr[G0.5 ⇒ 1] − Pr[G1 ⇒ 1]| ≤ qH2 · 2
−l+1

2 .

Proof. This is obvious from Lemma 1. ��



20 X. Liu and M. Wang

Claim 3. We define an event:

Bad := [∃m ∈ M,Rgood
(pk,sk),m = ∅|(pk, sk) ← Gen0].

Then we have Pr[Bad] ≤ δ and

|Pr[G1 ⇒ 1] − 1/2| ≤ |Pr[G1 ⇒ 1 ∧ Bad] − 1/2| + δ.

Proof. By the definition, we have

Pr[Bad]

= Pr[∃m ∈ M,Rgood
(pk,sk),m = ∅|(pk, sk) ← Gen0]

= Pr[∃m ∈ M, δ(pk,sk),m = 1|(pk, sk) ← Gen0]
= Pr[δ(pk,sk) = 1|(pk, sk) ← Gen0]
≤ E[δ(pk,sk)]
= δ.

Then we have

|Pr[G1 ⇒ 1] − 1/2|
= |Pr[G1 ⇒ 1 ∧ Bad] + Pr[G1 ⇒ 1 ∧ Bad] − 1/2|
≤ |Pr[G1 ⇒ 1 ∧ Bad] − 1/2| + Pr[G1 ⇒ 1 ∧ Bad]

≤ |Pr[G1 ⇒ 1 ∧ Bad] − 1/2| + Pr[Bad]

≤ |Pr[G1 ⇒ 1 ∧ Bad] − 1/2| + δ

as we wanted. ��
Claim 4. We have

Pr[G1 ⇒ 1 ∧ Bad] = Pr[G1.5 ⇒ 1 ∧ Bad].

Proof. From the definition of G′, if Bad doesn’t happen, any message can be
decrypted correctly for the PKE′, i.e., Dec′(sk,Enc′(pk,m)) = m for all m ∈
M. Therefore, Enc′(pk, ·) is injective. And if H′

q(·) is a random function, then
H′

q(Enc
′(pk, ·)) is also a random function. Remarking that access to H′

q is not
given to A, it causes no difference from the view of A if we replace H1(·) with
H′

q(Enc
′(pk, ·)). ��

Claim 5. We have

Pr[G1.5 ⇒ 1 ∧ Bad] = Pr[G2 ⇒ 1 ∧ Bad].

Proof. We say that a ciphertext c is valid if we have Enc′(pk,Dec′(sk, c)) = c
and invalid otherwise. We remark that Hq is used only for decrypting an invalid
ciphertext c as Hq(c) in G1.5. This means that a value of Hq(c) for a valid c is
not used at all in G1.5.



QCCA-Secure Generic KEM with Tighter Security in the QROM 21

On the other hand, any output of Enc′(pk, ·) is valid if Bad doesn’t happen.
Since H′

q is only used for evaluating an output of Enc′(pk, ·), a value of H′
q(c) for

an invalid c is not used at all in G1.5.
Hence, it causes no difference from the view of A if we use the same random

oracle Hq instead of two independent random oracles Hq and H′
q. ��

Claim 6. We have

Pr[G2 ⇒ 1 ∧ Bad] = Pr[G3 ⇒ 1 ∧ Bad].

Proof. Since we set H1(·) := Hq(Enc′(pk, ·)), for any valid c and m := Dec′(sk, c),
we have H1(m) = Hq(Enc′(pk,m)) = Hq(c). Therefore, responses of the decap-
sulation oracle are unchanged. We also have H1(m∗) = Hq(c∗). ��
Claim 7. We have

|Pr[G3 ⇒ 1 ∧ Bad] − 1/2| ≤ |Pr[G3 ⇒ 1] − 1/2| + δ.

Proof. We have

|Pr[G3 ⇒ 1 ∧ Bad] − 1/2|
= |Pr[G3 ⇒ 1] − Pr[G3 ⇒ 1 ∧ Bad] − 1/2|
≤ |Pr[G3 ⇒ 1] − 1/2| + Pr[G3 ⇒ 1 ∧ Bad]
≤ |Pr[G3 ⇒ 1] − 1/2| + Pr[Bad]
≤ |Pr[G3 ⇒ 1] − 1/2| + δ.

��
Claim 8. There exists a quantum adversary B such that

|Pr[G3.5 ⇒ 1] − Pr[G4 ⇒ 1]| = AdvDS-IND
PKE′,DM,B,S

and Time(B) ≈ Time(A).

Proof. We construct an adversary B, which is allowed to access two random
oracles Hq and H2, against the disjoint simulatability as follows.

