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Abstract. In this paper, we present new algorithms for the field arith-
metic layers of supersingular isogeny Diffie-Hellman; one of the fifteen
remaining candidates in the NIST post-quantum standardization pro-
cess. Our approach uses a polynomial representation of the field elements
together with mechanisms to keep the coefficients within bounds dur-
ing the arithmetic operations. We present timings and comparisons for
SIKEp503 and suggest a novel 736-bit prime that offers a 1.17× speedup
compared to SIKEp751 for a similar level of security.
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1 Introduction

Driven by recent advances in quantum computing and the potential threat on
public-key cryptography [5,17], the National Institute of Standards and Tech-
nology (NIST) launched a post-quantum cryptography standardization process.
Sixty-nine public-key encryption and signature algorithms entered the competi-
tion in 2017. After over a year of evaluation, NIST revealed a list of 26 candi-
dates selected for a second round of evaluation. At the end of July 2020, a list
of seven third-round finalists (4 encryption/KEMs, 3 digital signature schemes)
together with eight alternate candidates (5 encryption/KEMs, 3 digital signature
schemes) was made public.

One of the encryption/KEMs 3rd-round alternate candidate is based on the
Supersingular Isogeny Diffie-Hellman (SIDH) scheme proposed in 2011 by Jao
and De Feo [12]. Its security relies on the hardness of computing a smooth-degree
isogeny between two supersingular elliptic curves. The resulting NIST proposal,
called SIKE for Supersingular Isogeny Key encapsulation [11], includes various
optimizations from recent works such as [7] and [8]. SIKE is the only candidate
based on isogenies between elliptic curves. A noteworthy advantage of SIKE
over the other candidates is its very small public key sizes – the smallest of all
encryption and KEMs schemes – as well as very small cyphertexts. However, as
pointed out in [1]: “The main drawback to SIKE is that its performance (mea-
sured in clock cycles) is roughly an order of magnitude worse than many of its
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competitors. Much work has been done to optimize implementations, including
the compressed-key version, and it is hoped that such optimizations continue.”

This is exactly the purpose of the present work dedicated to the arithmetic of
SIDH. The theoretical foundations of isogeny-based cryptography are beyond the
scope of this paper. We refer the newcomer to this field of research to [6,9,10,18]
to only cite a few.

SIDH requires intensive computations in a quadratic extension of the finite
field Fp, where p is a prime of the form p = c · peA

A · peB

B ± 1 for some primes
pA, pB and some small c. The smallest value between peA

A and peB

B dictates the
security level of the protocol. The primes pA and pB are thus chosen so that peA

A

and peB

B are roughly the same size; preferably peA

A ≈ peB

B ≈ √
p.

SIKE targets four security levels. The NIST proposal contains two algorithms
called SIKE.PKE for public-key encryption and SIKE.KEM for key encapsula-
tion mechanism. Both are implemented with four sets of parameters denoted
SIKEpxxx, where xxx ∈ {434, 503, 610, 751} corresponds to the bitlength of p.
For all of these primes, c = 1, pA = 2, pB = 3 and p ≡ 3 mod 4. The quadratic
extension Fp2 can thus be represented as Fp(i) with i2 = −1. The arithmetic
layers implemented in SIKE are already highly optimized. The field level notably
makes use of a very efficient Montgomery reduction that benefits from the special
form of p (see [4] for more details).

In this paper, we propose a new, efficient way to perform the arithmetic
in Fp2 for these special SIDH primes. Our arithmetic relies on the concept of
Polynomial Modular Number Systems (PMNS) proposed by Bajard, Imbert and
Plantard [2] as an alternative approach for performing the arithmetic modulo
N . In a PMNS, the elements are represented as polynomials of bounded degree,
and the basic arithmetic operations are carried out using polynomial arithmetic.
In Sect. 2, we extend the initial definition of PMNS to any finite field Fpk and we
present generic algorithms for the conversions from and into PMNS, and for the
basic arithmetic operations. Ideally, we want the polynomial coefficients to be as
small as possible. The main difficulty, only partially solved in [2], is to perform
the arithmetic operations while keeping these coefficients small. In Sect. 3, we
present a Montgomery-like coefficient reduction algorithm first suggested in [16]
for prime fields Fp, that can be used to solve this problem. In Algorithm 1,
we give an extended generic version that works for any finite field Fpk . The
principal contribution of this work is a special case of PMNS perfectly suited
to the arithmetic of SIDH. We present optimized arithmetic algorithms and
some implementation details in Sect. 4. Finally, we illustrate the efficiency of
our approach with some experimental results and some comparisons with the
SIKE parameters in Sect. 5. In particular, we suggest a new prime p736 which
outperforms SIKEp751 by approximately 17% for a similar level of security. Our
code is available at https://gitlab.inria.fr/ciao/pmns-for-sidh.

