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Abstract. A Sidon space is a subspace of an extension field over a base
field in which the product of any two elements can be factored uniquely,
up to constants. This paper proposes a new a public-key cryptosystem
of the multivariate type which is based on Sidon spaces, and has the
potential to remain secure even if quantum supremacy is attained. This
system, whose security relies on the hardness of the well-known Min-
Rank problem, is shown to be resilient to several straightforward alge-
braic attacks. In particular, it is proved that the two popular attacks on
the MinRank problem, the kernel attack and the minor attack, succeed
only with exponentially small probability. The system is implemented in
software, and its hardness is demonstrated experimentally.
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1 Introduction

Public key cryptosystems (PKCs), such as RSA, are essential in many communi-
cation scenarios. However, most number-theoretic PKCs are prone to quantum
attacks, and will become obsolete once quantum supremacy is attained. Hence,
it is important to devise PKCs whose hardness relies on problems that are hard
to solve even with quantum computers at hand. One such problem that has
gained increasing attention lately is solving a system of multivariate polynomial
(usually quadratic) equations [22,28], which is NP-hard in general [10]. PKCs
whose hardness relies on solving multivariate polynomial equations are called
Multivariate Public Key Cryptosystems (MPKCs).

Nearly all MPKCs in the literature were either cryptanalyzed or their effi-
ciency was proved to be limited. Recently, the so-called ABC cryptosystem [28],
that relies on simple matrix multiplication as the encryption scheme, seems to
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have been broken by [13]. Earlier works include the Hidden Field Equations
(HFE) cryptosystem [22] that has been broken by a MinRank attack [15], and
the TTM scheme [19] that experienced a similar fate [14]. In addition, some
variants of the HFE scheme, such as ZHFE [25] and HFE- [7] were also suc-
cessfully attacked by [23] and [30]. The MPKC of [27] was also broken by a
MinRank attack. Additional candidates include the oil-and-vinegar scheme [16],
Rainbow [8], and Gui [24]. In light of these recent advances, in this paper we
propose a new MPKC which seems to be inherently robust against several nat-
ural attacks. This MPKC is based on a newly defined algebraic concept called
Sidon spaces.

Let Fq denote a finite field with q elements, and let F
∗
q � Fq \ {0}. For an

integer n let Fqn be the algebraic extension of degree n of Fq, and let [n] �
{1, 2, . . . , n}. Simply put, a Sidon space V is a subspace of Fqn over Fq such
that the product of any two nonzero elements of V has a unique factorization
over V , up to a constant multiplier from Fq. Sidon spaces were recently defined
in [2] as a tool for studying certain multiplicative properties of subspaces, and
their application to error correction in network coding, alongside several explicit
constructions that are employed herein, were studied in [26].

In this paper we suggest the Sidon Cryptosystem, an MPKC based on Sidon
spaces. In a nutshell, this cryptosystem enables the sender to transmit the prod-
uct of two elements in a secret Sidon space V , without knowing its structure.
The receiver uses the structure of V in order to factor the given product and
obtain the plaintext efficiently. A malicious attacker, however, cannot extract
the plaintext from the product due to insufficient knowledge about V . The sug-
gested Sidon cryptosystem is based on a specific optimal construction of a Sidon
space from [26], and yet, other Sidon spaces with comparable parameters can
be used similarly. The security of the suggested system relies on the hardness
of solving multivariate polynomial equations, and the hardness of the MinRank
problem.

In the MinRank problem, which is believed to be hard even for quantum
computers, one must find a low-rank target matrix in the linear span of matrices
that are given as input; it arises in settings where one solves a quadratic sys-
tem of equations via linearization. Cryptographic systems that are based on the
MinRank attack are often broken by either of two attacks, the minor attack and
the kernel attack (also known as the Kipnis-Shamir attack) [12]. In the minor
attack, one formulates an equation system by setting all small minors of the
target matrix to zero, and solves the resulting system (usually) by linearization.
The kernel attack exploits the fact that vectors in the kernel of the target matrix
give rise to linear equations in the coefficients of its combination; successfully
guessing sufficiently many of those will break the system.

In the sequel we analyze the Sidon cryptosystem in the face of these two
attacks, and both are proved to succeed only with exponentially small probabil-
ity. We additionally analyze attacks that are specific to the Sidon cryptosystem
and are not in either of those forms, and show that these require solving polyno-
mial equations outside the range of feasibility. We emphasize that unfortunately,
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a rigorous proof of hardness that does not rely on a particular attack structure
is yet to be found.

This paper is organized as follows. The definition of a Sidon space, alongside
relevant constructions and their efficient factorization algorithm, are given in
Sect. 2. The details of the Sidon cryptosystem are given in Sect. 3, and its effi-
ciency is discussed. MinRank attacks, namely, the kernel attack and the minor
attack, are discussed in Sect. 4. Attacks which are specifically designed for the
Sidon cryptosystem are discussed in Sect. 5. Finally, experimental results are
reported in Sect. 6, and concluding remarks are given in Sect. 7.

We adopt the following notational conventions. Scalars are denoted by a, b, . . .
or α, β, . . .; matrices by A,B . . .; sets by U ,W, . . .; linear subspaces and polyno-
mials by V,U, . . .; and vectors, all of which are row vectors, by v,ν, . . ..

2 Preliminaries

For integers k and n let Gq (n, k) be the set of all k-dimensional subspaces of Fqn

over Fq. Sidon spaces were recently defined in [2] as a tool for studying certain
multiplicative properties of subspaces. As noted in [2], the term “Sidon space”
draws its inspiration from a Sidon set. A set of integers is called a Sidon set if
the sums of any two (possibly identical) elements in it are distinct; thus, Sidon
spaces may be seen as a multiplicative and linear variant of Sidon sets. In the
following definition, for a ∈ Fqn , let aFq � {λa|λ ∈ Fq}, which is the subspace
over Fq spanned by a.

Definition 1 ([2, Sect. 1]). A subspace V ∈ Gq (n, k) is called a Sidon space if
for all nonzero a, b, c, d ∈ V , if ab = cd then {aFq, bFq} = {cFq, dFq}.

It is shown in [2, Thm. 18] and in [26, Prop. 3] that if V ∈ Gq (n, k) is a Sidon
space, then

2k ≤ dim(V 2) ≤
(

k + 1
2

)
, (1)

where V 2 � span
Fq

{u · v|u, v ∈ V }, and consequently it follows that k ≤
n/2. Sidon spaces which attain the upper bound are called max-span Sidon
spaces, and are rather easy to construct; it is an easy exercise to verify
that span

Fq
{δni}k

i=1 is a max-span Sidon space in Fqn for n > 2k2(1 + ok(1)),
where δ is a primitive element of Fqn , and {n1, . . . , nk} ⊆ [�n/2�] is an optimal
(i.e., largest) Sidon set [21]. Sidon spaces which attain the lower bound in (1) are
called min-span Sidon spaces, and are paramount to our work; it will be shown
in the sequel that having k = Θ(n) is essential to the security of the system.
The cryptosystem which is given in this paper employs a min-span Sidon space
whose construction is given in the remainder of this section.

