
Private Set Operations from Oblivious
Switching

Gayathri Garimella1(B), Payman Mohassel2, Mike Rosulek1, Saeed Sadeghian3,
and Jaspal Singh1

1 Oregon State University, Corvallis, USA
garimelg@oregonstate.edu
2 Facebook, Madison, USA

3 Security Compass, Toronto, Canada

Abstract. Private set intersection reveals the intersection of two private
sets, but many real-world applications require the parties to learn only
partial information about the intersection. In this paper we introduce
a new approach for computing arbitrary functions of the intersection,
provided that it is safe to also reveal the cardinality of the intersec-
tion. In the most general case, our new protocol provides the partici-
pants with secret shares of the intersection, which can be fed into any
generic 2PC protocol. Certain computations on the intersection can also
be done even more directly and efficiently, avoiding this secret-sharing
step. These cases include computing only the cardinality of intersection,
or the “cardinality-sum” application proposed in Ion et al. (ePrint 2017).
Compared to the state-of-the-art protocol for computing on intersection
(Pinkas et al., Eurocrypt 2019), our protocol has about 2.5 − 3× less
communication, and has faster running time on slower (50 Mbps) net-
works.

Our new techniques can also be used to privately compute the union of
two sets as easily as computing the intersection. Our protocol concretely
improves the leading private set union protocol (Kolesnikov et al., Asi-
acrypt 2020) by a factor of 2−2.5×, depending on the network speed. We
then show how private set union can be used in a simple way to realize
the “Private-ID” functionality suggested by Buddhavarapu et al. (ePrint
2020). Our protocol is significantly faster than the prior Private-ID pro-
tocol, especially on fast networks.

All of our protocols are in the two-party setting and are secure against
semi-honest adversaries.

1 Introduction

In 2-party private set intersection (PSI), Alice’s input is a set of items X, Bob’s
input is a set Y , and the output (given to one or both of them) is the entire

Authors from Oregon State University - Partially supported by NSF award 1617197
and a Facebook research award.

c© International Association for Cryptologic Research 2021
J. A. Garay (Ed.): PKC 2021, LNCS 12711, pp. 591–617, 2021.
https://doi.org/10.1007/978-3-030-75248-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75248-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-75248-4_21

592 G. Garimella et al.

contents of the intersection X ∩ Y . PSI protocols have become incredibly
efficient over the last decade.

The fastest PSI protocols generally follow the rough approach of Pinkas
et al. [PSZ14], which was the first special-purpose PSI protocols to be based
on efficient OT (oblivious transfer) extension. Since then, the techniques have
been considerably refined and improved for both semi-honest [PSSZ15,KKRT16,
PRTY19,CM20] and malicious [DCW13,RR17a,RR17b,PRTY20] security. An
entirely different approach to PSI requires public-key operations (e.g., key
agreement or partially homomorphic encryption) linear in the size of the
sets [Mea86,HFH99,FNP04,CT10,CT12,FHNP16]. Our focus in this work is
on faster OT-extension-based PSI techniques.

Computing on the Intersection. Many real-world applications are closely related
to PSI but in fact require only partial/aggregate information about the
intersection to be revealed. In a notable real-world deployment of secure com-
putation, Google is known to compute the cardinality of the intersection and
the sum of values in the intersection [IKN+19,MPR+20]. More generally, we
consider private computing on set intersection (PCSI): the problem of
securely computing g(X ∩ Y) for a (mostly) generic choice of function g.

There are several techniques for computing set intersections within generic
2PC, so that the intersection can be easily fed into another function. Huang, Katz
and Evans [HEK12] gave an efficient sort-compare-shuffle circuit for use in either
GMW or Yao’s protocol. Further combinatorial improvements to intersection
circuits were proposed in [PSSZ15,PSWW18]. The current state of the art for
PCSI is due to [PSTY19], using a special-purpose preprocessing phase before
using general-purpose 2PC to perform the necessary comparisons.

Why the Performance Gap? Plain PSI and PCSI are clearly closely related prob-
lems, and yet the state-of-the-art protocols for these problems have significantly
different efficiency. Semi-honest PCSI – even in the simplest possible cases, like
cardinality of intersection – is concretely about 20× slower and requires over
30× more communication than semi-honest PSI. Why is this the case?