During the development of this work, a preprint posted on the IACR eprint
archive [19] suggested a “new data representation”, used to improve the arith-
metic of SIDH. In reality, this “new” representation is a PMNS representation,
which the authors did not seem to be aware of. Their coefficient reduction strat-
egy is inspired by a modified Barrett algorithm from [13]. Unfortunately, their

https://gitlab.inria.fr/ciao/pmns-for-sidh
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implementation is an order of magnitude slower than both the optimized version
of SIKE and the present work.

2 PMNS for Finite Fields

The Polynomial Modular Number System (PMNS) [2] was introduced to per-
form arithmetic in rings Z/NZ, with N being any positive integer, using integer
polynomial arithmetic. It was used, in particular, to perform arithmetic in prime
fields. In this section, we will extend the definition of PMNS representation to
include all finite fields.

Definition 1 (PMNS basis and γ-representation). Let p be a prime, k a
positive integer and Fpk be the finite field with pk elements. Moreover, let n be a
positive integer and E a degree-n polynomial such that E has a root γ ∈ Fpk of
algebraic degree k. Let Γ denotes the minimal polynomial of γ.

The tuple B = (p, k, n, Γ, E, γ) is called a PMNS basis for the field Fpk .

A polynomial V ∈ Z[X] of degree < n such that V (γ) = v, with v ∈ Fpk , is
called a γ-representation of v in the PMNS basis B.

Note that, by definition of γ, the polynomial Γ has degree exactly k; and since
Γ is the minimal polynomial of γ, we also have k ≤ n. Thus, for all v in Fpk , the
expansion of v in the basis (1, γ, . . . , γk−1) of Fpk is a trivial γ-representation
for v. Therefore, every elements of Fpk admits a γ-representation. However, an
element of Fpk may have multiple γ-representations. We say that two integer
polynomials U and V are equivalent if they represent the same element in Fpk ,
i.e. if U(γ) = V (γ).

Example 2. The parameters p = 19, k = 1, n = 3, Γ = X − 7, E = X3 − 1,
γ = 7 define a PMNS basis for the prime field F19. It is easy to verify that
Γ (γ) ≡ E(γ) ≡ 0 (mod 19). In Table 1, we list all the γ-representations of the
elements of F19 with coefficients in {−1, 0, 1}.

Example 3. The parameters p = 5, k = 2, n = 4, Γ = X2 − 2, E = X4 + 1,
γ =

√
2 define a PMNS basis for the field F52 . It is easy to verify that Γ (γ) ≡

E(γ) = 0 in F52 . Considering this PMNS basis with coefficients bounded by 2 in
absolute value, we can see that, for example, 3

√
2 admits two γ-representations

(−X3 and X3 + X) and 3 +
√

2 admits four γ-representations (X3 − X2 − X,
−X2 + X, X3 + X2 − X + 1, X2 + X + 1).

Although γ-representations always exist, in practice, we are interested in
polynomials with small coefficients.

Definition 4 (reduced representations). Let B be a PMNS basis and let ρ
be a positive integer. A γ-representation V of v ∈ Fpk is said to be ρ-reduced
if all the coefficients of the polynomial V are less than ρ in absolute value, i.e.
|vi| < ρ, for 0 ≤ i < n. (In the rest of this article, we may simply use the term
reduced when there is no ambiguity on ρ.)
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Table 1. γ-representations of the elements of F19 with coefficients in {−1, 0, 1} in the
PMNS basis B = (19, 1, 3, X − 7, X3 − 1, 7).

v ∈ F19 γ-representations v ∈ F19 γ-representations
0 −X2 − X − 1, 0, X2 + X + 1 10 X2 − 1
1 −X2 − X, 1 11 −X − 1, X2

2 −X2 − X + 1 12 −X, X2 + 1
3 X2 − X − 1 13 −X + 1
4 X2 − X 14 −X2 + X − 1
5 X2 − X + 1 15 −X2 + X

6 X − 1 16 −X2 + X + 1
7 −X2 − 1, X 17 X2 + X − 1
8 −X2, X + 1 18 −1, X2 + X

9 −X2 + 1

In practice, we will work with ρ-reduced γ-representations, with well chosen
values of ρ. If ρ is too small, it may happen that some elements of Fpk have no
ρ-reduced γ-representation. A lower bound on values ρ for which all elements
of Fpk have a ρ-reduced γ-representation can be computed by considering a
particular lattice associated to the PMNS basis. For a PMNS basis B, let LB
denote the lattice over Z

n generated by the set of vectors corresponding to
integer polynomials Z ∈ Z[X] of degree at most n − 1 such that Z(γ) = 0 in
Fpk . An elementary basis of LB is given by the n polynomials p, pX, . . . , pXk−1,
Xk − γk, Xk+1 − γkX, . . . , Xn−1 − γkXn−1−k, or equivalently by the following
n × n, integer row-matrix

LB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p 0 · · · · · · · · · · · · · · · 0

0
. . .

...
...

. . .
...