Motivated by applications in network coding, constructions of Sidon spaces
in several parameter regimes were suggested in [26]. In particular, the following
construction provides a Sidon space V ∈ Gq (rk, k) for any k and any r ≥ 3.
A slightly more involved variant of this construction is shown in the sequel to
provide a Sidon space in Gq (2k, k), which will be used in our cryptosystem.
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Construction 1 [26, Const. 11]. For integers r ≥ 3, k, and q a prime power,
let γ ∈ F

∗
qrk be a root of an irreducible polynomial of degree r over Fqk . Then,

V � {u + uqγ|u ∈ Fqk} is a Sidon space in Gq (rk, k).

By choosing the element γ judiciously, a similar construction provides a Sidon
space in Gq (2k, k) for any q ≥ 3 as follows. For any given nonnegative integer k,
let Wq−1 � {uq−1|u ∈ Fqk} and Wq−1 � Fqk \ Wq−1. The next construction
requires an element γ ∈ Fq2k that is a root of an irreducible quadratic polyno-
mial x2 + bx + c over Fqk , where c ∈ Wq−1. According to [26, Lemma 13], for
any c ∈ Wq−1 there exist many b’s in Fqk such that x2 + bx + c is irreducible
over Fqk , and hence such γ elements abound1.

Construction 2 [26, Const. 15]. For a prime power q ≥ 3 and a positive inte-
ger k, let n = 2k, and let γ ∈ F

∗
qn be a root of an irreducible polynomial x2+bx+c

over Fqk with c ∈ Wq−1. The subspace V � {u + uqγ|u ∈ Fqk} is a Sidon space
in Gq (2k, k).

The Sidon space V of Construction 2 will be used in the sequel to devise
an MPKC. This subspace admits the following efficient algorithm [26, Thm. 16]
that for every nonzero a and b in V , factors ab to a and b up to constant factors
from Fq; note that since ab = ( 1

λa)(λb) for any a, b ∈ V and any λ ∈ F
∗
q , this

algorithm is capable of identifying a and b only up to a multiplicative factor
in Fq.

Given ab, denote a = u + uqγ for some nonzero u ∈ Fqk and b = v + vqγ for
some nonzero v ∈ Fqk . Notice that since γ is a root of x2 + bx + c it follows that

ab = (u + uqγ)(v + vqγ)
= (uv − (uv)qc) + (uvq + uqv − b(uv)q)γ ,

and since {1, γ} is a basis of Fqn over Fqk , it follows that one can obtain the
values of q0 � uv − (uv)qc and q1 � uvq + uqv − b(uv)q by representing ab over
this basis.

Since c ∈ Wq−1, it follows that the linearized polynomial T (x) = x − cxq

is invertible on Fqk . Hence, it is possible to extract uv from q0 = T (uv) by
applying T−1.

Knowing uv, extracting uvq+vuq from q1 is possible by adding b(uv)q. There-
fore, the polynomial uv+(uvq+uqv)x+(uv)qx2 can be assembled, and its respec-
tive roots −1/uq−1 and −1/vq−1 can be found. Since these roots determine uFq

and vFq uniquely, it follows that a and b are identified up to order and up to a
multiplicative factor in Fq.

1 Since |Wq−1| = qk− qk−1
q−1

−1, a crude lower bound for the number of such elements γ

is ≈ q−2
q−1

· qk.
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3 The Sidon Cryptosystem

In general, for a Sidon space V ∈ Gq (n, k) and a, b ∈ V , factoring ab to a and b
requires knowledge about the structure of V , as can be seen from the factoring
algorithm suggested above. This intuition leads to the following MPKC, called
the Sidon Cryptosystem. The crux of devising this system is enabling Bob to
encrypt his message into a product ab, without the need to know the precise
construction of V by Alice. This is done by exploiting the bilinear nature of
multiplication in finite field extensions.

To this end, we introduce the notion of a multiplication table of a subspace.
For a given vector v = (v1, . . . , vk) ∈ F

k
qn let M(v) � vᵀv. For an ordered

basis b = (b1, b2, . . . , bn) of Fqn over Fq, express M(v) as a linear combination
of matrices over Fq, i.e.,

M(v) = b1M(1) + b2M(2) + . . . + bnM(n), and let

M(v,b) � (M(1),M(2), . . . ,M(n)).

The matrix M(v) is called the multiplication table of v, and the entries
of M(v,b) are called the coefficient matrices of v with respect to b. This notion
will be of interest when {v1, . . . , vk} is a basis of a Sidon space.

The following cryptosystem relies on choosing a random Sidon space by Con-
struction 2 (which amounts to randomly choosing a proper γ), fixing an arbi-
trary ordered basis ν = (ν1, . . . , νk) of V , and interpreting the product of two
elements a �

∑k
i=1 aiνi and b �

∑k
i=1 biνi in V as the bilinear form aM(ν)bᵀ,

where a = (a1, . . . , ak) ∈ F
k
q and b = (b1, . . . , bk) ∈ F

k
q . Even though the sug-

gested cryptosystem relies on Construction 2, any Sidon space for which an
efficient factorization algorithm exists may be used similarly. A remark about
the required ratio k/n is given shortly.

To describe the message set in the following cryptosystem, let ∼ be an equiva-
lence relation on F

k×k
q such that A ∼ B if A = Bᵀ, for any A,B ∈ F

k×k
q . Further,

let Qk be the set of k×k rank one matrices over Fq, modulo the equivalence rela-
tion ∼. That is, Qk is a set of equivalence classes, each of which contains either
one symmetric matrix of rank one, or two non-symmetric matrices of rank one,
where one is the transpose of the other. It is shown in Lemma 3 in Appendix A
that |Qk| = (qk−1)(qk−q)

2(q−1) + qk −1. In what follows, Alice chooses a random Sidon
space V by Construction 2, and publishes its coefficient matrices according to a
random basis of V and a random basis of Fqn . Bob then sends Alice an encrypted
message by exploiting the bilinear nature of multiplication in field extensions.

Parameters: An integer k and a field size q ≥ 3.
Private key: Alice chooses

1. A random representation of Fqn over Fq: i.e., a polynomial PA(x) ∈
Fq[x] of degree n = 2k which is irreducible over Fq.

2. A random Sidon space by Construction 2: i.e., a random element c ∈
Wq−1 and an element b ∈ Fqk such that Pb,c(x) � x2+bx+c is irreducible
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over Fqk , a γ ∈ F
∗
qn such that Pb,c(γ) = 0; this γ defines the Sidon

space V � {u + uqγ|u ∈ Fqk}.
3. A random ordered basis ν = (ν1, . . . , νk) of V : which is equivalent to

choosing a random invertible k × k matrix over Fq.
4. A random ordered basis β = (β1, . . . , βn) of Fqn over Fq: which is

equivalent to choosing a random invertible n × n matrix over Fq.
Public key: Alice publishes M(ν,β) = (M(1), . . . ,M(n)).
Encryption: The message to be encrypted is seen as an equivalence class in Qk.

Bob chooses arbitrary a = (a1, . . . , ak) and b = (b1, . . . , bk) that correspond
to his message (i.e., such that aᵀb is in the corresponding equivalence class
in Qk), and sends E(a,b) �

(
aM(i)bᵀ)n

i=1
to Alice.

