
On the Success Probability of Solving
Unique SVP via BKZ

Eamonn W. Postlethwaite and Fernando Virdia(B)

Information Security Group, Royal Holloway, University of London, Egham, UK
{eamonn.postlethwaite.2016,fernando.virdia.2016}@rhul.ac.uk

Abstract. As lattice-based key encapsulation, digital signature, and
fully homomorphic encryption schemes near standardisation, ever more
focus is being directed to the precise estimation of the security of these
schemes. The primal attack reduces key recovery against such schemes to
instances of the unique Shortest Vector Problem (uSVP). Dachman-Soled
et al. (Crypto 2020) recently proposed a new approach for fine-grained
estimation of the cost of the primal attack when using Progressive BKZ
for lattice reduction. In this paper we review and extend their technique
to BKZ 2.0 and provide extensive experimental evidence of its accuracy.
Using this technique we also explain results from previous primal attack
experiments by Albrecht et al. (Asiacrypt 2017) where attacks succeeded
with smaller than expected block sizes. Finally, we use our simulators to
reestimate the cost of attacking the three lattice KEM finalists of the
NIST Post Quantum Standardisation Process.

Keywords: Cryptanalysis · Lattice-based cryptography · Lattice
reduction

1 Introduction

In recent years, the popularity of lattice-based cryptography has greatly
increased. Lattices have been used to design traditional cryptographic primitives
such as one way functions, public key encryption, key exchange, digital signa-
tures, as well as more advanced constructions such as identity and attribute
based encryption, and fully homomorphic encryption.

One reason for this popularity is that lattice problems, e.g. the Shortest Vec-
tor Problem (SVP) and Bounded Distance Decoding (BDD), are believed to be
hard also for quantum computers. Hence, schemes based on such problems are
good candidates for providing quantum-safe public key cryptography. Indeed, 23

E. W. Postlethwaite and F. Virdia: This work was supported by the EPSRC and the
UK government as part of the Centre for Doctoral Training in Cyber Security at Royal
Holloway, University of London (EP/P009301/1).
E. W. Postlethwaite and F. Virdia: This work was carried out in part while the authors
were visiting the Lattices: Algorithms, Complexity, and Cryptography program at the
Simons Institute for the Theory of Computing.

c© International Association for Cryptologic Research 2021
J. A. Garay (Ed.): PKC 2021, LNCS 12710, pp. 68–98, 2021.
https://doi.org/10.1007/978-3-030-75245-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75245-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-75245-3_4

On the Success Probability of Solving Unique SVP via BKZ 69

of the original 69 complete and proper schemes submitted to the National Insti-
tute of Standards and Technology (NIST) as part of the Post Quantum Stan-
dardisation Process [NIS16] are based on various lattice problems with varying
amounts of structure. Given the long shelf life of cryptographic standards and
the high stakes of standardising primitives, the security of these schemes, and
thus the concrete hardness of lattice problems, should be understood in detail.

Two popular problems chosen to design lattice-based schemes are the Learn-
ing With Errors (LWE) problem (with its ring and module variants) and the
NTRU problem. A variety of attack strategies against these problems exist.
Asymptotically, the best option is the approach of Arora–Ge [AG11], while,
again asymptotically, in the case of binary secrets, BKW variants [KF15,GJS15]
perform well. In practice however, the best attacks seem to be the primal,
dual and hybrid attacks. All three rely on lattice reduction algorithms, such as
BKZ [SE91,SE94,CN11], Progressive BKZ [AWHT16], Self-Dual BKZ [MW16],
G6K [ADH+19] and Slide Reduction [GN08a], to find either a unique (up to sign)
embedded shortest vector, or more generally a good lattice basis. In particular,
the primal attack is often estimated as the cheapest option [ACD+18].

The primal attack against LWE and NTRU consists of using lattice reduc-
tion to solve an instance of the unique Shortest Vector Problem (uSVP). The
most popular lattice reduction algorithm is BKZ. Current complexity estimates
for solving uSVP directly depend on estimating the smallest block size β such
that BKZ-β successfully recovers the unique shortest vector. This β is com-
monly found by following the methodology introduced in [ADPS16, §6.3], and
experimentally investigated in [AGVW17].

In their experiments, Albrecht et al. [AGVW17] and Bai et al. [BMW19],
report that smaller than expected block sizes can result in a non-negligible proba-
bility of solving uSVP instances arising from the primal attack, when using BKZ.
Some concerns were raised [BCLv19] that this could indicate an overestimate of
the complexity of the primal attack for cryptographically sized instances. Fur-
thermore, the experiments carried out in 2017 [AGVW17] only focused on recov-
ering a unique shortest vector sampled coefficientwise from a discrete Gaussian
distribution. While [AGVW17] claims that the [ADPS16] methodology would
also hold for binary and ternary distributions, the authors do not provide exper-
imental evidence. Recent work [CCLS20] revisited the binary and ternary case in
the small block size regime β ≤ 45 and concluded that discrete Gaussian errors
are more secure. We disagree, and discuss [CCLS20] further in Sect. 5.2.

Dachman-Soled et al. [DSDGR20] recently proposed an approach for esti-
mating the complexity of the primal attack that makes use of probability dis-
tributions for the norms of particular projections of the unique shortest vector,
rather than only expected values. This results in a new approach that allows
one to better predict the behaviour of the attack when considering block sizes
smaller than those expected to be successful by the [ADPS16] methodology. The
authors of [DSDGR20] use this approach to develop a simulator that predicts
the expected block size by which Progressive BKZ will solve an isotropic uSVP
instance. In this work, we call such a simulator a uSVP simulator. They use this

70 E. W. Postlethwaite and F. Virdia

uSVP simulator in the setting of solving LWE instances with extra hints about
the secret, and verify the accuracy of their predictions as the number of hints
varies.

Our Contributions. Our first contribution is the implementation of a variant
of the uSVP simulator for Progressive BKZ, and the development of a new
uSVP simulator for BKZ 2.0. Rather than only returning the expected successful
block size, we extract full probability mass functions for successful block sizes,
which allow for a more direct comparison to experimental results. Our simulators
are also faster than those in [DSDGR20], simulating success probabilities for
Kyber1024 in 31 s against the 2 h of [DSDGR20]. This allows for potentially easier
inclusion in parameter selection scripts, such as the LWE estimator [APS15]. We
note that since the time of writing, the latest version of the simulator proposed
in [DSDGR20] adopted the same speedup techniques.

Our second contribution is extensive experiments on the success probability
of different block sizes for BKZ 2.0 and Progressive BKZ, on uSVP lattices gen-
erated from LWE instances with discrete Gaussian, binary or ternary secret and
error distributions. Our experiments show that the uSVP simulators accurately
predict the block sizes needed to solve uSVP instances via lattice reduction, for
all distributions tested.

As a final contribution, we reestimate the security of the three lattice
KEM finalists of the NIST PQC using our uSVP simulators. We compare the
expected block sizes they suggest to those predicted by the original methodol-
ogy of [ADPS16]. We note that our uSVP simulators estimate that a slightly
larger average block size than predicted is required, meaning that [ADPS16]
likely resulted in an underestimate of their security.1 We also observe that this
phenomenon can, in large part, be attributed to the original [ADPS16] method-
ology using the Geometric Series Assumption. Replacing this assumption with
the output of the [CN11] BKZ simulator reduces the predictive gap between
the [ADPS16] methodology and our uSVP simulators.

All of our code and data can be found at github.com/fvirdia/usvp-simulation.

Related Work. The Geometric Series Assumption (GSA), used to predict
the output quality of lattice reduction, was introduced in [Sch03]. A simulator,
specifically for the output quality of BKZ, was introduced in [CN11]. This sim-
ulator more accurately predicts the final, or tail, region of the basis profile of a
BKZ reduced lattice, improving over the GSA. A refined BKZ simulator was pre-
sented in [BSW18], which improves over the [CN11] simulator in the first region,
or head, of the basis profile. Alkim et al. [ADPS16] introduced a BKZ specific
method for estimating the block size required to solve uSVP instances arising
from the primal attack; its accuracy was investigated in [AGVW17,BMW19].
This method, combined with basis profile simulation after BKZ reduction and
arguments about distributions describing the lengths of projections of the unique

1 A similar phenomenon had also been observed in [DSDGR20] for NTRU-HPS.

https://github.com/fvirdia/usvp-simulation

On the Success Probability of Solving Unique SVP via BKZ 71

short vector, is extended in [DSDGR20] to predict the expected block size by
which Progressive BKZ will solve isotropic uSVP instances.

Paper Structure. In Sect. 2 we introduce the necessary preliminaries and
notation regarding linear algebra, computational lattice problems, and lattice
reduction. In Sect. 3 we review the original [ADPS16] methodology for predicting
the expected required block sizes for solving uSVP instances. In Sect. 4 we
review the approach of [DSDGR20] and use it to propose uSVP simulators for
BKZ 2.0 and Progressive BKZ. In Sect. 5 we describe our experiments and
results. In Sect. 6 we use our uSVP simulators to provide preliminary estimates
of the block sizes required to successfully perform key recovery attacks on the
three NIST PQC lattice KEM finalists, and compare this to predictions using
the [ADPS16] methodology.