0 · · · 0 p 0 0 · · · 0
−γk 0 · · · 0 1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 −γk 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

Let A be the row-matrix of any basis of LB and let ||A||1 be its 1-norm,
defined as ||A||1 = max {∑n

i=0 |ai,j | , 0 ≤ j < n}. Then, using [3, Theorem
2.2] we know that if ρ > 1

2 ||A||1, then there exist at least one ρ-reduced γ-
representation for every element of Fpk . This result means that any lattice reduc-
tion algorithm (assuming n is not too large) such as LLL or BKZ can be used
to determine a lower bound on the values of ρ that are valid to define a notion
of reduction for a PMNS basis.
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In the next sections, we present generic algorithms for the conversions from
and into PMNS and for the basic arithmetic operations. As we shall see, the
main and only stumbling block is to ensure that the output results have reduced
coefficients.

2.1 Conversions and Basic Arithmetic Operations

From PMNS: Given a γ-representation V ∈ Z[X], computing the corresponding
element in Fpk is just a matter of evaluating V at γ, with arithmetic operations
carried out in Fpk .

To PMNS: Given v ∈ Fpk , computing a γ-representation for v is equivalent to
writing v in the basis (1, γ, ..., γk−1). However, in general, the obtained repre-
sentation is not reduced.

Addition/Subtraction: A γ-representation of the sum u+v (resp. difference u−v)
is computed by adding (resp. subtracting) the corresponding polynomials U and
V . Again, the resulting polynomial may not be reduced.

Multiplication: A γ-representation of the product uv can be computed in two
steps. We first compute W = U × V so that W (γ) = U(γ)V (γ) = uv in Fpk .
Since deg W ≤ 2n − 2, we reduce the degree by computing W ′ = W mod E. We
have W ′ = W − QE for some polynomial Q, with deg W ′ < deg E = n. Since γ
is a root of E, W ′(γ) = W (γ). Thus, W ′ is a γ-representation of uv. However,
as for the addition, this representation is not reduced.

Note that the polynomial E can be freely chosen. In practice, we will often
choose E = Xn − e, with e ∈ Z, as it allows for faster algorithms. It is also
easier to compute useful bounds in this case. For example, if U and V are both
ρ-reduced γ-representations, then it is not difficult to see that the coefficients of
W ′ = UV mod (Xn − e) are bounded by n|e|ρ2 in absolute value.

2.2 Coefficient Reduction

Let B = (p, n, k, Γ, E, γ) be a PMNS basis and LB be the associated lattice given
in (1). According to [3], we know that if ρ > 1

2 ||A||1 for some basis A of LB,
then all the elements of Fpk admit a ρ-reduced γ-representation. Computing a
ρ-reduced γ-representation for v ∈ Fpk from V, an equivalent non-reduced one,
amounts to reducing the vector corresponding to the polynomial V modulo the
lattice LB. We thus need a way to efficiently find a lattice vector that is close
enough to V . (In general we do not need to compute the closest vector to V .)
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In [2], Bajard et al. suggested to perform this operation through lookup
tables. A lattice vector close to V is retrieved from a precomputed table, using
the most significant bits of the coefficients of V . The retrieved vector is then sub-
tracted from V to obtain a reduced representation. The size of the precomputed
table depends on the number of bits that need to be reduced. This approach
may be appropriate for a very few bits, but becomes unpractical as the number
of bits to reduce grows. In order to manage larger reductions, the authors of [2]
present various strategy to reduce the size of the required tables at the cost of
some extra arithmetic operations.

The next section presents an alternative approach that do not require any
table. First suggested in [16] for prime fields Fp, it naturally extends to any finite
field Fpk . It is inspired by Montgomery multiplication/reduction [15]. Therefore,
it is only stable in the so-called Montgomery representation, and can only be
used after a multiplication. In Sect. 4.2, we detail our reduction strategy after
an addition in the case of special PMNS basis for SIDH.

3 PMNS Coefficient Reduction à la Montgomery

Given a γ-representation C of some field element c ∈ Fpk , Algorithm 1 below
computes a γ-representation of c/2ω whose coefficients are approximately ω bits
smaller than those of c. The value 2ω plays the same role as the Montgomery
constant. In practice ω is chosen according to the size of ρ; the smaller integer
multiple of the word-size larger than ρ is a common choice. The algorithm also
needs a γ-representation of zero, denoted M in Algorithm 1. Any representation
of zero that is invertible in (Z/2ω

Z)[X]/(E) is an acceptable choice for M .

Algorithm 1. (Generic) Montgomery coefficient reduction
Input: C a γ-representation of c ∈ Fpk , M a γ-representation of zero and M ′ the

inverse of −M in (Z/2ω
Z)[X]/(E).

Output: R a γ-representation of c/2ω

1: Q ← CM ′ mod E mod 2ω

2: R ← (C + QM mod E)/2ω

3: return R

In order to prove the correctness of Algorithm 1, simply observe that in the
ring (Z/2ω

Z)[X]/(E), the polynomial C + QM is zero, so the last division is
exact. Moreover, since M(γ) = 0 in Fpk , we have (C + QM)(γ) = C(γ) in Fpk

so that R is a γ-representation of c/2ω.
In general, it is difficult to derive useful bounds on the size of the output

coefficients. However, in the case E = Xn − e, with e ∈ Z, we can show that
the size of the output coefficients are approximately ω bits smaller than those of
the input. If we assume that M is ρ-reduced and that the coefficients of C are
less than 2t in absolute value, with t a positive integer, then the coefficients of



An Alternative Approach for SIDH Arithmetic 33

C+QM mod E are less than 2t+2ωn|e|ρ in absolute value. Thus, the coefficients
of the output are less than 2t−ω + n|e|ρ in absolute value.