Decryption: Alice assembles

n∑
i=1

aM(i)bᵀ · βi = aM(ν)bᵀ = aνᵀνbᵀ =

(
k∑

i=1

aiνi

) (
k∑

i=1

biνi

)
� ab .

Since a and b are in the Sidon space V , they can be retrieved from ab up to
order and up to a multiplicative factor from Fq (see Sect. 2). The respective a
and b are then retrieved by representing a and b over ν. Since a and b
correspond to a unique equivalence class in Qk, it follows that they determine
the message sent by Bob uniquely.

An alternative scheme which employs randomization is given in Appendix B.
One clear advantage of the above system is that its information rate approaches 1
as k grows. The information rate is defined as the ratio between the number of
bits in Bob’s message and the number of bits that are required to transmit the
corresponding cyphertext. Due to the size of Qk, given earlier, it follows that the
number of information bits in Bob’s message approaches 2k log2 q as k grows;
this is identical to the number of information bits in the cyphertext E(a,b).

On the other hand, a clear disadvantage is that the public key is relatively
large in comparison with the size of the plaintext; due to the symmetry of the
coefficient matrices, the public key contains k2(k+1) elements2 in Fq, whereas the
plaintext contains approximately 2k elements in Fq. This disadvantage is appar-
ent in some other MPKCs as well. For instance, in the ABC cryptosystem [28,
Sect. 3], to transmit a message of k field elements, 2k quadratic polynomials
in k variables are evaluated. Hence, the information rate is 1

2 , and in order to
transmit k field elements, a public key of k2(k + 1) field elements is required.
Our system suffers from a large public key as many other MPKCs, albeit at
information rate which approaches 1.

Remark 1 (A note about performance). Both encoding and decoding require
only elementary operations over finite fields. Given a and b, Bob encrypts by
computing n bi-linear transforms in O(k3). Given the cypertext, Alice obtains ab
using O(k2) operations, and follows the factorization algorithm from Sect. 2.
This algorithm includes change-of-basis to {1, γ}, which is equivalent to solving

2 That is, n = 2k matrices, each containing
(
k+1
2

)
elements.
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a linear equation, followed by applying a pre-determined linear transform T−1,
solving a univariate quadratic polynomial over Fqn , and finally two computation
of inverse (e.g., by the extended Euclidean algorithm) and two extractions of
(q−1)’th root (e.g., by the O(k3) algorithm of [4]). Overall, assuimg q is constant,
both encoding and decoding require O(k3) operations. Key generation can be
done via a simple randomized process, and experimental results are given in
Sect. 6.

Remark 2 (A note about parameters). The fact that n = 2k (or more generally,
that k = Θ(n)) in the Sidon cryptosystem above seems to be essential to the
security of the system. For example, using a max-span Sidon space [26, Sect. IV],
in which the set {νiνj}i,j∈[k] is linearly independent over Fq and thus n ≥ (

k+1
2

)
,

is detrimental to the security of the system—it is easy to verify that if V is a
max-span Sidon space, then span

Fq
({M(i)}n

i=1) is the set of all k × k symmetric
matrices over Fq. Hence, given E(a,b) = (aM(i)bᵀ)n

i=1, by using linear opera-
tions one can have (aCi,jbᵀ)i,j∈[k], where Ci,j is a matrix which contains 1 in
its (i, j)-th entry, 1 in its (j, i)-th entry, and zero elsewhere, and as a result the
expressions {aibi}k

i=1 and {aibj +ajbi}i>j are obtained. Clearly, these values are
the coefficients of pa · pb, where

pa(x1, . . . , xk) �
∑
i∈[k]

aixi, and pb(x1, . . . , xk) �
∑
i∈[k]

bixi ,

and thus a and b could be identified by factoring pa · pb.

4 MinRank Attacks

In what follows, we consider several attacks that are based on the well-known
NP-complete problem3 MinRank [10]. In all of these attacks, it is shown that
breaking the system requires solving some special case of MinRank, and the
feasibility of success is discussed.

The MinRank problem.
Input: Integers k, n, r and linearly independent matrices N(0),N(1), . . . ,N(n)

in F
k×k for some field F.

Output: A tuple (λ1, . . . , λn) ∈ F
n, not all zero, such that

rankF

(
n∑

i=1

λiN(i) − N(0)

)
≤ r.

In this section, the purpose of the attacker Eve is to find an equivalent secret
key V ′. That is, Eve begins by guessing an irreducible polynomial PE(x) of
degree n = 2k to define FE = Fq[x] mod (PE(x)) = Fqn , where (PE(x)) is the
ideal generated by PE(x) in Fq[x]. Then, since there exists a field isomorphism f :

3 Or more precisely, the square MinRank search problem.
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FA → FE , and since νsνt =
∑n

i=1(M
(i))s,tβi by the definition of the system, it

follows that

f(νsνt) = f(νs)f(νt) = f

(
n∑

i=1

M(i)
s,tβi

)
=

n∑
i=1

M(i)
s,tf(βi). (2)

Namely, the tuple (f(βi))n
i=1 is a solution to the MinRank problem whose param-

eters are r = 1, N(0) = 0, n = 2k, F = FE , and N(i) = M(i) for i ∈ [n]. Then,
factoring the resulting rank one matrix

∑n
i=1 M(i)f(βi) to f(ν)ᵀf(ν) enables

Eve to find V ′ = f(V ), i.e., the subspace in FE which is isomorphic to V in FA.
With f(V ) at her disposal, Eve may break the cryptosystem.

To the best of the authors’ knowledge, this solution is not necessarily unique;
furthermore, it is unclear if breaking the system is possible if a solution is found
which is not a basis of FE over Fq, or if the resulting V ′ is not a Sidon space. Nev-
ertheless, we focus on the hardness of finding any solution. Moreover, due to (2),
for convenience of notation we omit the isomorphism f from the discussion.

4.1 The Kernel Attack

The kernel formulation of MinRank relies on the fact that any nonzero vec-
tor v ∈ F

k
qn in K � kerFqn

(
∑

i∈[n] βiM(i)) gives rise to k Fqn-linear equations
in y1, . . . , yn, namely, the k equations given by (

∑n
i=1 yiM(i))vᵀ = 0. To find the

correct y1, . . . , yn ∈ Fqn , sufficiently many v’s in K must be found. For example,
finding v1 ∈ K yields k equations in n = 2k variables, and hence there are
at least (qn)k possible solutions, depending on the linear dependence of these
equations. Finding an additional v2 ∈ K adds another k equations, which are
likely to reduce the number of possible values for y1, . . . , yn further. By repeating
this process, the attacker wishes to reduce the dimension of the solution space
sufficiently so that the solution y1, . . . , yn could be found.

Since K is unknown, the attacker resorts to uniformly random guesses of
v1,v2 ∈ F

k
qn , hoping to get them both in K. However, since dim K = k − 1, it

follows that

Pr
v∈F

k
qn

(v ∈ K) =
|K|
|Fk

qn | =
(qn)k−1

(qn)k
=

1
qn

, (3)

and hence the probability of finding even a single v ∈ K is exponentially small
in the message length.