2 Preliminaries

Linear Algebra. The set {1, . . . , n} is denoted by [n]. We denote vectors by
bold lowercase letters such as v, and matrices by bold uppercase letters such as
M . We denote the n×n identity matrix as In. Throughout, we use row vectors
and count indices from 1. We represent a basis {b1, . . . , bd} of Rd as the matrix
B having the basis vectors as rows. Given a basis B, we can derive an orthogonal
basis B∗ via the Gram–Schmidt process. The rows of B∗ are

b∗
i = bi −

∑

j<i

μi,jb
∗
j for i ∈ [d], where μi,j = 〈bi, b

∗
j 〉/‖b∗

j‖2 for i > j.

We denote by span
R

({vi}i) = {∑
i λivi : λi ∈ R} the real span of a set of

real vectors {vi}i. Given a basis B of Rd we denote by πB ,k : Rd → R
d the linear

operator projecting vectors orthogonally to the subspace span
R

({b1, . . . , bk−1}).
Note πB ,1 is the identity on R

d. We write πi when the basis is clear from context.
Given a vector space V = span

R
(B), its projective subspace πk(V) of dimension

d − k + 1 has a basis {πk(bk), . . . , πk(bd)}, where

πk(bi) = bi −
∑

j<k

μi,jb
∗
j = b∗

i +
∑

k≤j<i

μi,jb
∗
j for i ≥ k.

By definition, this implies that πk(bk) = b∗
k, and that πj(πk(v)) = πk(v) for

any j ≤ k. Given an orthogonal basis B∗ and a vector t = t∗1b
∗
1 + · · · + t∗db

∗
d, its

projections are given by πk(t) = t∗kb
∗
k + · · · + t∗db

∗
d. We abuse notation and write

πi(B[j : k]) to mean the matrix with rows πi(bj), . . . , πi(bk).

Probability. Given a probability distribution D with support S ⊂ R, we denote
sampling an element s ∈ S according to D as s ← D. For a finite support S, we
denote the uniform distribution over S as U(S). We denote the mean and vari-
ance of D as E(s) or E(D), and V(s) or V(D), respectively. We sometimes use

√
V

72 E. W. Postlethwaite and F. Virdia

similarly to denote the standard deviation. Given a discrete (resp. continuous)
probability distribution D, we denote its probability mass function (resp. prob-
ability density function) as fD and its cumulative mass function (resp. cumu-
lative density function) as FD. Given s ← D, by definition P [s ≤ x] = FD(x).
We recall the conditional probability chain rule. If E1, . . . , En are events, then
P [E1 ∩ · · · ∩ En] = P [E1|E2 ∩ · · · ∩ En]P [E2 ∩ · · · ∩ En]. We denote by Γ the
gamma function Γ (x) =

∫ ∞
0

tx−1e−tdt for x > 0.

The Gaussian Distribution. We recall some properties of the continuous
Gaussian distribution. We denote by N(μ, σ2) the probability distribution over
R of mean μ and standard deviation σ, variance σ2, with density function

fN(μ,σ2)(x) =
1

σ
√

2π
e− 1

2 (x−μ
σ)2 .

Given a random variable X ∼ N(μX , σ2
X) and a scalar λ > 0, the random

variable Y = λ · X follows a distribution N(λμX , λ2σ2
X). Given n independent

and identically distributed random variables Xi ∼ N(0, 1), the random variable
X2

1 + · · · + X2
n follows a chi-squared distribution χ2

n over R≥0 of mean n and
variance 2n, with probability density function

fχ2
n
(x) =

1
2n/2Γ (n/2)

xn/2−1e−x/2.

Given n independent and identically distributed random variables Yi ∼ N(0, σ2),
the random variable Y 2

1 + · · ·+Y 2
n follows a distribution σ2 ·χ2

n of mean nσ2 and
variance 2nσ4, that is, a chi-squared distribution where every sample is scaled
by a factor of σ2. We call this a scaled chi-squared distribution.

Discrete Gaussians. We denote by Dμ,σ the discrete Gaussian distribution
over Z with mean μ ∈ R and standard deviation σ ∈ R

+. It has proba-
bility mass function fDμ,σ

: Z → [0, 1], x �→ fN(μ,σ2)(x)/fN(μ,σ2)(Z), where
fN(μ,σ2)(Z) =

∑
x∈Z

fN(μ,σ2)(x). Discrete Gaussian distributions with μ = 0,
or the distributions these imply over Zq for some modulus q, are widely used
in lattice cryptography to sample entries of error and secret vectors from. In
our analyses below, we work with vectors t sampled coefficientwise from a dis-
crete Gaussian, and with their projections πi(t). We model the squared norms
‖πi(t)‖2 as random variables following a scaled chi-squared distribution with the
appropriate degrees of freedom. For example, for some vector v = (v1, . . . , vd)
with each vi ← D0,σ sampled independently, we model ‖πB ,i(v)‖2 ∼ σ2 ·χ2

d−i+1,
where B is a lattice basis being reduced.

Bounded Uniform Distributions. Given a finite subset S ⊂ Z, we call the
uniform distribution U(S) a bounded uniform distribution. Of particular inter-
est in this work are the binary and ternary distributions, where S = {0, 1}

On the Success Probability of Solving Unique SVP via BKZ 73

and S = {−1, 0, 1}. Similarly to the case of the discrete Gaussian, works using
the [ADPS16] methodology for estimating the complexity of lattice reduction,
such as the ‘LWE estimator’ [APS15], implicitly model ‖πB ,i(v)‖2 ∼ σ2 ·χ2

d−i+1

for vectors v sampled coefficientwise from a bounded uniform distribution having
E(U(S)) = 0 and V(U(S)) = σ2, and B a lattice basis being reduced.

Lattices. A real lattice of rank n and dimension d is the integer span of n
linearly independent vectors b1, . . . , bn ∈ R

d, which we collect into a basis B.
The lattice generated by B is

Λ = Λ(B) = {x1b1 + · · · + xnbn : xi ∈ Z} ,

and is a discrete subgroup of (Rd,+). For n ≥ 2 and Λ = Λ(B), we have also
Λ = Λ(UB) for any U ∈ GLn(Z). Hence Λ has infinitely many bases. An
invariant of a lattice is its volume.

Definition 1 (Lattice volume). Given any basis B for a lattice Λ,

vol(Λ) =
√

det(BtB) =
n∏

i=1

‖b∗
i ‖.

This quantity is exactly the volume of a fundamental parallelepiped of Λ, that is,
the volume of the set {xB : x ∈ [0, 1)n}. Other properties of interest in lattices
are their minima.

Definition 2 (Lattice minima). Let Bd(r) be the closed ball of radius r in R
d

and i ∈ [n]. Define λi(Λ), the ith minima of Λ,

λi(Λ) = min
{
r ∈ R

+ : Λ ∩ Bd(r) contains i linearly independent vectors
}
.

A lattice can be tessellated by centring a copy of the fundamental domain on
each lattice point. This fact can be used to approximate the number of lattice
points in some ‘nice enough’ measurable set. The Gaussian heuristic says that the
number of lattice points in a measurable set S is approximately vol(S)/vol(Λ).
The Gaussian heuristic can be used to approximate the first minimum λ1(Λ).

Definition 3 (Gaussian heuristic for the shortest vector). Given a rank
n lattice Λ, the Gaussian heuristic approximates the smallest radius containing
a lattice point as

gh(Λ) =

√
n

2πe
vol(Λ)1/n

.

Various computational problems can be defined using lattices. We focus on
the following.

Definition 4 (Shortest Vector Problem (SVP)). Given a lattice Λ find a
vector v ∈ Λ of length λ1(Λ).

74 E. W. Postlethwaite and F. Virdia

Definition 5 (γ-unique Shortest Vector Problem (uSVPγ)). Given a
lattice Λ such that λ2(Λ) > γλ1(Λ), find the unique (up to sign) v ∈ Λ of length
λ1(Λ). Unless specified, γ = 1.

Definition 6 (Learning With Errors (LWE) [Reg09]). Let n, q be positive
integers, χ be a probability distribution on Zq and s be a secret vector in Z

n
q .

We denote by Ls,χ the probability distribution on Z
n
q × Zq obtained by sampling

a ← U(Zn
q), e ← χ, and returning (a, c) = (a, 〈a, s〉 + e) ∈ Z

n
q × Zq.

Decision LWE is the problem of deciding whether pairs (a, c) ∈ Z
n
q × Zq are

sampled according to Ls,χ or U(Zn
q × Zq).

Search LWE is the problem of recovering s from pairs sampled according to
Ls,χ.
For a given distribution Ls,χ and prime power modulus q, Decision LWE and
Search LWE are polynomial time equivalent [Reg09].