In the rest of this paper, we concentrate our attention on a special class of
PMNS basis well suited to SIDH. In particular, we shall explain how this generic
algorithm can be used to efficiently reduce the coefficients after a multiplication
of two reduced γ-representations.

4 PMNS for SIDH

In SIDH, arithmetic operations are performed in Fp2 for a prime p of the form
c · peA

A · peB

B ± 1, where pA, pB are two distinct primes. For efficiency reasons,
a common choice is to opt for pA = 2, pB = 3, c = 1. In this section, we will
show that PMNS basis are very well-suited to SIDH. We will describe our special
PMNS basis for SIDH in a slightly more general setting.

Definition 5. Let p be an odd prime of the form p = |γn/e − 1|, where γ is an
element of Fp of algebraic order k > 0 such that γk is an integer; n is a positive
integer; and e is an integer divisor of γk. Note that since p is an integer, we
must have k|n. A PMNS basis for Fpk of the form (p, k, n, Xk − γk, Xn − e, γ)
is called a special PMNS basis for SIDH.

Proposition 6. If B = (p, k, n, Xk − γk, Xn − e, γ) is a special PMNS basis for
SIDH, then the polynomial M = (γk/e)Xn−k − 1 is a γ-representation of zero
in B.

Proof. Simply observe that M(γ) = ±p. ��
In addition to being a representation of zero, the polynomial M is also very

sparse, with exactly two nonzero coefficients. Moreover, since γk ≈ pk/n, these
coefficients are “small”. As will be explained in details in Sect. 4.3, these prop-
erties, which come from the special form of p, are essential for the efficiency of
the Montgomery reduction algorithm.

Remark 7. Given B a special PMNS basis for SIDH, a small basis of the lattice
LB associated to B (as defined in (1)) is given by the n vectors corresponding to
the n polynomials M , XM , · · · , Xk−1M , Γ , XΓ , · · · , Xn−k−1Γ . The 1-norm
of the columns of the corresponding matrix is either |γk| + 1 or |γk/e| + 1. Thus,
the 1-norm of the matrix is |γk| + 1 for all e ∈ Z. Using [3, Th. 2.2], this implies
that (|γk| + 1)/2 is a lower bound for ρ. In other terms, it guarantees that if
ρ > (|γk| + 1)/2, then any v ∈ Fpk admits a ρ-reduced γ-representation in B.

Example 8. Let p = 22503159 − 1 be the prime called SIKEp503 in the SIKE [11]
submission to the NIST post-quantum standardization process. Special PMNS
basis for SIDH make it possible to represent the elements of Fp, but also those
of Fp2 directly.
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– A special PMNS basis for SIDH for the prime field Fp, may be obtained by
writing p = (225316)10/3 − 1, i.e. k = 1, n = 10, e = 3, and γ = 225316.
We have Γ = X − 225316 and E = X10 − 3. Any value ρ greater than the
50-bit integer γ/2 = 224316, can be used to define reduced representations. In
particular, the polynomial M = 225315X9−1 is a (ρ-reduced) γ-representation
of zero. In this case, the extension field Fp2 may be defined as Fp(i) where
i2 = −1.

– Alternatively, a special PMNS basis for SIDH can be built directly for the
quadratic extension Fp2 by writing p = (262340

√−2)4/3−1, i.e. k = 2, n = 4,
e = 3, and γ = 262340

√−2. We have Γ = X2 + 2125380 and E = X4 − 3. Any
value ρ greater than the 252-bit integer γ2/2 = 2125380, can be used to define
reduced representations. In particular, the polynomial M = −2125379X2 − 1
is a (ρ-reduced) γ-representation of zero.

4.1 Conversions from and into the Representation
Converting an element of Fpk to a special PMNS basis for SIDH is done in two
steps. First, we write the element in the basis (1, γ, · · · , γk−1). This can be done
with integer coefficients in [0, p[. Then, we need to write each integer coefficient
in radix |γk| (recall than γk is an integer) with integer digits in

[−|γk|/2, |γk|/2
[
.

Each coefficient has at most n/k digits. Hence, the output is a polynomial of
degree less than n whose coefficients are less than or equal to |γk|/2 in absolute
value. In other words, it is ρ-reduced for every possible ρ-value, according to
Remark 7.

The reverse conversion, from a special PMNS basis for SIDH to an element
of Fpk , is performed by evaluating the polynomial at γ.

4.2 Coefficients Reduction for Additions and Subtractions
The ability to quickly reduce the coefficients after the various arithmetic opera-
tions is crucial for the overall efficiency our approach.