Remark 3 (Kernel attack over the base field). Recall that M(ν) =∑
i∈[n] βiM(i). In order to make the above attack feasible, one may suggest to

guess nonzero vectors v ∈ F
k
q rather than v ∈ F

k
qn . However, it is easy to see that

for any nonzero vector v ∈ F
k
q we have M(ν)v 
= 0, and in fact it is a vector with

no nonzero entries. Indeed, M(ν) is the multiplication table of ν = (ν1, . . . , νk),
which is a basis of the Sidon space V . Hence, M(ν)v is a vector whose i’th
coordinate equals νi(

∑
j∈[k] vjνj). Since the νj ’s are linearly independent over

Fq and v is nonzero, the second term in the product is nonzero, and hence so is
the product.
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Remark 4 (Kipnis-Shamir formulation). In a variant of this attack, one guesses
kernel vectors in a systematic form, rather than in a general form. That is, the
system

(
n∑

i=1

yiM(i)

)
⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
z1 z2 . . . zk−1

⎞
⎟⎟⎟⎟⎟⎠

= 0.

has a solution with y1, . . . , yn, z1, . . . , zk−1 ∈ Fqn (technically, the position of the
non-unit row in the r.h.s matrix can be arbitrary; however, this can be amended
by repeating the algorithm k times with different positions, or by random guess-
ing). Similar to the attack above, one can guess two column vectors from the
r.h.s matrix, and solve the resulting system, which is linear in the yi’s. However,
it is readily verified that the probability to guess each zi correctly is q−n, and
hence analysis similar to (3) applies. Alternatively, one can treat both the yi’s
and the zi’s as variables over Fqn , and solve the resulting quadratic system
using Gröbner basis algorithms. Very recently [3,31], it was shown that in some
parameter regimes, such Gröbner basis algorithms admit an inherent structure
that can be utilized to reduce the computation time, often significantly (e.g.,
for the HFE cryptosystem). Whether the Sidon cryptosystem admits a similar
structure remains to be studied.

4.2 The Minor Attack

In the minor attack of MinRank, one considers the system of homogeneous
quadratic equations given by setting all 2 × 2 minors of

∑
i∈[n] yiM(i) to zero,

and (usually) solves by linearization. That is, the system is considered as a linear
one in the

(
n+1
2

)
variables {zi,j}i≤j,i,j∈[n], where zi,j represents yiyj for every i

and j. The resulting homogeneous linear system has a right kernel of dimen-
sion at least one; if it happens to be at most one, the attacker finds a nonzero
solution w = (wi,j)i≤j and arranges it in a symmetric matrix

mat(w) =

⎛
⎜⎜⎜⎝

w1,1 w1,2 . . . w1,n

w1,2 w2,2 . . . w2,n

... · · · . . .
...

w1,n w2,n · · · wn,n

⎞
⎟⎟⎟⎠ . (4)

Then, the attacker finds a rank one decomposition (w1, . . . , wn)ᵀ(w1, . . . , wn)
of (4) (which is guaranteed to exist, since the solution zi,j = yiyj has a rank
one decomposition, and the dimension of the kernel is one), which provides a
solution.

In most systems the dimension of the kernel will indeed be at most one.
Otherwise the attacker is left with yet another MinRank problem, that we call
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secondary, in which a “rank-one vector” (that is, a vector w such that mat(w)
is of rank one) must be found in the kernel. In what follows it is shown that
this attack on the Sidon cryptosystem results in the latter scenario. That is,
attempting to solve the minor attack via linearization results in a linear system
with a large kernel. Moreover, it is shown that the secondary (and tertiary, etc.)
attack suffers from the same effect.

Let Ω be the quadratic system which results from setting all 2 × 2 minors
of

∑
i∈[n] yiM(i) to zero. This system contains

(
k
2

)2
equations, each is a linear

combination over Fq of the
(
n+1
2

)
monomials y2

1 , . . . , y
2
n, y1y2, . . . , yn−1yn. To

break the cryptosystem, the values of y1, . . . , yn in a solution to Ω should form
a basis to Fqn over Fq, and as discussed earlier, it is unclear if the system can
be broken otherwise. Yet, for generality we focus on the hardness of finding any
solution.

Let Ωlin be the matrix which results from linearizing Ω. That is, each of
the

(
n+1
2

)
columns of Ωlin is indexed by a monomial ysyt, and each row is indexed

by a minor ((i, j), (	, d)) (i.e., the minor that is computed from the i’th and j’th
rows and the 	’s and d’th columns). The value of an entry in column ysyt and
row ((i, j), (	, d)) is the coefficient of ysyt in the equation for the 2 × 2 minor
of (

∑
i∈[n] yiM(i)) in rows i and j, and columns 	 and d. Note that a solution

to Ω corresponds to a vector in the right kernel of Ωlin, but the inverse is not
necessarily true.

We begin by discussing several aspects of Ωlin. First, since the matrices M(i)

are symmetric, many rows in Ωlin are identical; minor ((i, j), (	, d)) identical to
minor ((	, d), (i, j)). Hence, the effective number of rows is at most((

k
2

)
+ 1
2

)
. (5)

Second, Ωlin is over Fq, while the required solution is in Fqn . One way to cir-
cumvent this is by representing every yi using n variables over Fq. The resulting
linearized system can be described using Kronecker products. By using the fact
that the rank of a Kronecker product is the product of the individual ranks,
it can be easily shown that this system has a large kernel, and thus solving
by linearization is not feasible. The full details of this approach are given in
Appendix C.

More importantly, in contrast to Remark 3, one can simply find kerFq
(Ωlin);

since rankFq
(Ωlin) = rankFqn

(Ωlin), it follows that the true solution (zi,j)i≤j =
(βiβj)i≤j lies in span

Fqn
(kerFq

(Ωlin)). Put differently, one can solve Ω via lin-
earization over Fq (i.e., obtain an Fq-basis to Ωlin’s right kernel), span it over Fqn ,
and search for a rank one vector. However, in what follows it is shown that the
rank of Ωlin is low (specifically, rank(Ωlin) ≤ (

n+1
2

)−n), and hence this approach
is not feasible either. One might wonder if the secondary MinRank problem that
emerges is itself solvable by linearization, for which we show that the answer is
negative, and the proof is similar.

Bounding the Rank of Ωlin. Let ν = (ν1, . . . , νk) be the secret basis of V
and let u = (ν1, . . . , νn) be an extension of ν to a complete basis of Fqn
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over Fq. Let β = (β1, . . . , βn) be the secret basis of Fqn . Therefore, we have
that uᵀu =

∑
i∈[n] βiN(i) for some matrices N(i) ∈ F

n×n
q . It is readily verified

that for every i ∈ [n], the upper left k × k submatrix of N(i) is the public key
coefficient matrix M(i). In addition, let E ∈ F

n×n
q be the change-of-basis matrix

such that β = uE, and then

βᵀβ = EᵀuᵀuE =
∑
i∈[n]

βiEᵀN(i)E. (6)

Construct a system Γ of quadratic equations in the variables y1, . . . , yn by
setting all the 2×2 minors of

∑
i∈[n] yiN(i) to zero, and let Γlin be the lineariza-

tion of the set of equations in Γ, obtained by replacing each monomial yiyj

by the variable zi,j . Notice that one obtains Ωlin from Γlin by omitting every
row ((i, j), (	, d)) of Γlin with either one of i, j, 	, d larger than k. Therefore, it
follows that ker(Γlin) ⊆ ker(Ωlin).