We note that the distribution χ from which the error is drawn tends to encode
some notion of smallness, which is usually required for functionality. Throughout
this work, we assume m LWE samples {(ai, ci) ← Ls,χ}m

i=1 are available. These
can be written in matrix form as (A, c) = (A, sA + e) ∈ Z

n×m
q × Z

1×m
q . In the

original formulation, the LWE secret vector is sampled uniformly from Z
n
q . A

standard transformation [MR09,ACPS09] maps m samples from an LWE distri-
bution Ls,χ with s ← U(Zn

q) to m − n samples from an LWE distribution Ls′,χ
where the secret vector s′ is sampled coefficientwise from χ. Such a distribution
is said to be in normal form. In general, more efficient key exchange can be built
from LWE distributions where the secret is sampled from a narrow distribution
such as χ (small secret LWE) or from a distribution imposing or implying few
non zero entries in s (sparse secret LWE). In this work χs (resp. χe) repre-
sents the distribution from which coefficients of s (resp. e) are sampled. Note
that with high probability any n samples (A, c) from an LWE distribution with
prime modulus q with s ← χn

s and e ← χn
e can be turned into n LWE samples

(A−1, cA−1) where the roles of χe and χs are swapped. This can be useful for
creating embedding lattices (see below) when choosing m ≤ n.

Embedding Lattices. The primal attack transforms the Search LWE prob-
lem into a uSVP instance. This can always be achieved using Kannan’s embed-
ding [Kan87]. In the case of small secret LWE, the Bai–Galbraith embedding
variant [BG14] can also exploit differences in χs and χe, whenever the former
is small or sparse. In particular, given LWE samples (A, c) in such an instance,
the primal attack starts by constructing the following embedding lattice basis

B =

⎛

⎝
0 qIm 0

νIn −A 0
0 c c

⎞

⎠ (1)

and performs lattice reduction to recover the unique shortest vector t = (∗ | s |
1) · B = (ν s | e | c) for suitable values of ∗ and c, and a scalar ν that balances

On the Success Probability of Solving Unique SVP via BKZ 75

the contributions of s and e to the norm of t. An alternative approach is to first
reduce the (n + m) × (n + m) top left minor of B as a form of preprocessing
(e.g. if A is a common reference string for multiple LWE distributions), and
later append the last row to finish the search for a specific target vector [LN13].
While lattice reduction software that takes B as input often requires that ν ∈ Z,
in the IACR ePrint version of this paper we discuss a standard way to construct
variants of this embedding that allow us in practice to use any ν ∈ R, as well
as to centre the χs and χe distributions. For example, applying these techniques
to an LWE instance with a binary secret distribution results in an embedding
where the first n coordinates of t are distributed uniformly in {−1, 1}.

Lattice Reduction. In general, lattice reduction is any algorithmic technique
that takes as input a basis of a lattice and finds a basis of better quality. Many
different notions of reduced basis exist, most of which can be intuitively captured
by a basis being formed of short and close to orthogonal vectors. The celebrated
LLL algorithm [LLL82] achieves the following.

Definition 7 (LLL reduced). For δ ∈ (1/4, 1) a basis B is δ-LLL reduced
if |μi,j | ≤ 1/2 for all 1 ≤ j < i ≤ d and (δ − μ2

i,i−1)
∥∥b∗

i−1

∥∥2 ≤ ‖b∗
i ‖2 for

i ∈ {2, . . . , d}.
In this work we consider the performance of the BKZ algorithm [SE91,SE94],
which achieves the following.

Definition 8 (BKZ- β reduced). A basis B is BKZ-β reduced if it is LLL
reduced and for all i ∈ [d − 1], ‖b∗

i ‖ = λ1 (πi(B[i : min(i + β − 1, d)])).

In order to do this, an oracle OSVP is used, that, given a lattice, finds its short-
est vector. BKZ repeatedly calls OSVP on the projected sublattices, or blocks,
πi(B[i : min(i + β − 1, d)]). If the output vector v is shorter than the current
first vector in the block, it is inserted into the basis at the beginning of the
block. Then LLL is run on the basis to remove linear dependencies introduced
by this insertion. Throughout, we make use of the BKZ implementation in the
FPLLL [dt16a] library, which sets δ = 0.99 in its underlying calls to LLL.

In Algorithm 1, we present a description of the BKZ algorithm. In its origi-
nal description, BKZ terminates after a full tour is executed without inserting.
We follow algorithmic improvements and do not necessarily run tours until this
point. In particular, the notion of early abort (called auto-abort in some imple-
mentations [dt16a]) was introduced as part of the BKZ 2.0 algorithm [CN11].
The idea is that the majority of improvement occurs in a few early tours, whereas
many tours are required before convergence. Following experimental analysis of
BKZ [Che13, Figure 4.6], [Alb17, §2.5], Albrecht [Alb17] identifies τ = 16 as the
number of tours after which little improvement is made to the basis quality.
Furthermore, BKZ 2.0 integrates local block rerandomisation and preprocessing
into the originally proposed OSVP oracle, enumeration. We note that while recent
advances in lattice sieving mean that enumeration OSVP oracles are no longer
the fastest in practice [ADH+19] for large SVP instances, our heuristic analysis

76 E. W. Postlethwaite and F. Virdia

Data: LLL reduced lattice basis B
Data: block size β

1 repeat /* tour */

2 for i ← 1 to d do
3 � ← ‖b∗

i ‖
4 j ← min(i + β − 1, d)
5 v ← OSVP(πi(B[i : j]))
6 if ‖v‖ ≤ � then
7 v′ ← xibi + · · · + xjbj where v = xiπi(bi) + · · · + xjπi(bj)
8 extend B by inserting v′ into B at index i
9 LLL on B to remove linear dependencies, drop 0 row

10 if if no insertion was made then yield � else yield ⊥
11 if � for all i then return

Algorithm 1: Simplified view of the BKZ Algorithm. The instructions inside
the repeat context are called a BKZ tour.

is independent of the underlying OSVP oracle, and for the block sizes we consider
the enumeration of FPLLL is slightly faster than the sieves of [ADH+19].

In [AWHT16], Aono et al. introduce another variant of BKZ that they name
Progressive BKZ. Here, the basis is reduced using increasingly larger block sizes
β, running tours of BKZ-β each time. For the purposes of this paper, we define
Progressive BKZ as in Algorithm 2, allowing an arbitrary number τ of tours to
be run for each block size.

Data: LLL reduced lattice basis B of rank d
Data: τ ∈ Z

+

1 β ← 3
2 while β ≤ d do /* round */

3 run τ tours of BKZ-β on basis B
4 β ← β + 1

Algorithm 2: Progressive BKZ Algorithm, as used in this work.

One consequence of lattice reduction is that it controls how quickly the
lengths of the Gram–Schmidt vectors b∗

i (for an output basis B) decay. In partic-
ular, the larger β is chosen in BKZ, the slower these lengths decay and the closer
to orthogonal the basis vectors are. We call the lengths of the Gram–Schmidt
vectors, the basis profile.

Definition 9 (Basis profile). Given a basis B of a lattice of rank n, we define
the profile of B as the set of squared norms of the orthogonal vectors {‖b∗

i ‖2}
n

i=1.

Remark 1. In our algorithms, we refer to exact or estimated values ‖b∗
i ‖2 for a

basis as profile[i].

On the Success Probability of Solving Unique SVP via BKZ 77

Theoretical results exist about the output quality of BKZ-β [HPS11,
ALNSD20], as well as heuristic assumptions, which better model average case
performance when reducing random q-ary lattices.

Definition 10 (Geometric Series Assumption (GSA) [Sch03]). Given a
basis B, the norms of the Gram-Schmidt vectors b∗

i after lattice reduction satisfy

‖b∗
i ‖ = αi−1 · ‖b1‖, for some 0 < α < 1.

In the case of BKZ-β, α can be derived as a function of β, by combining an
estimate for ‖b1‖ returned by BKZ [Che13] and the (constancy of the) lattice
volume. The GSA can be seen as a global view of a lattice basis, using only the
constant volume of the full lattice Λ and an estimate for the length of the first
basis vector to calculate α. However, the volume of local blocks is not constant
as LLL or BKZ is run on a basis. Chen and Nguyen propose a BKZ simula-
tor [CN11] that takes this intuition into account to improve on the GSA in the
case of BKZ. It takes as input a profile {‖b∗

i ‖2}i and simulates a tour of BKZ-β
by calculating, block by block, the Gaussian heuristic of the current β dimen-
sional block, ‘inserting’ a vector of that length at the beginning of said block, and
redistributing the necessary length to the subsequent Gram–Schmidt vectors to
keep vol(Λ) constant. Since projected sublattices of small rank, e.g. n ≤ 45, do
not behave as random,2 to simulate the profile for the final indices of the basis
the BKZ simulator stops using the Gaussian heuristic and instead uses exper-
imental averages over unit volume lattices (scaled appropriately). This design
also allows for one to simulate a fixed number of tours, rather than assuming
convergence, as in the GSA. The process can be made probabilistic by ‘insert-
ing’ a vector with length drawn from a probability distribution centred on the
length suggested by the Gaussian heuristic [BSW18]. The latter approach better
captures a phenomenon of lattice reduction called the head concavity.