BHq,H2(pk, c∗): It picks b ← {0, 1}, sets k∗
0 := Hq(c∗) and k∗

1
$←− K, and invokes

b′ ← AH1,H2,Deca′
(pk, c∗, k∗

b ) where A’s oracles are simulated as follows.

– H1(·) is simulated by Hq(Enc′(pk, ·)).
– H2 can be simulated because B has access to an oracle H2.
– Deca′ is simulated by filtering c∗ and using Hq(·), that is, on input

∑

c,k ψc,k

|c, k〉, B returns
∑

c �=c∗,k ψc,k |c, k ⊕ Hq(c)〉 +
∑

k ψc∗,k |c∗, k ⊕ ⊥〉.
Finally, B returns �b′ = b�.

This completes the description of B. It is easy to see that B perfectly simulates
G3.5 if c∗ = Enc′(pk,m∗) and G4 if c∗ = S(pk). Therefore, we have

|Pr[G3.5 ⇒ 1] − Pr[G4 ⇒ 1]| = AdvDS-IND
PKE′,DM,B,S

and Time(B) ≈ Time(A). ��
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Claim 9. We have

|Pr[G4 ⇒ 1] − 1/2| ≤ DisjPKE′,S .

Proof. Let Bad′ denote the event that c∗ is in Enc′(pk,M) in G4. Then we have

Pr[Bad′] = DisjPKE′,S .

When Bad′ does not occur, i.e., c∗ /∈ Enc′(pk,M), A obtains no information
about k∗

0 = Hq(c∗). This is because queries to H1 only reveal Hq(c) for c ∈
Enc′(pk,M), and Deca′(c) returns ⊥ if c = c∗. Therefore, we have

Pr[G4 ⇒ 1|Bad′] = 1/2.

Combining the above, we have

|Pr[G4 ⇒ 1] − 1/2|
= |Pr[Bad′] · (Pr[G4 ⇒ 1|Bad′] − 1/2) + Pr[Bad′] · (Pr[G4 ⇒ 1|Bad′] − 1/2)|
≤ Pr[Bad′] + |Pr[G4 ⇒ 1|Bad′] − 1/2|
= DisjPKE′,S

as we wanted. ��
Combining all claims above, we obtain the following inequality:

AdvIND-qCCA
KEM,A

= |Pr[G0 ⇒ 1] − 1/2|
≤ |Pr[G0.5 ⇒ 1] − 1/2| + 8q2Gδ

≤ |Pr[G1 ⇒ 1] − 1/2| + qH2 · 2
−l+1

2 + 8q2Gδ

≤ |Pr[G1 ⇒ 1 ∧ Bad] − 1/2| + δ + qH2 · 2
−l+1

2 + 8q2Gδ

= |Pr[G1.5 ⇒ 1 ∧ Bad] − 1/2| + δ + qH2 · 2
−l+1

2 + 8q2Gδ

= |Pr[G2 ⇒ 1 ∧ Bad] − 1/2| + δ + qH2 · 2
−l+1

2 + 8q2Gδ

= |Pr[G3 ⇒ 1 ∧ Bad] − 1/2| + δ + qH2 · 2
−l+1

2 + 8q2Gδ

≤ |Pr[G3 ⇒ 1] − 1/2| + 2δ + qH2 · 2
−l+1

2 + 8q2Gδ

≤ |Pr[G3.5 ⇒ 1] − 1/2| + 2δ + qH2 · 2
−l+1

2 + 16q2Gδ

≤ |Pr[G4 ⇒ 1] − 1/2| + AdvDS-IND
PKE′,DM,B,S + qH2 · 2

−l+1
2 + (16q2G + 2) · δ

≤ AdvDS-IND
PKE′,DM,B,S + DisjPKE′,S + qH2 · 2

−l+1
2 + (16q2G + 2) · δ.

��
Lemma 5 (IND-qCCA Security of SXY in the QROM, Case 2 [22, Theo-
rem 4.1]). Let PKE′ be a δ-correct dPKE with message space M and ciphertext
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space C. Let H1 : M → K, H2 : {0, 1}l × C → K be hash functions modeled
as quantum random oracles. Suppose that PKE′ is DM-disjoint-simulatable with
a simulator S. Then for any adversary A against the IND-qCCA security of
KEM := SXY[PKE′,H1,H2] issuing qH2 quantum queries to H2, there exists an
adversary B against the DS-IND security of PKE′ such that

AdvIND-qCCA
KEM,A ≤ AdvDS-IND

PKE′,DM,B,S + DisjPKE′,S + qH2 · 2
−l+1

2 + 2δ

and Time(B) ≈ Time(A).