We claim that each matrix EᵀN(l)E, l ∈ [n] defines a valid solution to Γlin

simply by setting zi,j = (EᵀN(l)E)i,j = (EᵀN(l)E)j,i. Then, it will be shown
that {EᵀN(l)E}l∈[n] are linearly independent, and thus so are the solutions they
define. This would imply that the dimension of the solution space of Γlin is at
least n, and since ker(Γlin) ⊆ ker(Ωlin), it would also imply that the dimension
of the solution space of Ωlin is at least n.

For an element α ∈ Fqn and i ∈ [n] let (α)i ∈ Fq be the coefficient of βi in the
expansion of α as a linear combination of the βj ’s over Fq, i.e., α =

∑
i∈[n](α)iβi.

Then, it follows from the definition of the N(l)’s that N(l)
i,j = (νiνj)l. Similarly,

it follows from (6) that (EᵀN(l)E)i,j = (βiβj)l.

Lemma 1. For every l ∈ [n] the assignment zi,j = (EᵀN(l)E)i,j is a solution
for Γlin.

Proof. Let
(

a b
c d

)
∈ F

2×2
qn be an arbitrary 2×2 submatrix of uᵀu =

∑
i∈[n] βiN(i).

First, notice that the respective equation in Γ is
⎛
⎝∑

i∈[n]

(a)iyi

⎞
⎠

⎛
⎝∑

i∈[n]

(d)iyi

⎞
⎠ −

⎛
⎝∑

i∈[n]

(b)iyi

⎞
⎠

⎛
⎝∑

i∈[n]

(c)iyi

⎞
⎠ = 0,

which after linearization becomes
∑

i,j∈[n]

(a)i(d)jzi,j −
∑

i,j∈[n]

(b)i(c)jzi,j = 0. (7)

Second, since uᵀu is a rank one matrix, so is any of its 2 × 2 submatrices,
and therefore ad− bc = 0. Since this implies that (ad− bc)l = 0 for every l ∈ [n],
it follows that
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0 = (ad − bc)l = (ad)l − (bc)l

=
(∑

i,j∈[n](a)i(d)jβiβj

)
l
−

(∑
i,j∈[n](b)i(c)jβiβj

)
l

=
∑

i,j∈[n](a)i(d)j(βiβj)l − ∑
i,j∈[n](b)i(c)j(βiβj)l

=
∑

i,j∈[n](a)i(d)j(EᵀN(l)E)i,j − ∑
i,j∈[n](b)i(c)j(EᵀN(l)E)i,j .

Therefore, it follows from (7) that for every l ∈ [n], the assignments zi,j =
(EᵀN(l)E)i,j is a zero of Γlin, as needed.

Lemma 2. The n matrices EᵀN(l)E, l ∈ [n] are linearly independent over Fq.

Proof. Since E is invertible, the claim follows by showing that the matrices
{N(l)}l∈[n] are linearly independent over Fq. For l ∈ [n] let a = (ai)i∈[n] and b =
(bi)i∈[n] be nonzero vectors in F

n
q such that (

∑
i∈[n] aiνi)(

∑
j∈[n] bjνj) = βl.

Then, it follows that

βl =
(∑

i∈[n]aiν
) (∑

j∈[n]bjνj

)
= auᵀubᵀ =

∑
i∈[n]

βiaN(i)bᵀ,

and hence

aN(i)bᵀ =

{
1 i = l

0 i 
= l
.

This readily implies that every N(l) is linearly independent of the remain-
ing matrices {N(j)}j �=l; otherwise, a nontrivial linear combination N(l) =∑

j �=l αiN(j) would imply that 1 = 0 by multiplying from the left by a and
from the right by bᵀ. Since this holds for every l ∈ [n], the claim follows.

Remark 5. We have experimentally verified for a wide range of q and n values
that rank(Ωlin) =

(
n+1
2

) − 2n, namely, that dim ker(Ωlin) = 2n. In the above it
is proved that dim ker(Ωlin) ≥ n, and the remaining n dimensions remain unex-
plained. One might conjecture that different extensions of ν1, . . . , νk to u might
result in different kernels of Γlin, which might explain the missing n dimensions
in ker(Ωlin). However, it is shown in Appendix D that this is not the case, and
all possible extensions of ν1, . . . , νk to ν result in identical ker(Γlin).

Secondary Minor Attack. In the above it is shown that by attempting to
solve the minor attack via linearization, one is left with yet another MinRank
problem, which we call secondary. That is, in the secondary problem one must
find a rank one vector in the Fqn-span of ker(Ωlin) (i.e., a rank one matrix
in {mat(y)|y ∈ span

Fqn
(kerFq

(Ωlin))}, where mat(·) is defined in (4)). To show
the hardness of the primary minrank attack, it was shown earlier that it is not
feasible to find a rank one matrix in the Fqn -span of {N(i)}i∈[n] via linearization.
According to Lemma 1, to show that hardness of the secondary attack it suffices
to show that that it is not feasible to find a rank one matrix in the Fqn-span
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of {EᵀN(i)E}i∈[n]. Since E is invertible, it readily follows that a solution to the
primary attack is also a solution to the secondary, and vice versa. Therefore,
solving the secondary minor attack via linearization is not feasible either.

Moreover, in the secondary attack and in the subsequent ones (tertiary,
quaternary, etc.), we observe the following intriguing circular phenomenon. Let
{B(i)}i∈[n] ⊆ F

n×n
q such that βᵀβ =

∑
i∈[n] βiB(i). Since β = uE and uᵀu =∑

i∈[n] βiN(i), it follows that

uᵀu = (E−1)ᵀβᵀβE−1 =
∑
i∈[n]

βi(E−1)ᵀB(i)E−1 =
∑
i∈[n]

βiN(i),

and hence EᵀN(i)E = B(i). That is, in the secondary attack one should find
an Fqn-assignment to y1, . . . , yn so that

∑
i∈[n] yiB(i) is of rank one. Then, one

repeats the proof of hardness for
∑

i∈[n] yiN(i) for the special case where u = β,
i.e., where N(i) = B(i) and E = I. Lemma 1 then implies that zi,j = (B(l))i,j

is in the kernel of the linearized system, for every 	 ∈ [n]. Consequently,
while attempting to solve the secondary attack by linearization, one encoun-
ters a tertiary attack, where one should find an Fqn assignment to y1, . . . , yn

so that
∑

i∈[n] yiB(i) is of rank one. Clearly, this tertiary attack is identical to
the secondary one. Moreover, by following the same arguments we have that
all subsequent attacks (quaternary, quinary, etc.) are identical to the secondary
one.

Remark 6. As mentioned earlier, we have verified experimentally for a
wide range of q and k values over many randomized constructions,
that dim ker(Ωlin) = 2n, but as of yet have not been able to explain that math-
ematically. In the context of the secondary attack, one might suggest to take a
basis v1, . . . ,v2n of ker(Ωlin), and search for a rank one matrix in the Fqn-span
of {mat(vi)}i∈[2n], again using linearization. We have verified experimentally
that the resulting system is of the same rank as Ωlin, hence not feasibly solvable
via linearization, albeit having

(
2n+1

2

)
columns rather than

(
n+1
2

)
.