Throughout our work we make use of the Chen–Nguyen simulator as imple-
mented in FPyLLL [dt16b]. In Algorithm 3 we define a BKZSim subroutine that
returns a [CN11] simulation for an input basis profile. Here LWEn,q,χ,m is a basis
produced as in (1) with c = 1, assuming normal form so that ν = 1 and
χ = χs = χe. To produce the profile of an LLL reduced LWE basis, we con-
sidered three options. In the case of the instances used in our experiments, which
are described in Sect. 5, such a profile can be easily obtained by performing LLL
on any particular embedding basis. However, this is not the case for cryptographi-
cally sized embeddings, where FPLLL’s implementation of LLL can only run with
high enough floating point precision by using MPFR [FHL+07], which becomes
impractically slow. An alternative is to use a GSA slope corresponding to LLL
reduction. This correctly predicts the slope of the main section of the profile, but
does not account for the role played by the q-vectors in the embedding basis, which
are short enough to not be affected by LLL [HG07]. The third option is to use a
specific basis profile simulator for LLL that captures the effect of the q-vectors. We
opt for the third option; a description of the Z-shape phenomenon and its simu-
lation can be found in the IACR ePrint version of this paper.
2 See e.g. [Che13, §2.3.2] for a formal introduction.

78 E. W. Postlethwaite and F. Virdia

Input: (n, q, χ, m) or profile {‖b∗
i ‖2}i

Input: β, τ
1 if {‖b∗

i ‖2}i not provided as input then

2 {‖b∗
i ‖2}i ← simulated profile of LLL reduced LWEn,q,χ,m instance

3 {‖b∗
i ‖2}i ← [CN11] simulation of τ tours of BKZ-β on {‖b∗

i ‖2}i

4 return {‖b∗
i ‖2}i

Algorithm 3: BKZSim subroutine.

3 Choosing BKZ Block Sizes and the ‘2016 Estimate’

In this section we motivate and explain the approach introduced in [ADPS16]
to predict the block size required to solve uSVP using lattice reduction.

The runtime of BKZ-β is dominated by that of the OSVP subroutine. The
latter is often implemented using lattice point enumeration with preprocessing,
which has time complexity βΘ(β), or lattice sieving, which has time and memory
complexity 2Θ(β). Therefore, to estimate the complexity of solving uSVP using
lattice reduction, it is crucial to estimate the smallest block size sufficient to
recover the unique shortest vector t ∈ Λ.

The most successful approach for making such estimates was introduced
in [ADPS16, §6.3] and is sometimes referred to in the literature as the ‘2016
estimate’. The idea is to estimate a block size β such that at some point dur-
ing lattice reduction, OSVP will return a projection of the uSVP solution as the
shortest vector in a local projected sublattice. If the rank of this projected sub-
lattice is large enough, subsequent cheap lattice reduction operations (usually, a
single call to LLL [AGVW17]) will recover the full uSVP solution. Concretely,
this approach consists of finding the smallest β such that in the final full sized
block starting at index d − β + 1,

‖πd−β+1(t)‖ ≤ ∥∥b∗
d−β+1

∥∥ , (2)

resulting in OSVP recovering the projection of t at index d − β + 1.
In [ADPS16], the authors consider normal form LWE, and assume the secret

distribution χ to be centred around 0. The uSVP solution will be an embedded
vector for which each entry is drawn i.i.d. from a distribution of standard devia-
tion σ and mean μ = 0, with the addition of one final, constant, entry c.3 Using
the Bai–Galbraith embedding, our target vector is t = (s | e | c), of dimension
d = n + m + 1. The squared norm ‖t‖2 may be modelled as a random variable
following a scaled chi-squared distribution σ2 ·χ2

d−1 with d−1 degrees of freedom,
plus a fixed contribution from c, resulting in E(‖t‖2) = (d − 1)σ2 + c2.

In [ADPS16], the authors approximate the left hand side of (2) as
‖πd−β+1(t)‖ ≈ E(‖t‖)

√
β/d ≈ σ

√
β, where they approximate E(‖t‖) ≈ σ

√
d.

The approximation E(‖t‖) ≈ σ
√

d replaces (d − 1)σ2 + c2 with dσ2, which for

3 This constant c is often chosen as 1, which gives better attacks in practice [AFG13,
BG14,AGVW17], though formally it should be chosen as σ [LM09].

On the Success Probability of Solving Unique SVP via BKZ 79

large d or for c ≈ σ introduces little error, and assumes that E(‖t‖) = E(‖t‖2)1/2
.

The error in this assumption tends to 0 as d → ∞, so we ignore it. An exact
derivation can be found in the IACR ePrint version of this paper. This assump-
tion can also be avoided altogether by working with squared lengths, as we do
in our analysis.

To approximate the right hand side of (2), in [ADPS16, §6.3] the authors
make use of the GSA. Assuming that BKZ-β returns a first basis vector of
length �1(β) when called with the basis of a random q-ary lattice as input, this
results in the following win condition that β must satisfy for solving uSVP using
BKZ-β,

√
βσ ≈ ‖πd−β+1(t)‖ ≤ ∥∥b∗

d−β+1

∥∥ ≈ α(β)d−β · �1(β). (3)

At first glance the careful reader may notice an apparent contradiction in the
methodology. Indeed, the GSA describes the basis profile produced by BKZ for
a random lattice, and in [ADPS16] �1 is determined assuming this is the case.
However, we are reducing a uSVP embedding lattice. While the embedding basis
looks like that of a random q-ary lattice, the shortest vector will be shorter than
�1(β). Yet, this shortest vector is hard to find. What (3) aims to capture is
exactly the moment where BKZ is able to find this shortest vector, and hence
distinguish our uSVP embedding lattice from a random q-ary lattice. The GSA
and �1 are used to describe the status of the basis up until this moment, while
it still looks like the basis of a random q-ary lattice.

In this model, (3) provides a clear cut answer to what is the smallest viable
block size to solve uSVP. In practice, BKZ 2.0 is a randomised algorithm, work-
ing on a random uSVP instance. In [AGVW17], the authors verify the validity
of this win condition, resulting in a success probability of approximately 90%
when using β chosen by following (3). However, they also measure that some-
what smaller block sizes also present some relatively high success probabilities
of solving uSVP.

4 Simulating Solving uSVP

In this section, we review and extend recent work on capturing the probabilis-
tic nature of the described uSVP win condition. In [DSDGR20], Dachman-
Soled et al. revisit the [ADPS16] heuristic methodology described in Sect. 3.
The authors are concerned with accurately predicting the effects that introduc-
ing side channel information to their lattice embedding has on the success prob-
ability of solving uSVP using Progressive BKZ, while also maintaining accuracy
in the small block size regime, β ≤ 45. The authors describe a uSVP simulator
(not to be confused with the BKZ simulator of [CN11]), designed to predict the
success probability of Progressive BKZ solving an isotropic uSVP instance by a
specific block size.4 Using their uSVP simulator, they predict the expected suc-
cessful block size for a series of experiments they run, and verify the accuracy of
4 Any uSVP instance used in the primal attack can be made isotropic, where σ = 1.

80 E. W. Postlethwaite and F. Virdia

their predictions. We start by simplifying the [DSDGR20] uSVP simulator for
Progressive BKZ, and then develop a similar uSVP simulator for BKZ 2.0. We
focus on the simulator as described in [DSDGR20] at the time of release. Since
the time of writing, the latest version of the simulator proposed in [DSDGR20]
adopted some of the techniques described below, for allowing τ > 1 and faster
simulations.

4.1 Progressive BKZ

The approach proposed in [DSDGR20] to estimate the required block size to solve
a uSVP instance is to simulate the status of a lattice basis as it is being reduced,
and with it the probability at each step of the lattice reduction algorithm that
the target vector is recovered.

Input: d
1 ptot ← 0, β̄ ← 0
2 profile ← GSA profile of an LLL reduced, rank d, isotropic uSVP instance

basis
3 for β ← 3 to d do /* round */

4 profile ← BKZSim(profile, β, 1)
5 plift ← P [t recovered in �d/β	 rounds | πd−β+1(t) recovered this round]
6 prec ← P [x ← χ2

β : x ≤ profile[d − β + 1]]
7 pnew ← (1 − ptot) · prec · plift

8 β̄ ← β̄ + β · pnew

9 ptot ← ptot + pnew

10 if ptot ≥ 0.999 then break

11 return β̄
Algorithm 4: Isotropic uSVP simulator for Progressive BKZ with τ = 1, as
proposed in [DSDGR20]. We omit the details of computing plift for simplicity
and note that prec represents P [πd−β+1(t) recovered this round]. Returns the
expected block size β̄ required to solve uSVP.

Let W be the event of solving uSVP during the run of Progressive SVP, Wβ

the probability of being able to solve uSVP during the round with block size
β, and Fβ = ¬Wβ . Following the notation in Algorithm 2, we assume τ = 1,
meaning that for each block size β exactly one tour of BKZ-β is run. They
implicitly partition W as follows

P [W] = P [W3] + P [W4 ∧ F3] + P [W5 ∧ F4 ∧ F3] + · · · =
d∑

β=3

P

⎡

⎣Wβ ∧
β−1∧

j=3

Fj

⎤

⎦ .

Their computation of the expected winning block size β̄ amounts to implicitly
defining a probability mass function for a random variable B representing the
first viable block size to solve the uSVP instance, and computing its expected

On the Success Probability of Solving Unique SVP via BKZ 81

value. In the case of Progressive BKZ, a block size β being the first viable means
that it is the round of BKZ run with block size β (i.e. the tour of Line 3 of
Algorithm 2 with block size β) and not any earlier round using a smaller block
size, that will solve the uSVP instance. The resulting probability mass function
for the distribution of B can be modelled as

P [B = β] = P

⎡

⎣Wβ ∧
β−1∧

j=3

Fj

⎤

⎦ .