Remark 4. Lemma 5 still holds with our modified definition of DS. The only
thing that needs to be changed is “Pr[Bad] ≤ DisjPKE1,S” in [22, Lemma 4.8],
which should be replaced with “Pr[Bad] = DisjPKE1,S” as (ek, dk) ← Gen1 exactly
in the proof.

Remark 5. KEM remains δ-correct.

We also need the following lemma about the security of transformation T.
It is a version without the square-root advantage loss at the cost of stronger
security requirement of the underlying PKE.

Lemma 6 (Security of T in the QROM [5, Theorem 1]). Let PKE0 be a
rPKE with messages space M and random space R. Let G : M → R be a hash
function modeled as a quantum random oracle. Then for any adversary A against
the OW-CPA security of PKE := T[PKE0,G] issuing qG quantum queries to G with
depth dG, there exists an adversary B against the IND-CPA security of PKE0 such
that

AdvOW-CPA
PKE,A ≤ (dG + 2) ·

(

AdvIND-CPA
PKE0,B +

8(qG + 1)
|M|

)

and Time(B) ≈ Time(A).

Finally, we can get the security results of the two KEMs. For simplicity, we
assume the number of parallel queries is np for all oracle algorithms. And we use
AP in the following proofs to denote the adversary against the scheme P.

Combining Lemma 6 with Theorem 1 and Theorem 3, we obtain the following
result for the IND-qCCA security of KEM := SXY ◦ KC ◦ T from the IND-CPA
security of a δ-correct rPKE in the QROM.

Corollary 1 (IND-qCCA Security of SXY ◦ KC ◦ T in the QROM). Let
PKE0 be a δ-correct rPKE with message space M, ciphertext space C and random-
ness space R. Let G : M → R, H : M → {0, 1}n, H1 : M → K, H2 : {0, 1}l×C×
{0, 1}n → K be hash functions modeled as quantum random oracles. Then for any
adversary A against the IND-qCCA security of KEM := SXY[KC[T[PKE0,G],H],
H1,H2] issuing qG, qH, qH1 and qH2 quantum queries to G, H, H1 and H2 with
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depth dG, dH, dH1 and dH2 , there exists an adversary B against the IND-CPA
security of PKE0 such that

AdvIND-qCCA
KEM,A ≤ 4d′

H(d′
G + 2) ·

(

AdvIND-CPA
PKE0,B +

8(q′
G + 1)
|M|

)

+ (16q2G + 8d′
H + 4) · δ + qH2 · 2

−l+1
2 + 2−n

and Time(B) ≈ 2 · Time(A), where d′
H := dH + dH1 , d′

G := 2(dG + dH + 2dH1 + 1)
and q′

G := 2(qG + qH + 2qH1 + np).

Proof. From the construction of APKE′
in the proof of Theorem 3, we can know

that APKE′
issues qG+qH1 , qH+qH1 queries to G, H with depth dG+dH1 , dH+dH1 .

Furthermore, from the construction of APKE in the proof of Theorem 1 and the
construction of D in the proof of Lemma 3, we can know that APKE issues at
most (qG + qH1) × 2 + (qH + qH1) × 2 + 2np queries to G with depth (dG + dH1) ×
2 + (dH + dH1) × 2 + 2, where the first part comes from D’s twice invocations to
APKE′

, the second part comes from D’s queries to H and H′, and the third part
comes from APKE’s testing of the set T returned by D. ��

Combining Theorem 2 with Lemma 5, we obtain the following result for the
IND-qCCA security of KEM := SXY ◦ KC from the OW-CPA security of a δ-correct
dPKE in the QROM.

Corollary 2 (IND-qCCA Security of SXY ◦ KC in the QROM). Let PKE be
a δ-correct dPKE with message space M and ciphertext space C. Let H : M →
{0, 1}n, H1 : M → K, H2 : {0, 1}l × C × {0, 1}n → K be hash functions modeled
as quantum random oracles. Then for any adversary A against the IND-qCCA
security of KEM := SXY[KC[PKE,H],H1,H2] issuing qH, qH1 and qH2 quantum
queries to H, H1 and H2 with depth dH, dH1 and dH2 , there exists an adversary
B against the OW-CPA security of PKE such that

AdvIND-qCCA
KEM,A ≤ 4d′

H · AdvOW-CPA
PKE,B + (4d′

H + 3) · δ + qH2 · 2
−l+1

2 + 2−n

and Time(B) ≈ 2 · Time(A), where d′
H := dH + dH1 .

Proof. From the construction of APKE′
in the proof of Lemma 5, we can know

that APKE′
issues qH + qH1 queries to H with depth dH + dH1 . ��
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