5 Other Attacks

5.1 Finding a Structured Sidon Space

In this section we present an attack which is specific to the structure of the Sidon
space V from Construction 2. By guessing an alternative construction of Fqn , Eve
may assemble a certain set of polynomial equations, which is guaranteed to have
a solution. Each such solution defines a subspace V ′, most likely a Sidon space,
whose coefficient matrices are identical to those of the secret Sidon space V ,
and hence, it can be used to break the system. However, the resulting equation
set is only slightly underdetermined, and hence it is unlikely that a suitable
polynomial algorithm exists.

In this attack, Eve guesses an irreducible polynomial PE(x) ∈ Fq[x] of
degree n, and constructs Fqn as FE � Fq[x] mod (PE(x)), where (PE(x))



Multivariate Public Key Cryptosystem from Sidon Spaces 255

denotes the ideal in Fq[x] which is generated by PE(x). Further, she guesses
a basis ω1, . . . , ωn of FE over Fq such that ω1, . . . , ωk is a basis for GE , the
unique subfield of size qk of FE .

To find ν′ � (ν′
1, . . . , ν

′
k) ∈ F

k
qn and β′ � (β′

1, . . . , β
′
n) ∈ F

n
qn such that

M(ν,β) = M(ν ′,β′), Eve defines variables {ui,j}i,j∈[k], {bi,j}i,j∈[n], and {gi}n
i=1,

all of which represent elements in Fq, and

γ′ �
n∑

j=1

gjωj ,

ν′
i �

⎛
⎝ k∑

j=1

ui,jωj

⎞
⎠ +

⎛
⎝ n∑

j=1

gjωj

⎞
⎠

⎛
⎝ k∑

j=1

ui,jωj

⎞
⎠

q

=

⎛
⎝ k∑

j=1

ui,jωj

⎞
⎠ +

⎛
⎝ n∑

j=1

gjωj

⎞
⎠

⎛
⎝ k∑

j=1

ui,jω
q
j

⎞
⎠ for all i ∈ [k], and

β′
i �

n∑
j=1

bi,jωj for all i ∈ [n] .

Eve then defines the following
(
k+1
2

)
equations over Fqn ,

ν′
sν

′
t =

n∑
i=1

M
(i)
s,t β

′
i for all s, t ∈ [k], s ≥ t . (8)

Finally, by expressing each side of every equation as a linear combination of
{ωi}i∈[n] and comparing coefficients, Eve obtains n · (k+1

2

)
= k2(k +1) equations

over Fq in n2+k2+n = 5k2+2k variables. The left hand sides of these equations
are polynomials in k2 + n = k2 + 2k variables and degree four, and the right
hand sides are linear polynomials in n2 = 4k2 variables.

Since the isomorphism f exists (2), the system is guaranteed to have a solu-
tion. The resulting subspace V ′ � span{ν′

i}i∈[n] is a Sidon space if the corre-
sponding γ′ satisfies the conditions of Construction 2. However, it seems that
the straightforward algorithms for obtaining a solution are infeasible.

Notice that the terms on the left hand side of (8) are of either of the forms

us,tu�,r, gjus,tu�,r, or gigjus,tu�,r,

for s, t, 	, r ∈ [k] and i, j ∈ [n]. Hence, a straightforward reduction to the
quadratic case includes replacing those terms by us,t,�,r, gj ·us,t,�,r, and gi,jus,t,�,r,
respectively. In the resulting quadratic equation set, the number of equations
remains e � k2(k + 1). The number of variables however, comprises of k4 vari-
ables of the form us,t,�,r, 4k2 of the form gi,j , 4k2 of the form bi,j , and 2k of
the form gj . Thus, the overall number of variables is v � k4 + 8k2 + 2k and the
equation set is underdetermined (e < v), with v = Θ(e4/3).
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Algorithms for solving underdetermined systems of quadratic equations
were studied in [6,18,29]. It is known that highly underdetermined systems
(v = Ω(e2)) and highly overdetermined systems (e = Ω(v2)) are solvable in ran-
domized polynomial time. On the other hand, if e = v ± O(1) then the current
state-of-the-art algorithms are exponential. The results in our case (v = Θ(e4/3))
seem inconclusive. In our experimental section it is shown that standard Gröbner
basis algorithms are far from feasible for solving this system for k < 10.

5.2 Extracting the Message from the Cyphertext

It is readily verified that extracting a and b from E(a,b) = (aM(i)bᵀ)n
i=1

and M(ν,β) = (M(i))n
i=1 is equivalent to solving the corresponding non-

homogeneous bilinear system of 2k equations and 2k variables. It seems that the
state-of-the-art algorithm for solving a bilinear system is given by [11, Cor. 3],
whose complexity is

O

((
na + nb + min(na + 1, nb + 1)

min(na + 1, nb + 1)

)ω)
,

where na and nb are the number of entries in a and b, and ω is the exponent of
matrix multiplication. However, this specialized algorithm requires homogene-
ity, and in any case applying it to our problem requires O(

(
3k+1
k+1

)ω
), which is

infeasible even for small values of k.
We also note that it is possible to apply algorithms that do not exploit

the bilinear nature of the system, but rather only its quadratic one. However,
evidence show that standard Gröbner basis algorithms for solving quadratic
equations perform very poorly on quadratic equation sets in which the number
of equations and the number of variables is equal. Following Remark 2, it should
be noted that if one would employ a max-span Sidon space as the private key,
the resulting bilinear system has Θ(k2) equations and 2k variables, and hence it
is easy to solve by [5, Sect. 6.5] and references therein.

6 Experiments

Experiments were run using a computer with an Intel i7-9750H CPU with 16 GB
of RAM. Computations were done on an engineering cluster node with 2 Intel
x86 E5 2650 processors with 64 gigabytes of RAM. For reproducibility, the code
for all experiments is given [1]. Throughout this section we denote the number
of equations by e and number of variables by v.

Before discussing attacks, we discuss the performance of the system itself.
Encoding and decoding use simple finite field operations, and had marginal affect
on run-times (see Remark 1). The significant part of the key generation algorithm
is the choice of γ, which defines the secret Sidon space; this amounts to choosing
the quadratic polynomial Pa,b so that it is irreducible over Fqk with c ∈ Wq−1.
This was done at random, and mean success times for different k and q values
over 10 trials are given in Fig. 1.
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The easiest attack to implement seems to be the bilinear one (Sect. 5.2), due
to the small size of the associated inhomogeneous bilinear system (v = e = 2k).
Specialized algorithms for improved performance on bilinear systems [11] are
inapplicable, since they require homogeneity and have exponential complex-
ity. We used the F4 algorithm from the FGb library [9] in combination with
FGb sage [32]. The system was homogenized before the Gröbner basis was com-
puted. Attacks were efficiently carried out for k ≤ 10 (i.e., v = 21 and e = 20).
The field size q was varied between q = 3 and q = 65521, but had marginal effect
on running times. Past k = 10, the F4 algorithm exceeded the 50 · 106 bound
on the dimension of the matrix. Average running times, that are given below in
Fig. 2, are consistent with the exponential growth one would expect.
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Fig. 1. Average running times of randomized key generation for various q values.