The probability P [Wβ] is itself modelled as the product of the probability of
successfully recovering πd−β+1(t) by calling OSVP on the last full size block,

P [πd−β+1(t) recovered using block size β] ≈ P [x ← χ2
β : x ≤ profile[d−β+1]],

and the probability of successfully lifting the projection over subsequent rounds,
plift. In their implementation of Algorithm 4, Dachman-Soled et al. use a chain
of conditional probabilities to compute plift. Events Wi and Fj for i �= j are
considered to be independent, therefore P [B = β] is computed as the relevant
product.

We introduce two simplifications to the above uSVP simulator. Firstly, we
noticed experimentally that running BKZ with block sizes smaller than 40 will
not solve instances for which the [ADPS16] approach predicts a winning block
size of β � 60, where most cryptographic applications (and our experiments)
reside. Therefore, we skip probability computations for any block sizes smaller
than 40. Furthermore, values of plift approach 1 quickly as β increases, such
that one can simply assign plift = 1 for β ≥ 40; a similar phenomenon is noted
in [AGVW17]. Finally, by allowing multiple tours per block size, we define a
uSVP simulator, Algorithm 5, for Progressive BKZ as described in Algorithm 2
where τ may be greater than 1. A comparison between the output of Algo-
rithms 4 and 5 can be found in Fig. 1 for four isotropic LWE instances, where
τ = 1. To produce Fig. 1, we tweaked the original [DSDGR20] code in order
to extract the implicit probability mass function P [B = β]. Our simplifications
significantly speed up the simulation by avoiding the expensive computation of
plift. In particular, our simulations for Kyber 512 (resp. 1024) take 4 s (resp. 31 s)
against the 20 min (resp. 2 h) of [DSDGR20]. We can see that the output proba-
bilities P [B ≤ β] and the expected successful block sizes differ only slightly, and
optimistically for the attacker, on low dimensional instances, with this difference
shrinking for cryptographically sized problems.

4.2 BKZ

Using the same approach as for Algorithm 4 and Algorithm 5, we implemented a
uSVP simulator for BKZ, described in Algorithm 6. In this case, the basis profile
after a number of tours of BKZ-β is simulated in one shot using the [CN11] sim-
ulator. Given that the block size is fixed, the probabilities are only accumulated
over tours. It should be noted that the event of β being the first viable block size

82 E. W. Postlethwaite and F. Virdia

(a) n = 72, ΔE(β) = 0.60. (b) n = 93, ΔE(β) = 0.92

(c) Kyber 512, ΔE(β) = 0.20 (d) Kyber 1024, ΔE(β) = 0.09

Fig. 1. Comparison between the output of Algorithm 4 [DSDGR20] and Algorithm 5
(this work) for isotropic parameters (σ = 1) from Table 1, and on Kyber 512 and
1024 [SAB+19]. The difference in predicted mean first viable block size between the
two simulators is reported as ΔE(β).

changes in the case of BKZ. In this case, no unsuccessful tours with a smaller
block size are run by the algorithm. Instead, we consider β being first viable if
running BKZ-(β − 1) would not result in a solution to the uSVP instance but
running BKZ-β would.

Algorithm 6 returns the probability that τ tours of BKZ-β will solve uSVP,
but does not exclude the possibility of winning with a smaller block size. We
assume in our model that if τ tours of BKZ-β solve a given uSVP instance, then
τ tours of BKZ-β′, for β′ > β, also will. The values output by Algorithm 6 for
a given instance can therefore be interpreted as a cumulative mass function for
the first viable block size, i.e. P [B ≤ β]. By running the simulator for increasing
block sizes until it outputs probability 1, one may recover the probability mass
function P [B = β] as

P [B = β] = P [B ≤ β] − P [B ≤ β − 1].

On the Success Probability of Solving Unique SVP via BKZ 83

Input: (n, q, χ, m), τ
1 ptot ← 0, P ← {}, β ← 3
2 d ← n + m + 1, σ2 ← V(χ)
3 profile ← simulated profile of LLL reduced LWEn,q,χ,m instance
4 while β < 40 do
5 profile ← BKZSim(profile, β, τ)
6 β ← β + 1

7 while β ≤ d do /* rounds */

8 for tour ← 1 to τ do /* tours */

9 profile ← BKZSim(profile, β, 1)
10 pnew ← P [x ← σ2χ2

β : x ≤ profile[d − β + 1]]
11 P [β] ← (1 − ptot) · pnew

12 ptot ← ptot + P [β]
13 if ptot ≥ 0.999 then break

14 β ← β + 1

15 return P
Algorithm 5: Unique-SVP success probability simulator running Progressive
BKZ, running τ tours for each block size, then increasing the block size by 1.
Returns the probability mass function P [B = β] of solving uSVP in the round
using block size β.

Input: (n, q, χ, m), β, τ
1 ptot ← 0, σ2 ← V(χ)
2 d ← n + m + 1
3 for tour ← 1 to τ do
4 profile ← BKZSim((n, q, χ, m), β, tour)
5 pnew ← P [x ← σ2χ2

β : x ≤ profile[d − β + 1]]
6 ptot ← ptot + (1 − ptot) · pnew

7 return ptot

Algorithm 6: Unique-SVP success probability estimator when running τ tours
of BKZ-β. Returns the probability of solving the uSVP instance.

5 Experiments

In this section, we describe the experiments we run to check the accuracy of
Algorithms 5 and 6, and discuss the results. We start by describing our original
batch of experiments in Sect. 5.1. In Sect. 5.2 we make some observations about
our experimental results, and describe further tweaked experiments that we run
to verify our understanding of the results.

5.1 Initial Experiments

Our aim in this section is threefold: first, we want to provide experimental evi-
dence for the accuracy of our BKZ and Progressive BKZ uSVP simulators when

84 E. W. Postlethwaite and F. Virdia

predicting the success probability of the primal attack against LWE with dis-
crete Gaussian secret and error for different block sizes; second, we want to
compare previous experiments [AGVW17] to our uSVP simulations; and finally,
we want to explore the effect that binary or ternary distributions have on the
primal attack. Throughout our experiments, we use BKZ 2.0 as implemented in
FPyLLL [dt16b] version 0.5.1dev, writing our own Progressive BKZ script by
using FPyLLL’s BKZ 2.0 as a subroutine.

For our first goal, we choose three different parametrisations of the LWE
problem, for which the [ADPS16] approach predicts an expected successful block
size of either 60 or 61. We give the parameters in Table 1. All parameter sets
in these batches use discrete Gaussian secret and error with V(χs) = V(χe) =
σ2. The number of LWE samples used, m, is determined by what the LWE
estimator [APS15] predicts to be optimal, using (3). For each parameter set we
generate 100 instances, and reduce them using either BKZ or Progressive BKZ.
We then check whether lattice reduction positioned the embedded shortest target
vector in the first index of the reduced basis.

In the case of BKZ, for each basis we run a number of tours of BKZ with block
size β = 45, . . . , 65. The number of tours, τ , takes the values 5, 10, 15, 20, 30. This
results in a total of 100 bases, reduced independently 21 × 5 times each, once
for every combination of β and τ . For every set of 100 reductions, we record the
success rate by counting the number of solved instances. We run a similar set of
experiments using Progressive BKZ, allowing τ ≥ 1 tours per block size, in order
to see at what point running extra tours per block size becomes redundant. For
this reason, we reduce each basis 5 times, once per value of τ in 1, 5, 10, 15, 20.
After every call to the BKZ subroutine, we check whether the instance is solved.
If not, we increase the block size by 1 and run a further tour of BKZ.

The resulting success rates for BKZ and Progressive BKZ (with τ = 1) are
plotted in Fig. 2, together with the output of our uSVP simulators, interpolated
as curves. Figure 3 contains similar plots for Progressive BKZ with τ ≥ 1. In
Fig. 5 we plot the measured difference between the average mean and standard
deviation for the simulated and experimental probability distributions, for both
Progressive BKZ and BKZ.

Table 1. List of LWE parameters used for testing our uSVP simulators. The instances
are in normal form. We use the Bai–Galbraith embedding and the number of samples
used, m2016, is given by the LWE estimator (commit 428d6ea).

n q σ m2016 β2016

72 97 1 87 61

93 257 1 105 61

100 257
√

2/3 104 60

For our second goal, we take the success probabilities reported in [AGVW17]
for their experiments. In Fig. 4 we report their measured success rates at optimal

On the Success Probability of Solving Unique SVP via BKZ 85

and smaller than optimal block sizes, and we superimpose our BKZ success
probability simulations.

Finally, for our third goal, we run Progressive BKZ experiments for τ in
1, 5, 10, 15, 20 on three parameter sets using bounded uniform secrets. In par-
ticular, we pick the n = 72 and n = 93 parameters from Table 1 but sample
secret s and error e coefficients uniformly from the set {−1, 1}, and the n = 100
parameters with secret and error coefficients sampled uniformly from {−1, 0, 1}.
This preserves the same standard deviations as in Table 1, while adding more
structure to the target vector. In the first case, the s and e are equivalent to
those of a scaled and centred LWE instance with binary secret and error (see
the IACR ePrint version of this paper), while in the second case, the problem is
LWE with ternary s and e. The resulting success probability plots can be found
in Fig. 6.