Let us first consider the reduction of the coefficients after additions and
subtractions that only increase the coefficients’ size by a few bits.

The proposed reduction algorithm is presented in Algorithm 2. For the algo-
rithm to work, we require ρ to be larger than |γk|, i.e. twice the lower bound
given by remark 7. The operations in line 6 correspond to an euclidean division
by ρ, with signed remainder. Since ρ can be freely chosen, it is judicious to pick
a power of 2 that makes this operation very fast and easy to implement.
Theorem 9. Let B be a special PMNS basis for SIDH, with ρ > |γk|, and let
t a fixed positive integer. If max |R| + |e| max |Q| < ρ/2, then Algorithm 2 is
correct.

Proof. At the end of the algorithm, we have

V ≡ U + (Xk − γk)
n−1∑
i=0

ciX
i (mod E)

which means that V (γ) = U(γ) in Fpk . Hence U and V are equivalent in B.



An Alternative Approach for SIDH Arithmetic 35

Algorithm 2. Coefficient reduction
Input: a special PMNS basis for SIDH B = (p, k, n, Xk − γk, Xn − e, γ); a positive

integer t; and an element U of B of degree at most n−1 with |ui| < tρ for 0 ≤ i < n.
Output: a reduced element V of B of degree at most n−1 with |vi| < ρ for 0 ≤ i < n,

equivalent to U .

1: Q[j] ←
⌊
jρ/γk

⌉
for 0 ≤ j ≤ t � precomputations

2: R[j] ← jρ − γkQ[j] for 0 ≤ j ≤ t � precomputations

3: function CoeffReduc(U)
4: cj ← 0 for −k ≤ j < 0
5: for i = 0 to n − 1 do
6: Write ui as si × ui,h × ρ + ui,� with si = ±1, ui,h ≥ 0 and |ui,�| ≤ ρ/2
7: vi ← ui,� + si × R[ui,h] + ci−k

8: ci ← si × Q[ui,h]
9: vj ← vj + e × cn−k+j for 0 ≤ j < k

10: return V

Now, for 0 ≤ i < k, we have ci−k = 0, thus

vi = ui,� + si × R[ui,j ] + ci−k + e × cn−k+j

≤ ρ

2 + max |R| + e × max |C| < ρ

And for k ≤ i < n, vi = ui,� +si ×R[ui,j ]+ci−k, and the same bound is achieved
with the same arguments. ��

In practice we will use this algorithm with t = 2 or t = 4, the precomputed
tables will be of length 3 or 5. The elements of R are stored on as many bits as
|γk| and, if ρ is close to |γk|, the elements of Q are approximately t-bit long. For
larger values of t, the precomputed tables would be too large, so, for example,
Algorithm 2 cannot be used to perform the reduction after a multiplication.

Example 10. With the special PMNS basis for SIDH for SIKEp503 from Exam-
ple 8: B = (SIKEp503, 1, 10, X − 225316, X10 − 3, 225316), ρ will be chosen as the
smallest power of 2 larger than γ, i.e. ρ = 251. The condition of Theorem 9 is
satisfied for t = 2, t = 4, t = 128, and even for t = 220, but this later value is
too large to be practical.

4.3 Montgomery Multiplication

Finally, we need to adapt the new Montgomery reduction algorithm described
in Algorithm 1 in the case of a special PMNS basis for SIDH and show that it
can be used after a multiplication to obtain a reduced representation.

Algorithm 1, requires a representation of zero that is invertible in the quotient
ring (Z/2ω

Z)[X]/(E). In the case of a special PMNS basis for SIDH, we exhibited
the good candidate M for a representation of zero in Proposition 6. The next
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theorem demonstrates that M can indeed be used in the Montgomery reduction
algorithm and also gives a explicit formula for its inverse.

Theorem 11. Let B = (p, k, n, Γ, E, γ) be a special PMNS basis for SIDH and
let M = (γk/e)Xn−k −1 be the representative of zero in B introduced in Proposi-
tion 6. Let ω be a positive integer such that γn+k/e2 ≡ 0 (mod 2ω), and let β be
the largest integer such that γβk/e 	≡ 0 (mod 2ω) (the assumption on ω implies
that β ≤ n/k). Then, the inverse of the polynomial −M in (Z/2ω

Z)[X]/(E) is
given by:

M ′ = 1 +
β∑

i=1

γik

e
Xn−ik

Proof. Let us show that M × M ′ = −1 in (Z/2ω
Z)[X]/(E).

M × M ′ =
(

γk

e
Xn−k − 1

)
×

(
1 +

β∑
i=1

γik

e
Xn−ik

)

= γk

e
Xn−k +

β∑
i=1

γ(i+1)k

e2
X2n−(i+1)k −

β∑
i=1

γik

e
Xn−ik − 1

=
β+1∑
i=2

γik

e2
X2n−ik −

β∑
i=2

γik

e
Xn−ik − 1.