Next, executing the minor attack (Sect. 4.2) past k = 2 proved difficult.
The first class of algorithms considered for this attack were of the eXtended
Linearization (XL) family [5], but were not promising for a number of reasons.
First, XL algorithms require a unique solution, which is not the case in our
systems. Second, complexity analysis shows poor asymptotic performance; XL
algorithms are polynomial if ε � e

v2 is fixed, but are in general exponential
otherwise. In our case ε approaches 0 as k increases, and thus we resorted to
Gröbner basis algorithms.

Experimental evidence shows that while the attack generates Θ(k5)
Eq. (10), only 2k2(2k−3) of them are independent (an upper bound of 2k2(2k+1)
is given in (11)). Benchmarks for fast Gröbner basis algorithms [17] show that
the k = 3 system exists on the borderline of what has been computed, and that
is supported by experimental evidence. Both implementations of F5 as well as
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Fig. 2. Average running times for the bilinear attack (Sect. 5.2) on randomly chosen
Sidon cryptosystems. Standard deviations are given in light shaded area, which is barely
visible.

the FGb library were used to try and compute Gröbner bases for this system,
but neither performed well, with the FGb library quickly surpassing the 50 · 106

matrix bound and the F5 algorithm not terminating after several days of run-
ning. For k = 4 and k = 5 we were able to compute the degree of regularity,
which was 8.

The structured attack in Sect. 5.1, which has v = Θ(k2) and e = Θ(k3) proved
to be the least feasible, where k = 3 (v = 36 and e = 54) and up were completely
unsolvable. The system can be reduced to a quadratic one with v = Θ(k4)
variables, which did not seem to accelerate the computation.

7 Discussion

In this paper the Sidon cryptosystem was introduced, and several straightforward
attacks were given. These attacks were shown to induce instances of several
problems for which it is unlikely that a polynomial algorithm exists. Nevertheless,
a finer analysis of the algebraic nature of Sidon spaces might shed some light
on the structure of these instances, and consequently, might prove the system
insecure. On the other hand, a rigorous proof for the hardness of the Sidon
cryptosystem, which has yet to be found, will be a significant achievement in
post-quantum cryptography.

The first order of business in extending this work is finding the remaining n
dimensions in the kernel of Ωlin, and we have verified experimentally that these
additional n dimensions do not exist in Γlin. More broadly, we suggest that
applications of Sidon spaces to cryptography extend beyond what is discussed
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in the paper. Other than using different constructions of Sidon spaces (e.g., [20])
in the framework described above, we suggest to study the following concepts in
order to strengthen the resulting systems.

r-Sidon spaces. The Sidon spaces in this paper enable the product of every
two elements to be factored uniquely (up to constants). This is a special case
of r-Sidon spaces, in which the product of any r elements can be factored
uniquely (see [26, Sect. VI]). This would extend the hardness of the system
from solving bilinear systems to r-linear ones.

High rank multiplication table. Most of the susceptibility of the Sidon cryp-
tosystem lies in the matrix M(ν) (see Sect. 3) being of rank one. To rem-
edy that, let U, V ∈ Gq (4k, k) be min-span Sidon spaces such that V is
spanned by ν = (νi)k

i=1, U is spanned by υ = (υi)k
i=1 and U2 ∩ V 2 = {0}.

It is readily verified that Bob in able to decrypt the ciphertext even if the
matrix M(ν) = νᵀν is replaced by νᵀν + υᵀυ: Bob will begin by extract-
ing aνᵀνb from the ciphertext, which is possible since U2 ∩ V 2 = {0}, and
continue similarly. If the vectors ν and υ are independent over Fqn , the result-
ing matrix is of rank two, and hence the system’s resilience against MinRank
attacks is increased.
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Appendix A

An Omitted Proof.

Lemma 3. For any prime power q and an integer k, the size of Qk (see Sect. 3)
is (qk−1)(qk−q)

2(q−1) + qk − 1.

Proof. The following statements, which are easy to prove, are left as an exercise
to the reader.

1. For every a and b in F
k
q \ {0}, the matrix aᵀb is symmetric if and only

if a ∈ span
Fq

(b).
2. Every a,b in F

k
q \ {0} and every λ, μ ∈ F

∗
q satisfy that aᵀ · (λa) = bᵀ · (μb)

if and only if μλ−1 is a quadratic residue, and a =
√

μλ−1 · b.
3. Every a,b, c, and d in F

k
q such that a /∈ span

Fq
(b) and c /∈ span

Fq
(d) satisfy

that aᵀb = cᵀd if and only if a = λc and b = λ−1d for some λ ∈ F
∗
q .

Therefore, 1 and 2 imply that Qk contains qk − 1 equivalence classes of size one.
In addition, 1 and 3 imply that Qk contains (qk−1)(qk−q)

2(q−1) equivalence classes of
size two.
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Appendix B

Randomized Encryption. In certain cryptographic scenarios it is imperative
that repeated messages will not induce repeated cyphertexts. That is, Eve must
not know that Bob wishes to send Alice a message which has already been sent
before. A common solution to this constraint is to use randomness, as suggested
below.

In this section it is shown that this can be attained at the price of a slightly
larger public key and half of the information rate. Roughly speaking, the idea
behind the suggested scheme is to modify the Sidon cryptosystem so that one
of the elements a and b (see Sect. 3) is random.

To achieve the above goal, Alice randomly chooses an additional irreducible
polynomial PR(x) ∈ Fq[x] of degree k = n/2, which is appended to the public
key, and fixes a canonical basis z1, . . . , zk of FR � Fq[x] mod (PR(x)) over Fq.
Rather than encoding into the set Qk, Bob encodes his message as a = (ai)k

i=1 ∈
F

k
q \ {0}. By randomly picking b = (bi)k

i=1 ∈ F
k
q \ {0} and using the canonical

basis z1, . . . , zk, Bob defines

â �
k∑

i=1

aizi , b̂ �
k∑

i=1

bizi ,

â/b̂ � ĉ =
k∑

i=1

cizi , and c � (c1, . . . , ck) ,

and sends E(c,b) to Alice. Upon receiving E(c,b), Alice decrypts E(c,b) as in
Sect. 3, obtains {c′,b′} � {λ ·(c1, . . . , ck), 1

λ ·(b1, . . . , bk)}, for some unknown λ ∈
Fq, and computes (

λ

k∑
i=1

cizi

) (
1
λ

k∑
i=1

bizi

)
= λĉ · 1

λ b̂ = â.

By representing â over z1, . . . , zk, Alice obtains a, the plaintext by Bob. It is
evident from this scheme that repeatedly transmitting a message a is highly
unlikely to produce identical cyphertexts.