(a) n = 72 (b) n = 93

(c) n = 100

Fig. 2. Comparison of simulated success probabilities with experimental results for
BKZ and Progressive BKZ (with τ = 1). Dashed lines are simulations, crosses are
experiments. In the case of Progressive BKZ, 100 total instances are reduced. In the
case of BKZ, each experimental result is averaged over 100 instances, with experiments
using up to block size 65.

5.2 Observations

Experimental success rates for both BKZ and Progressive BKZ are in line with
the output of the simulators described in Sect. 4. Below, we look at the results.

86 E. W. Postlethwaite and F. Virdia

(a) n = 72 (b) n = 93

(c) n = 100

Fig. 3. Comparison of simulated success probabilities with experimental results for
Progressive BKZ with τ ≥ 1. Dashed lines are simulations, crosses are experiments.

Fig. 4. Comparison of simulated BKZ success probabilities with experimental results
reported in Table 1 of [AGVW17].

Progressive BKZ. In the case of Progressive BKZ, simulations seem to predict
accurately the success probabilities for τ ≤ 10 and all secret and error distribu-
tions used. Throughout our experiments reported in Fig. 3, we observe two ways
in which experiments slightly deviate from predictions.

Firstly, the success probability appears to stop significantly increasing for
τ > 10, even when the simulation does predict some improvement. We expect
this to be a consequence of the large amount of lattice reduction being performed.
Indeed, whenever the BKZ-β subroutine is called, the basis has already been
reduced with τ tours of BKZ-(β − j) for j = 1, . . . , β − 3. This suggests that

On the Success Probability of Solving Unique SVP via BKZ 87

τ

1 5 10 15 20
-3

-2

-1

0

1

2

3

ΔE[β]
Δ

√
V[β]

(a) Progressive BKZ, n = 72

τ

1 5 10 15 20
-3

-2

-1

0

1

2

3

ΔE[β]
Δ

√
V[β]

(b) Progressive BKZ, n = 93

τ

1 5 10 15 20
-3

-2

-1

0

1

2

3

ΔE[β]
Δ

√
V[β]

(c) Progressive BKZ, n = 100

τ

5 10 15 20 30
-3

-2

-1

0

1

2

3

ΔE[β]
Δ

√
V[β]

(d) BKZ, n = 72

τ

5 10 15 20 30
-3

-2

-1

0

1

2

3

ΔE[β]
Δ

√
V[β]

(e) BKZ, n = 93

τ

5 10 15 20 30
-3

-2

-1

0

1

2

3

ΔE[β]
Δ

√
V[β]

(f) BKZ, n = 100

Fig. 5. The measured difference ΔE[β] (resp. Δ
√
V[β]) between the simulated and

experimental successful block size mean (resp. standard deviation), as τ grows. ΔE[β] ≥
0 (resp. ΔV[β] ≥ 0) represents the simulated successful block size mean (resp. standard
deviation) being greater than the experimentally measured value.

little progress on the basis profile can be made with each new tour of BKZ-β.
In our experiments, we use FPyLLL’s BKZ 2.0 implementation with auto-abort,
which triggers by default after the slope of the basis profile does not improve
for five tours, the slope being computed using a simple linear regression of the
logarithm of the basis profile. This means that if it is the case that little progress
can be made, fewer than τ tours will be run. To verify this, we rerun experiments
while measuring the number of tours run by the BKZ subroutine. The data for
the n = 100 experiments can be found in Fig. 7, and seems to confirm that auto-
abort for β > 20 is much more frequently triggered for τ > 10. This problem
does not affect Progressive BKZ with τ = 1 since, even with auto-abort, one tour
is always run, and only slightly affects τ = 5 and τ = 10.5 Predictions match
experiments well in the τ ≤ 10 cases. We note that, even if we were to force
all τ tours to be performed, once ‘would be auto-abort’ conditions are reached,
very few (if any) alterations would likely be made to the basis by each new tour.
This means that the last full block of the basis would not be being rerandomised

5 Auto-abort will also not trigger for τ = 5, however in this case sometimes the BKZ-β
subroutine with β ≤ 10 returns after only one tour due to not making any changes
to the basis.

88 E. W. Postlethwaite and F. Virdia

(a) n = 72 (b) n = 93

(c) n = 100

Fig. 6. Comparison of simulated success probabilities with experimental results for
Progressive BKZ on LWE instances with scaled and centred binary secret and error
(Figs. 6a and 6b), and ternary secret and error (Fig. 6c). Dashed lines are simulations,
crosses are experiments. Each experimental result is averaged over 100 instances. No
changes were made to the uSVP simulators.

enough for the event of recovering πd−β+1(t) at tour i to be independent from
the event of recovering it at tour i−1, as our model assumes. For example, if the
basis was not modified by the latest i-th tour and πd−β+1(t) was not recovered
by OSVP after tour i−1, it will also not be recovered after tour i.

The other phenomenon is the presence of a slight plateau in the probability
plots as P [B ≤ β] ≥ 0.8. In the case of n = 72 we also see that smaller than
predicted block sizes accumulate a significant success probability. Interestingly,
this effect does not appear to be present in the case of binary secret and error
LWE, see Figs. 6a and 6b. We expect that this phenomenon is caused by the
slight variation in sample variance throughout our experiments. Indeed, if we
think of our target vector t = (t1, . . . , td) as sampled coefficientwise from some
distribution χ with variance σ2, in practice the resulting sample variance for
each particular LWE instance s2 := 1

d

∑d
i=1 (ti − t̄)2, with t̄ := 1

d

∑
ti the sam-

ple mean, will likely slightly deviate from σ2. We would therefore expect ‖πi(t)‖2
to follow a distribution slightly different to σ2 · χ2

d−i+1. However, in the case of
χ = U({−1, 1}), the distribution resulting from scaled and centred binary LWE

On the Success Probability of Solving Unique SVP via BKZ 89

0 10 20 30 40 50 60 70

1

5

10

15

20

round using block size β

to
ur
s
co
m
pl
et
ed

be
fo
re

au
to
-a
bo

rt

τ = 5 τ = 10
τ = 15 τ = 20

Fig. 7. Measured number of tours run by the BKZ 2.0 subroutine of Progressive BKZ
with τ ≥ 5 for each round of reduction with block size β. Numbers are from experiments
using the n = 100 parameters from Table 1, with discrete Gaussian secret and error.
Values are averaged over 100 instances. Less than τ tours are run if either BKZ-β does
not change the basis or auto-abort triggers.

embeddings, this distribution has a very small variance of s2, i.e. V(s2),6 mean-
ing that most sampled target vectors will have sample variance almost exactly
V(χ) = 1. To verify this hypothesis, we run a set of n = 72 and n = 100 discrete
Gaussian experiments from Table 1, where we resample each LWE instance until
the target vector’s sample variance is within a 2% error of σ2, and then run
Progressive BKZ with τ in 1, 5, 10. The resulting experimental probability dis-
tributions, shown in Fig. 8, do not present plateaus (and in the case of n = 72,
they also do not present the high success probability for small block sizes), sup-
porting our hypothesis. In practice, this effect should not significantly affect
cryptographic parameters, as V(s2) ∈ O(1d) [KK51, Eq. 7.20], keeping the effect
of fluctuations in ‖πd−β+1(t)‖2 small as the embedding dimension d increases.

Our uSVP simulators output similarly accurate simulations for scaled and
centred binary, and ternary, secret and errors, as seen in Fig. 6, without mak-
ing any alterations. This is in line with the notion that the hardness of solving
uSVP via lattice reduction depends on the standard deviation of the target vec-
tor’s coefficients rather than their exact distribution. In recent work [CCLS20],
Chen et al. run small block size (β ≤ 45) experiments and from their results
conclude that the [ADPS16] methodology may be overestimating the security
of binary and ternary secret LWE instances, and that discrete Gaussian secrets
offer ‘greater security levels’. We believe their conclusions to be incorrect. First,
their experiments are exclusively run in the small block size regime, where it

6 Following [KK51,SR02], we compute V(s2) as approximately 0.00995, 0.00112, and
0.00005 for a discrete Gaussian with σ2 = 1, U({−1, 0, 1}) and U({−1, 1}) respec-
tively, for sets of 200 (≈ d) samples.

90 E. W. Postlethwaite and F. Virdia

is known that lattice heuristics often do not hold [GN08b, §4.2], [CN11, §6.1].
Second, their methodology does not take into account the norm of the embedded
shortest vector. In their experiments they compare LWEn,q,χ,m instances where
χ is swapped between several distributions with different variances. They use
the [BG14] embedding, which results in target vectors whose expected norms
grow with the variance of χ. This means instances with narrower χ will be
easier to solve, something that can already be predicted by running the LWE
estimator using the secret distribution parameter. The estimator will also
perform secret coefficient guessing, thus reducing the dimensionality of the prob-
lem. After this guessing has occurred, narrower χ giving rise to easier instances
does not mean that Gaussian secrets offer ‘greater security levels’ than binary
or ternary secrets, but rather that when fixing n, q, m, the larger the secret
variance, the harder the instance. Gaussian secrets with variance smaller than
1/4 would result in lower security than binary secrets in such a setting. We think
the experiments to determine whether discrete Gaussian secrets are more secure
than binary or ternary secrets should therefore be to compare LWE instances
with different secret distributions, but equal variances, as done in this section,
and that parameter selection for small secret LWE should keep the secret’s vari-
ance in consideration.