Since E = Xn − e, we have Xn ≡ e (mod E). Therefore

M × M ′ ≡
β∑

i=2

γik

e
Xn−ik + γ(β+1)k

e2
X2n−(β+1)k −

β∑
i=2

γik

e
Xn−ik − 1 (mod E)

≡ γ(β+1)k

e2
X2n−(β+1)k − 1 (mod E).

If 2n − (β + 1)k ≥ n (i.e. βk < n), then, after reduction by E = Xn − e, we
have

M × M ′ = γ(β+1)k

e
Xn−(β+1)k − 1

which is equal to −1 in (Z/2ω
Z)[X]/(E) by definition of β. Finally, if βk = n,

we conclude using the fact that γn+k/e2 ≡ 0 mod 2ω. ��
Note that for SIDH1, the assumption γn+k/e2 ≡ 0 (mod 2ω) is easy to satisfy

as γ is divisible by a large power of 2. In practice, the choice of ω and the fact
that 2w is almost half the size of γ will often imply that β, which corresponds
to the number of non-constant monomials of M ′ is 2.

Example 12. Let us consider again the special PMNS basis for SIDH for
SIKEp503 from Example 8: B = (SIKEp503, 1, 10, X − 225316, X10 − 3, 225316).
1 With pA = 2.
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On a 64-bit architecture, we may want to use ω = 64. The condition γn+k/e2 =
22753174 ≡ 0 (mod 264) is easily satisfied. Since γ2 = 250332 	≡ 0 (mod 264) and
γ3 = 275348 ≡ 0 (mod 264), we have β = 2. Thus

M ′ = γ

e
X9 + γ2

e
X8 + 1.

Theorem 13. Using the same notations as in Theorem 11. Let ρ be a bound on
the coefficient size such that ρ > |γk|. Let C be an element of B with coefficients
bounded by 2ωρ in absolute value. Then, Algorithm 1 applied to C will return an
element of B with coefficients bounded by 2ρ in absolute value.

Proof. Considering that the coefficients of Q are bounded by 2ω and taking into
account the special form of M , the product QM mod E has its coefficients
bounded by 2ω|γk| + 2ω in absolute value. So the coefficients of the polynomial
returned by Algorithm 1 are bounded by

|ci| + 2ω|γk| + 2ω

2ω
<

2ωρ + 2ω|γk| + 2ω

2ω
= ρ + |γk| + 1 ≤ 2ρ.

��

4.4 Implementation Details of Montgomery Reduction

Theorem 14. Let (p, k, n, Xk−γk, Xn−e, γ) be a special PMNS basis for SIDH.
Let ω, β, M and M ′ be defined as in Theorem 11. Let C =

∑n−1
i=0 ciX

i be
a integer polynomial and Q =

∑n−1
i=0 qiX

i be the product CM ′ mod E mod 2ω

from line 1 of Algorithm 1. The coefficients of Q are given by:

qi =

⎧⎪⎪⎨
⎪⎪⎩

ci +
β∑

j=1

γjk

e
ci+jk−n mod 2ω if n − k ≤ i < n

ci + γkqi+k mod 2ω if 0 ≤ i < n − k

Moreover,

C + QM =
n−k−1∑

i=0
(ci + γkqi+k − qi)Xi +

n−1∑
i=n−k

(ci + γk

e
qi−n+k − qi)Xi mod E
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Proof.

CM ′ = (
n−1∑
i=0

ciX
i)(1 +

β∑
j=1

γjk

e
Xn−jk) =

n−1∑
i=0

ciX
i +

β∑
j=1

n−1∑
i=0

γjk

e
ciX

n−jk+i

≡
n−1∑
i=0

ciX
i +

β∑
j=1

⎛
⎝

jk−1∑
i=0

γjk

e
ciX

n−jk+i +
n−1∑
i=jk

γjkciX
i−jk

⎞
⎠ (mod E)

≡
n−1∑
i=0

ciX
i +

β∑
j=1

⎛
⎝

n−1∑
i=n−jk

γjk

e
ci−n+jkXi +

n−1−jk∑
i=0

γjkcjk+iX
i

⎞
⎠

≡
n−1∑
i=0

⎛
⎜⎝ci +

min(�n−i−1
k �,β)∑

j=1
γjkci+jk +

β∑

j=�n−i−1
k �+1

γjk

e
ci+jk−n

⎞
⎟⎠ Xi

The formula for qi in the case n−k ≤ i < n is proven from the above formula
by noticing that in this case �(n − i − 1)/k� = 0.

To prove the formula in the case 0 ≤ i < n−k, we need the two following facts:
first that �(n − (i + k) − 1)/k� = �(n − i − 1)/k� − 1 and then that multiplying
qi+k by γk is equivalent to shifting the indexes in the sum. To conclude, it
remains to use the fact that γ(β+1)k/e ≡ 0 (mod 2ω).

The formula from C +QM comes from a straightforward computation of the
product QM mod E using the particular form of M = (γk/e)Xn−k − 1. ��

This theorem proves that Algorithm 3 is a correct adaption of Algorithm 1 in
the case of a special PMNS basis for SIDH. It is more efficient as it performs only
a linear number of multiplications: β multiplications modulo 2ω per iteration in
the first loop and 1 full multiplication per iteration for the second and third
loops. The remaining operations are additions and shifts.