Appendix C

Linearization Attack Over Fq. To obtain an Fqn -solution to Ωlin, set ys =∑
j∈[n] ys,jδj for every s ∈ [n], where {δi}i∈[n] is any basis of Fqn that the attacker

chooses, and the yi,j ’s are variables that represent Fq elements. This transition
to Fq can be described using Kronecker products as follows. Let {c

(i,j)
d }i,j,d∈[n]

so that δiδj =
∑

d∈[n] c
(i,j)
d δd for every i and j. Then, an equation of the

form
∑

s,t αs,tysyt = 0, where αs,t ∈ Fq, is written as

0 =
∑
s,t

αs,t

⎛
⎝ ∑

j∈[n]

ys,jδj

⎞
⎠

⎛
⎝∑

i∈[n]

yt,iδi

⎞
⎠ =

∑
s,t

αs,t

∑
i,j

⎛
⎝ ∑

d∈[n]

c
(i,j)
d δd

⎞
⎠ ys,jyt,i
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=
∑
d∈[n]

δd

∑
s,t,i,j

αs,tc
(i,j)
d ys,jyt,i.

Hence, since {δd}d∈[n] is a basis, and since the remaining scalars are in Fq, this
equation induces the n equations

∑
s,t,i,j

αs,tc
(i,j)
a ys,jyt,i = 0 for every a ∈ [n]. (9)

To describe the resulting Fq-system, recall that the
(
n+1
2

)
columns of Ωlin are

indexed by the monomials ysyt, and the rows are indexed by minors ((i, j), (	, d)).
The value of an entry in column ysyt and row ((i, j), (	, d)) is the coefficient
of ysyt in the equation for the 2×2 zero minor of (

∑
i∈[n] yiM(i)) in rows i and j,

and columns 	 and d. It follows from (9) that by performing the transition to Fq

we obtain the coefficient matrix Ωq � Ωlin ⊗ C, where C ∈ F
n×n2

q is a matrix

which contains the c
(i,j)
d ’s4, and ⊗ denotes the Kronecker product.

In the resulting system Ωq the columns are indexed by ys,jyt,i with s ≤ t, and
the rows are indexed by (((i, j), (	, d)), a) (i.e., a pair which represents a minor,
up to the symmetry in (5), and an index a from (9)). This matrix contains

(
n + 1

2

)
· n2 = 8k4 + 4k3 � k′ columns, and

((
k
2

)
+ 1
2

)
· n =

2k5 − 4k4 + 6k3 − 4k2

8
rows, (10)

and a satisfying assignment for the yi,j ’s corresponds to a vector over Fq in its
right kernel. As explained earlier, since there exists a solution (the secret key in
the Sidon cryptosystem), the dimension of the right kernel of Ωq is at least one.
Since the system has more rows than columns, one would expect the dimension
of the kernel to be at most one, and the solution should be found by standard
linearization techniques (see below). However, we have that

rank(Ωq) = rank(Ω ⊗ C) = rank(Ω) · rank(C)

≤
(

n + 1
2

)
· n = 4k3 + 2k2 
 k′, (11)

and therefore, the attacker is left with yet another MinRank problem, where a
rank-one solution (in a sense that will be made clear shortly) should be found
in the linear span of at least 4k4 − 2k2 matrices {mat(vi)}, where {vi} ⊆ F

k′
q

span ker(Ωq).
To describe in what sense a solution of Ωq is of “rank one,” index the

columns of Ωq by tuples R � {(s, j, t, i)|s, j, t, i ∈ [n], s ≤ t}, where each

4 More precisely, C contains c
(i,j)
d in entry (d, (i, j)), where the n2 columns are indexed

by all pairs (i, j), i, j ∈ [n].
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column corresponds to the monomial ys,jyt,i. Then, one must finds a vec-

tor z = (zs,j,t,i)(s,j,t,i)∈R ∈ F
(n+1

2 )n2

q in the right kernel of Ωq, and wishes to
decompose it to find the respective values for {ys,j}s,j∈[n].

To find that a solution z is not parasitic, i.e., that it corresponds to some
solution ŷ = (ŷs,j)s,j∈[n] to the original quadratic system, one must verify that
all the following matrices are of rank one, and moreover, that there exist ŷ which
satisfies the following rank one decompositions.

⎛
⎜⎜⎜⎝

z1,1,1,1 . . . z1,1,1,n z1,1,2,1 . . . z1,1,2,n . . . z1,1,n,1 . . . z1,1,n,n

z1,2,1,1 . . . z1,2,1,n z1,2,2,1 . . . z1,2,2,n . . . z1,2,n,1 . . . z1,2,n,n

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

. . .
.
.
.

z1,n,1,1 . . . z1,n,1,n z1,n,2,1 . . . z1,n,2,n . . . z1,n,n,1 . . . z1,n,n,n

⎞
⎟⎟⎟⎠ = (ŷ1,1, . . . , ŷ1,n)

ᵀŷ

⎛
⎜⎜⎜⎝

z2,1,2,1 . . . z2,1,2,n . . . z2,1,n,1 . . . z2,1,n,n

z2,2,2,1 . . . z2,2,2,n . . . z2,2,n,1 . . . z2,2,n,n

.

.

.
. . .

.

.

.
. . .

.

.

.
. . .

.

.

.
z2,n,2,1 . . . z2,n,2,n . . . z2,n,n,1 . . . z2,n,n,n

⎞
⎟⎟⎟⎠ = (ŷ2,1, . . . , ŷ2,n)

ᵀ(ŷ2,1 . . . , ŷn,n)

.

.

.
⎛
⎜⎜⎜⎝

zn,1,n,1 . . . zn,1,n,n

zn,2,n,1 . . . zn,2,n,n

.

.

.
. . .

.

.

.
zn,n,n,1 . . . zn,n,n,n

⎞
⎟⎟⎟⎠ = (ŷn,1, . . . , ŷn,n)

ᵀ(ŷn,1 . . . , ŷn,n)

It is readily verified that z is non-parasitic if and only if all the above are met.
However, it is difficult to find such a solution, since the dimension of the right
kernel of Ωq is at least

num. of columns − rank(Ωq) = k′ − rank(Ωq)

≥ 8k4 + 4k3 −
((

n + 1
2

)
− n

)
n = 8k4 + 2k2.

Appendix D

Different Basis Extension. In the spirit of Remark 5, when trying to find
different extensions of ν1, . . . , νk to a basis of Fqn such that the resulting Γ and Γ′

have disjoint kernels, we discover the following. For ν = (ν1, . . . , νk), let u1 =
(ν,μ1), u2 = (ν,μ2) be two possible extensions, with respective matrices E1,E2

(i.e., such that β = u1E1 = u2E2), respective {N(i)}i∈[n], {Ñ(i)}i∈[n], and
respective kernel vectors {ni}i∈[n] and {ñi}i∈[n]. Let βᵀβ =

∑
i∈[n] βiB(i), and

observe that

uᵀ
1u1 = (E−1

1 )ᵀβᵀβE−1
1 =

∑
i∈[n]

βi(E−1
1 )ᵀB(i)E−1

1
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=
∑
i∈[n]

βiN(i), and therefore Eᵀ
1N

(i)E1 = B(i). Similarly,

uᵀ
2u2 = (E−1

2 )ᵀβᵀβE−1
2 =

∑
i∈[n]

βi(E−1
2 )ᵀB(i)E−1

2

=
∑
i∈[n]

βiÑ(i) and therefore Eᵀ
2Ñ

(i)E2 = B(i).

Hence, the respective kernel vectors {ni}i∈[n] and {ñi}i∈[n] are identical.
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