Fig. 8. Progressive BKZ success probability against LWE instances with discrete Gaus-
sian secret and error and (n, σ2) ∈ {(72, 1)(100, 2/3)}, such that their sample variance
is within 2% of σ2.

BKZ. In the case of BKZ, simulations seem to stay similarly accurate across all
secret dimensions n, as reported in Fig. 2. It should be noted that, even though
a larger gap than for Progressive BKZ can be seen between predictions and
experiments in the case of τ = 5, this predictive gap in expected block size of
less than 3 corresponds to about 1 bit in a core-sieve cost model [ADPS16].
Furthermore, this gap narrows as τ increases. Following experimental results
from [Che13, Figure 4.6] and [Alb17], designers often [ACD+18] consider it suf-
ficient to reduce a basis using τ = 16 tours of BKZ when specifying BKZ cost
models, due to the basis quality not improving significantly after 16 tours. Our
simulators seem accurate for values of τ in such a regime. Another observation

On the Success Probability of Solving Unique SVP via BKZ 91

is that Progressive BKZ with τ = 1 outperforms BKZ with τ = 5. Indeed,
the earlier performs approximately β tours of increasing block size versus the
latter’s five tours of block size β. It seems therefore that for these lattice param-
eters Progressive BKZ applies ‘more’ lattice reduction. We do not attempt to
give a closed formula for the minimum block size for which BKZ outperforms
Progressive BKZ in output quality. We also see that the phenomenon of success
probabilities not increasing when τ ≥ 10, as in the Progressive BKZ case, does
not occur here. This is compatible with our understanding of this phenomenon
in the case of Progressive BKZ. Indeed, BKZ-β will not auto-abort as often due
to the input basis not having already been reduced with, for example, τ tours
of BKZ-(β − 1).

However, a different interesting phenomenon can be observed. Sometimes, as
the block size is increased, the experimental success probability of BKZ lowers,
see the BKZ experiments in Fig. 2. For example, this happens between block sizes
60 and 61 in Fig. 2a when running τ = 5 tours of BKZ. Originally we believed
this to be caused by the preprocessing strategies used in FPyLLL. Indeed, at
the time of writing, preprocessing strategies for block size β (resp. β + 1) could
include running BKZ-β′ (resp. BKZ-β′′), with β′ > β′′, resulting in inferior
quality preprocessing for BKZ-(β + 1) than for BKZ-β. We replaced the default
preprocessing strategies with a custom one such that preprocessing block sizes
are non decreasing as a function of β, however this did not remove the effect.
A possible cause for this phenomenon could be that basis profiles output by
the [CN11] simulator do not capture the possibility that Gram–Schmidt vector
norms can be non decreasing as a function of their index. This means that one
could have a BKZ-β reduced basis such that

∥∥b∗
d−β

∥∥ <
∥∥b∗

d−β+1

∥∥. This event
happening across instances or block sizes could be a potential cause for the
phenomenon. The probabilistic BKZ simulator developed in [BSW18] seems to
better capture this phenomenon, when run with a fixed PRNG seed. An example
of the output of our uSVP simulator for BKZ, when replacing the [CN11] simu-
lator with the [BSW18] simulator, can be found in Fig. 9. However, our experi-
mental measurements are averaged over 100 runs. Running our uSVP simulator
with the [BSW18] simulator, and averaging its output, results in a simulation
with strictly increasing probabilities, unlike our measurements. In any case, the
overall success probability predictions stay reasonably accurate.

Finally, looking at Fig. 4, it seems that our simulations are consistent with the
measurements originally reported in [AGVW17, Table 1]. The simulators there-
fore seem to explain the reported success probabilities of lower than expected
block sizes in that paper.

6 Simulations of Cryptographically Sized LWE Instances

In previous sections we developed simulators for the success probability of solv-
ing uSVP instances and tested them against uSVP embedding lattices gener-
ated from small LWE instances that could be solved in practice. An immediate
application could be to use such simulators to estimate the behaviour of lattice
reduction when used against cryptographically sized instances.

92 E. W. Postlethwaite and F. Virdia

Fig. 9. Both figures show BKZ experiments and uSVP simulations for n = 100
instances with Gaussian secret and error, where the calls to the [CN11] simulator
made in Algorithm 6 are replaced. The left plot shows simulations where the [BSW18]
simulator is used with a fixed PRNG seed. The right plot shows the same experimental
data with simulations obtained by averaging the output of the [BSW18] simulator over
10 different seeds.

Here we use the simulator to compute the expected first viable block sizes
required to solve LWE and NTRU instances proposed for the NIST PQC
standardisation process. In particular we look at the second round versions
of the three lattice KEM finalists; Kyber [SAB+19], NTRU [ZCH+19], and
Saber [DKRV19]. An interesting option would be to use the simulators to pre-
dict what block size is required to solve an instance with a target low success
probability. However, as we discuss in Sect. 5.2, the simulations are not neces-
sarily fully accurate for smaller or larger block sizes, due to the fluctuations in
sample variance that an instance can have. While the effect should be minor
for cryptographically sized instances, low probability attacks may also include
combinatorial techniques not captured by our simulators. Therefore, extracting
block sizes for low probability attacks from the simulated probabilities may not
capture all of the necessary subtleties. Furthermore, we will see that the window
of block sizes predicted to be first viable is relatively narrow, so that lower suc-
cess probability attacks without combinatorial tricks should not be significantly
cheaper than higher success probability attacks.

In Table 2, we look at parameter sets from the lattice KEM finalists in the
third round of the NIST PQC standardisation process [NIS16], as specified dur-
ing the second round. We provide expected first viable block sizes E(β) (and
their standard deviations

√
V(β)) when using 15 tours of BKZ, and Progressive

BKZ with τ = 1 or 5 (see Algorithm 2). We choose τ = 15 for BKZ due to
our experiments confirming the accuracy of our estimator for this value and its
closeness to 16, which is commonly found in BKZ cost models. We choose τ = 1
and τ = 5 in the case of Progressive BKZ since our experiments suggest both
cases are accurately predicted by the uSVP simulator; this allows us to see if
running more tours in the BKZ subroutine has any effect on the complexity of
cryptographically sized parameters.

On the Success Probability of Solving Unique SVP via BKZ 93

Two clear disclaimers should be made. First, in Table 2 we list the expected
block size required to solve uSVP instances for the primal attack. While in an
aggressive cost model for these algorithms, such as core-SVP [ADPS16], one
could be tempted to make direct cost comparisons between algorithms based
only on β, in the case of BKZ we assume that τ tours of BKZ-β are run, while in
the case of Progressive BKZ about τβ tours of varying block size are run. Second,
for both algorithms we fixed the same number of samples m, chosen with the
aid of the LWE estimator as the optimal number of samples when using the
‘2016 estimate’ (except in the case of NTRU, where we assume m = n samples).
This is not necessarily the optimal number of samples for each specific block size
when computed using a uSVP simulator. We therefore avoid making claims and
comparisons regarding the exact cost of solving uSVP using the two algorithms,
and propose our results as an intermediate step between using the current LWE
estimator and finding a theoretically cheapest attack using our simulators.

6.1 Observations

In almost all cases the mean required block size E(β) is predicted to be larger
than the LWE estimator currently suggests. Our results for using Progres-
sive BKZ with τ = 1 against NTRU-HPS are in line with what Dachman-
Soled et al. [DSDGR20, Table 5] predict (NTRU-HPS being the only examined
scheme in common). The increase in E(β) may seem counterintuitive. The Alkim
et al. [ADPS16] methodology already aims to recover E(β), with the simulators
described in Sect. 4 capturing the success probability of smaller block sizes, pos-
sibly reducing the value of E(β). Indeed, the increase seems to be mainly due to
the use of the [CN11] simulator rather than the GSA for predicting the profile of
a BKZ reduced basis (i.e. the right hand side of (3)). An illustrative example of
this happening in the case of Kyber 512 can be see in Fig. 10. Indeed, patching
the LWE estimator to partially7 use the [CN11] simulator, we obtain E(β) of
Kyber 512 (resp. Kyber 768, Kyber 1024) of 390 (resp. 636, 890), narrowing
the gap with the predictions obtained in Table 2 by using our uSVP simula-
tors. The small standard deviations reported in Table 2 suggest that the success
probability of block sizes below E(β) decrease quickly.

7 For simplicity, our patch uses the GSA to predict the required block size to perform
lattice reduction and the optimal number of samples, as before. It uses the [CN11]
simulator for the basis profile output by BKZ, and to predict the block size required
to win by running OSVP on the last basis block.

94 E. W. Postlethwaite and F. Virdia

Table 2. Security estimates for some lattice schemes. The number of samples m used in
the embedding for Kyber (LWE) and Saber (LWR) is chosen using the LWE estimator,
to optimise the cost of the attack following the 2016 estimate for BKZ [ADPS16]. In
the case of NTRU, the number of samples m is chosen equal to n. β2016 is the block
size suggested by the LWE estimator. For BKZ and Progressive BKZ (PBKZ), E(β)
and

√
V(β) are the mean and standard deviation of the distribution of first viable block

sizes.