Algorithm 3. Montgomery reduction for special PMNS basis for SIDH
Input: as in Algorithm 1
Output: as in Algorithm 1

1: for j = n − 1 down to n − k do
2: qj ← cj +

∑β

i=1(γik/e)cj+ik−n mod 2ω

3: for j = n − k − 1 down to 0 do
4: tj ← cj + γkqj+k

5: (rj , qj) ← (�tj/2ω� , tj mod 2ω)
6: for j = n − 1 down to n − k do
7: tj ← cj + (γk/e)qj−n+k

8: rj ← �tj/2ω�
9: return R
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Algorithm 3 compute the qj ’s starting from qn−1 down to q0. It first computes
qn−1, . . . , qn−k using the first case of the formula from Theorem 14. Then for j
from n − k − 1 to 0, it computes the full product γkqj+k + cj , uses it to compute
the j-th coefficient of (C + QM)/2ω and takes it modulo 2ω to obtain qj . Note
that, while computing the j-th coefficient of (C + QM)/2ω, we do not need to
subtract qj before dividing by 2ω as the two operands are equal modulo 2ω.

5 Results

In this section we validate the efficiency of our novel arithmetic through two
special PMNS basis for SIDH. We compare our implementation with the code
available on the Github repository PQCrypto-SIDH [14]2, more precisely with
the uncompressed, optimized x64 implementation. We implemented the PMNS
arithmetic in assembly and did not make any changes to the code handling the
elliptic operations nor the SIDH and SIKE functions. For our new prime p736,
we generated the necessary sets of parameters as well as new optimized strategies
for the isogeny computations using the specifications from [11].

The operations of conversions into and from PMNS are only computed once
before and after communications between the parties as the protocol specifies
the format of the exchange data. For the coordinates of the public generators
points of the SIKE protocol, we replaced their value in the source code by a
reduced PMNS representation.

As pointed out in the introduction, an approach similar to ours was inde-
pendently proposed in [19]. We did not include their timings in our comparisons
since their implementation is about ten times slower than both the optimized
implementation of SIKE and the present work.

Note that the arithmetic of SIKE implemented in [14] is already highly opti-
mized. For the quadratic extension field Fp(i), it uses a Karatsuba-like algo-
rithm for the multiplication but only performs two modular reductions (instead
of three). For the arithmetic in Fp, it benefits from the special form of p. Indeed,
for p = 2e23e3 −1, the Montgomery modular reduction may be greatly optimized.
First, because the multiplication by p may be replaced by a multiplication by
p + 1 = 2e23e3 , which itself reduces to a multiplication by 3e3 plus some shifts,
followed by a subtraction. Second, because the inverse of p modulo the Mont-
gomery constant R (chosen as the smallest multiple of the word-size larger than
p) is equal to −1 modulo 2w for w = 32, 64, which further reduces the overall
number of word multiplications. More details are given in [4].

All comparisons were performed on a desktop computer with a 3.2 GHz Intel
Core i7-8700 (Coffee Lake) processor with Hyper-Threading and TurboBoost
disabled, running Ubuntu 18.04.5 and gcc 6.5.0. The compilation options used
are identical to the ones in the Makefile provided by [14].

The code is available at https://gitlab.inria.fr/ciao/pmns-for-sidh. The cur-
rent version of this article corresponds to commit fc666429.

2 We use commit 4eb51ae0 (few commits after tag version 3.3).

https://gitlab.inria.fr/ciao/pmns-for-sidh
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5.1 SIKEp503

As a proof of concept, and for comparisons and compatibility purposes, we gen-
erated two different special PMNS basis for SIKEp503 = 22503159 − 1.

Our first special PMNS basis uses polynomials of degree 9 with coefficients
on a single 64-bit word. We used the following parameters:

k = 1 n = 10 γ = 225316

Γ = X − γ E = X10 − 3 ρ = 256

In this case, we implemented Algorithm 3 with ω = 64.
We also consider a second special PMNS basis with degree-2 polynomials and

coefficients on three 64-bit words; hence a total of nine 64-bit words.

k = 1 n = 3 γ = 284353

Γ = X − γ E = X3 − 4 ρ = 2170

In this case, we implemented Algorithm 3 with ω = 192.
In Table 2, we give the number of clock cycles for the main arithmetic oper-

ations in our two PMNS basis denoted 10 × 1 and 3 × 3 respectively and we
compare them to the corresponding operations from the optimized reference
implementation of SIKE [14]. We split the cost of a Fp multiplication into the
actual multiple-precision or polynomial product, followed by the Montgomery
reduction. In the PMNS cases, the product corresponds to the polynomial mul-
tiplication modulo E, and the Montgomery reduction corresponds to the coeffi-
cient reduction algorithm (Algorithm 3) presented in Sect. 4.4.