BKZ 2.0, τ=15 PBKZ, τ=1 PBKZ, τ=5

Scheme n q σs σe β2016 m E(β)
√
V(β) E(β)

√
V(β) E(β)

√
V(β)

Kyber 512 512 3329 1 1 381 484 386.06 2.56 389.53 2.88 385.70 2.32

Kyber 768 768 3329 1 1 623 681 634.41 2.96 638.23 3.30 634.00 2.66

Kyber 1024 1024 3329 1 1 873 860 891.13 3.31 895.24 3.66 890.63 2.96

LightSaber 512 8192
√

5/2
√
21/2 404 507 408.81 2.65 412.24 2.96 408.35 2.39

Saber 768 8192
√
2

√
21/2 648 736 659.36 3.00 663.10 3.32 658.85 2.68

FireSaber 1024 8192
√

3/2
√
21/2 890 891 907.76 3.34 911.78 3.68 907.16 2.97

ntruhps2048509 508 2048
√

2/3
√

1/2 374 508 375.93 2.58 379.56 2.92 375.71 2.36

ntruhps2048677 676 2048
√

2/3
√

127
338 521 676 522.78 2.82 526.77 3.18 522.67 2.57

ntruhps4096821 820 4096
√

2/3
√

51
82 621 820 628.78 2.83 632.54 3.17 628.43 2.55

ntruhrss701 700 8192
√

2/3
√

2/3 471 700 477.20 2.48 480.51 2.77 476.72 2.23

Fig. 10. Example plot showing the effect on the [ADPS16] methodology of using
the [CN11] BKZ simulator rather than the GSA, in the case of Kyber 512. Due to
the resulting higher basis profile, the GSA leads to picking a smaller block size. The
required winning block size in the [ADPS16] methodology is the distance from the
vertical line indicating the intersection to the final basis index d. Note that this plot is
zoomed in (d > 800).

On the Success Probability of Solving Unique SVP via BKZ 95

Conclusion. Overall, our data suggests that the experiments in Sect. 5 show
that the techniques in Sect. 4 help to more accurately predict lattice reduction
success probabilities for solving uSVP. It also suggests that in the case of short
vectors sampled coefficientwise from bounded uniform distributions, it is the
variance of the distribution, and not the exact probability mass function, that
determines the hardness of the LWE instance. The uSVP simulators also seem
to explain the success probability for smaller than expected block sizes reported
in [AGVW17].

As part of our experiments, we also tested whether using Progressive BKZ
with τ > 1 could be beneficial for an attacker. This seems to be useful to some
small degree from the point of view the of success probabilities, although BKZ
seems to perform comparatively well. However, Progressive BKZ could be of
interest to an attacker that wants to start performing lattice reduction as part
of a long term attack, but initially has access to fewer resources8 than necessary
to run BKZ with the expected first viable block size. Progressive BKZ would
then allow them to increase their resources as the attack progresses, with τ > 1
allowing them to stop at an overall slightly smaller final block size.

We also note that our preliminary estimates for the success probabilities of
lattice reduction on cryptographically sized instances result in higher block sizes
than output by the LWE estimator [APS15]. This seems to be mostly due to our
use of a BKZ simulator rather than the GSA. A patch to the LWE estimator
substituting the GSA with a BKZ simulator could mitigate this effect.

Acknowledgements. We would like to thank Martin Albrecht and Léo Ducas for
useful conversations, and for their help simulating the LLL output profile.

References

ACD+18. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes! In: Cata-
lano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 19

ACPS09. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 35

ADH+19. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite,
E.W., Stevens, M.: The general sieve kernel and new records in lattice
reduction. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 717–746. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3 25

ADPS16. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key
exchange–a new hope. In: USENIX (2016)

AFG13. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving
LWE by reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC
2013. LNCS, vol. 8565, pp. 293–310. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-12160-4 18

8 Say, memory if using lattice sieving to implement OSVP.

https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-319-12160-4_18
https://doi.org/10.1007/978-3-319-12160-4_18

96 E. W. Postlethwaite and F. Virdia

AG11. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755,
pp. 403–415. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22006-7 34

AGVW17. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the
expected cost of solving uSVP and applications to LWE. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 297–322.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 11

Alb17. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and
parameter choices in HElib and SEAL. In: Coron, J., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56614-6 4

ALNSD20. Aggarwal, D., Li, J., Nguyen, P.Q., Stephens-Davidowitz, N.: Slide reduc-
tion, revisited—filling the gaps in SVP approximation. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 274–295.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 10

APS15. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning
with errors. JMC 9(3), 169–203 (2015)

AWHT16. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ
algorithms and their precise cost estimation by sharp simulator. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp.
789–819. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49890-3 30

BCLv19. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.:
NTRU Prime. Technical report, NIST (2019)

BG14. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In:
Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08344-5 21

BMW19. Bai, S., Miller, S., Wen, W.: A refined analysis of the cost for solving LWE
via uSVP. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT
2019. LNCS, vol. 11627, pp. 181–205. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-23696-0 10

BSW18. Bai, S., Stehlé, D., Wen, W.: Measuring, simulating and exploiting the head
concavity phenomenon in BKZ. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11272, pp. 369–404. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2 13

CCLS20. Chen, H., Chua, L., Lauter, K.E., Song, Y.: On the concrete security of
LWE with small secret. IACR ePrint # 2020, 539 (2020)

Che13. Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement
complètement homomorphe. PhD thesis, Université Paris Diderot (2013)

CN11. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

DKRV19. D’Anvers, J.-P., Karmakar, A., Roy, S.S., Vercauteren, F.: SABER. Tech-
nical report, NIST (2019)

DSDGR20. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side
information: attacks and concrete security estimation. In: Micciancio, D.,
Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 329–358.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 12

dt16a. The FPLLL development team. fplll, a lattice reduction library (2016)

https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-030-56880-1_10
https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1007/978-3-319-08344-5_21
https://doi.org/10.1007/978-3-030-23696-0_10
https://doi.org/10.1007/978-3-030-23696-0_10
https://doi.org/10.1007/978-3-030-03326-2_13
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-030-56880-1_12

On the Success Probability of Solving Unique SVP via BKZ 97

dt16b. The FPyLLL development team. fpylll, a python interface for fplll (2016)
FHL+07. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR:

a multiple-precision binary floating-point library with correct rounding.
ACM Trans. Math. Softw. 33(2), 13 (2007)

GJS15. Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using
lattice codes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 23–42. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-47989-6 2

GN08a. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within mordell’s
inequality. In: STOC (2008)

GN08b. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 3

HG07. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle
attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol.
4622, pp. 150–169. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74143-5 9

HPS11. Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms
using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 447–464. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 25

Kan87. Kannan, R.: Minkowski’s convex body theorem and integer programming.
Math. Oper. Res. 12(3), 415–440 (1987)

KF15. Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with
applications to cryptography and lattices. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47989-6 3

KK51. Kenney, J.F., Keeping, E.S.: Mathematics of Statistics. Van Nostrand,
New York (1951)

LLL82. Lenstra, H.W.Jr., Lenstra, A.K., Lovász, L.: Factoring polynomials with
rational coefficients. Math. Ann. 261, 515–534 (1982)

LM09. Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique
shortest vectors, and the minimum distance problem. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03356-8 34

LN13. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Daw-
son, Ed. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36095-4 19

MR09. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography. Springer,
Berlin Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7 5

MW16. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 820–849. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 31

NIS16. NIST. Submission requirements and evaluation criteria for the Post-
Quantum Cryptography standardization process (2016)

Reg09. Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM 56(6), 1–40 (2009)

SAB+19. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, NIST (2019)

https://doi.org/10.1007/978-3-662-47989-6_2
https://doi.org/10.1007/978-3-662-47989-6_2
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/978-3-642-03356-8_34
https://doi.org/10.1007/978-3-642-36095-4_19
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-662-49890-3_31

98 E. W. Postlethwaite and F. Virdia

Sch03. Schnorr, C.P.: Lattice reduction by random sampling and birthday meth-
ods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–
156. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-
3 14

SE91. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical
algorithms and solving subset sum problems. In: Budach, L. (ed.) FCT
1991. LNCS, vol. 529, pp. 68–85. Springer, Heidelberg (1991). https://doi.
org/10.1007/3-540-54458-5 51

SE94. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical
algorithms and solving subset sum problems. Math. Program. 66(1–3),
181–199 (1994)

SR02. Smith, M.D., Rose, C.: Mathematical Statistics with Mathematica R©, p.
264. Springer, Berlin (2002)

ZCH+19. Zhang, Z., et al.: NTRUEncrypt. Technical report, NIST (2019)

https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1007/3-540-54458-5_51
https://doi.org/10.1007/3-540-54458-5_51

	On the Success Probability of Solving Unique SVP via BKZ
	1 Introduction
	2 Preliminaries
	3 Choosing BKZ Block Sizes and the `2016 Estimate'
	4 Simulating Solving uSVP
	4.1 Progressive BKZ
	4.2 BKZ

	5 Experiments
	5.1 Initial Experiments
	5.2 Observations

	6 Simulations of Cryptographically Sized LWE Instances
	6.1 Observations

	References