Table 2. SIKEp503: cost of field operations in number of clock cycles

[14] This work Speedup This work Speedup
10 × 1 3 × 3

Fp Addition 19 22 0.86 19 1.00
Fp Multiplication 143 131 1.09 139 1.03
Product 72 113 0.64 108 0.67
Montgomery reduction 55 23 2.39 33 1.67
Fp2 Addition 35 41 0.85 35 1.00
Fp2 Multiplication 358 446 0.80 423 0.85
Fp2 Square 308 318 0.97 300 1.03

Despite a much faster Montgomery reduction, and a slightly faster multipli-
cation in Fp, our multiplication in Fp2 remains slower than that of SIKEp503.
This is mainly due to the fact that our field elements are represented on two
extra words for the 10 × 1 variant and one extra word for the 3 × 3 variant.
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Therefore, our product requires more word-size multiplications. And since the
multiplication in Fp2 uses 3 products but only two reductions, the overall perfor-
mance of the original SIKE implementation is better. As can be seen in Table 3,
these results translate immediately to the key exchange and key encapsulation
schemes.

5.2 SIKEp751 Versus Our p736

The prime SIKEp751 = 23723239 − 1 in the NIST submission was proposed for
the largest security level. For an equivalent level of security, we propose a new
736-bit prime, called p736 in the following. In order to build a special PMNS
basis for the finite field Fp for p = p736 = 23613236 − 1, we used the following
parameters:

k = 1 n = 4 γ = 291359

Γ = X − γ E = X4 − 8 ρ = 2186

Table 3. SIKEp503: cost of SIDH and SIKE operations in number of clock cycles

[14] This work Speedup This work Speedup
10× 1 3× 3

Key exchange
Alice’s key generation 5322813 6584635 0.81 6188158 0.86
Bob’s key generation 5927772 7254013 0.82 6781400 0.87
Alice’s shared key computation 4361263 5324520 0.82 4988913 0.87
Bob’s shared key computation 5036883 6182503 0.81 5695130 0.88
Kem
Key generation 5946153 7297933 0.81 6784183 0.88
Encapsulation 9726092 11925016 0.82 11174206 0.87
Decapsulation 10359163 12688804 0.82 11877351 0.87

In this case, we implemented Algorithm 3 with ω = 192. This PMNS basis
uses degree-3 polynomials and coefficients on three 64-bit words; hence a total
of twelve 64-bit words, the same number of words used for the arithmetic of
SIKEp751.

For this prime, we choose to use 2360 instead of 2361 for Alice’s subgroup
order, in order to be able to use only 4-isogeny in the key computation.

As for SIKEp503 above, we compared the field arithmetic operations for both
SIKEp751 and our p736. The results presented in Table 4 exhibit a 10% speedup
for the multiplication and 29% for the square in Fp2 . And as a consequence, a
1.17× speedup factor for the key exchange and key encapsulation schemes (see
Table 5).
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Table 4. p736 and SIKEp751: cost of field operations in number of clock cycles

[14] This work Speedup
SIKEp751 p736

Fp Addition 29 22 1.32
Fp Multiplication 274 198 1.38
Product 140 162 0.86
Montgomery reduction 106 39 2.72
Fp2 Addition 54 40 1.35
Fp2 Multiplication 693 631 1.10
Fp2 Square 559 435 1.29

Table 5. p736 and SIKEp751: cost of SIDH and SIKE operations in number of clock
cycles

[14] This work Speedup
SIKEp751 p736

Key exchange
Alice’s key generation 15836023 13625479 1.16
Bob’s key generation 17945236 15609183 1.15
Alice’s shared key computation 13040542 11140436 1.17
Bob’s shared key computation 15368807 13326150 1.15
Kem
Key generation 17975299 15609821 1.15
Encapsulation 28849145 24735564 1.17
Decapsulation 31317267 26879415 1.17

6 Conclusions

We presented new algorithms to perform the arithmetic for primes used in the
context of SIDH. These algorithms uses a polynomial representation of the field
elements based on the existing Polynomial Modular Number System. We pro-
posed new techniques to control the size of the coefficients of those polynomial
representations which are particularly effective for the primes used in the context
of SIDH.

We show that our new approach is competitive with the optimized imple-
mentation accompanying the SIKE submission to the NIST post-quantum stan-
dardization process. For the largest security level, we proposed a new prime that
offers a 1.17× speedup compared to SIKEp751.

As seen for SIKEp503, different PMNS basis can be constructed for a given
prime. Playing with the polynomial degree and the coefficient’s sizes offers
many optimization options for implementing the field arithmetic operations that
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should be further investigated. Moreover, as explained in Example 8, PMNS can
handle elements of Fp2 directly. This nice feature could make it possible to con-
sider primes for SIDH that are congruent to 1 (mod 4). But, for SIDH primes
of the form p = c · 2e2 · 3e3 + 1, square roots of integers of the form ±2a3b always
exist in Fp, which prevents us from using a γk of this form in Definition 5 to
build a special PMNS basis for SIDH directly for Fp2 in this case. However, we
believe that extra improvements and more primes of interest for SIDH are at
hand.
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