All PSI and PCSI protocols use various combinatorial techniques to reduce
the problem to a series of private equality tests. A private equality test (PEqT)
takes a private string from each party and reveals (only) whether the strings are
identical.

In the case of PSI, each party is allowed to learn whether each of their input
items is in the intersection or not. This fact leads PSI protocols to use efficient,
special-purpose PEqT subprotocols, which reveal the output of the equality test
directly to at least one of the parties. This approach doesn’t immediately work for
PCSI, since in that case the participants should not learn whether a particular
item is in the intersection or not. Instead, the outcome of the PEqTs should
remain “inside the secure computation,” prompting PCSI protocols to implement
PEqTs simply as circuits within a general-purpose 2PC protocol.

These divergent choices of PEqTs lead to the differences in performance
between PSI and PCSI. A general-purpose PEqT on �-bit strings is a

Private Set Operations from Oblivious Switching 593

boolean circuit with � non-free gates, leading to O(�) cryptographic opera-
tions and O(�κ) bits of communication. The state-of-the-art for special-purpose
PEqTs [KKRT16] has cost that is independent of �: only O(κ) bits of communi-
cation and O(1) symmetric-key cryptographic operations per equality test.

One exception to this general rule is due to Ciampi and Orlandi [CO18]. They
provide a special-purpose PEqT (actually a generalization where one party has
m items and the other has 1) that produces outputs in “encrypted form” that can
be subsequently fed into a generic 2PC. However, their approach still requires
Θ(κ�) bits of communication per comparison. While their concrete constants are
smaller than a circuit-based comparison, their approach is not an asymptotic
improvement.

Other Related Work. Another body of work studies the special case of comput-
ing the cardinality of intersection [HFH99,VC05,CZ09,CGT12,EFG+15,BA12,
KS05,DD15]. It is not clear how to extend such results for computing more gen-
eral functions of the intersection. The work of [BA12,EFG+15,MRR19] is in
the multi-party setting (n ≥ 3 parties) with an honest majority based on secret-
sharing. As a result, no cryptographic operations are needed but the techniques
are not applicable to the two-party setting.

1.1 Our Contribution

We describe a new approach for semi-honest PCSI, which leaks the cardinality
|X ∩ Y |. Hence, our protocol works to compute g(X ∩ Y) for any g that leaks
the cardinality |X ∩ Y |.This class of g includes many applications of interest,
discussed below.

The main idea is to obliviously permute all of the strings that will be used
in the PEqTs, so that one party does not know which items are tested in which
PEqT instance. We can then use the more efficient special-purpose PEqTs, giving
output directly to the party who is oblivious to the permutation. This reveals
only the cardinality of the intersection (i.e., how many PEqTs give output true).

Obliviously permuting n items incurs a log n overhead. However, in return
for this extra cost we are able to replace general-purpose PEqTs with special-
purpose PEqTs, saving a factor of � (for strings of length �). In almost all situ-
ations, log n � � and the tradeoff is an asymptotic as well as concrete improve-
ment over the state of the art.

Extensions and Applications. Our protocol supports any symmetric function
g(X ∩ Y) that leaks |X ∩ Y |. Useful such functions include:

– Computing the intersection; i.e., PSI (although our protocol is not competi-
tive with the most efficient PSI-only protocols).

– Computing only the cardinality of the intersection.
– Computing secret shares of the items in the intersection.
– The “intersection-sum” functionality proposed in [IKN+19], in which Alice

has a set of keys {x1, . . . , xn} and Bob has a set of key-value pairs

594 G. Garimella et al.

{(y1, v1), . . . , (yn, vn)}. Both parties learn the cardinality of {x1, . . . , xn} ∩
{y1, . . . , yn} as well as the sum of values

∑
i:yi∈{x1,...,xn} vi. Although not

strictly an instance of PCSI as we have defined it, our protocol is easily mod-
ified to realize this functionality.

For all of these cases except the plain-PSI case, our protocol gives the most
concretely efficient solution to date.

We also show how to use our main techniques to also securely compute the
union of the input sets. Our private set union protocol is concretely more effi-
cient than the state-of-the-art protocol of [KRTW19].

Finally, we show how our techniques can be used to realize the “private ID”
functionality proposed in [BKM+20]. In this functionality, both parties learn
pseudorandom universal identifiers for the values in the union of their sets, as
well as the identifiers corresponding to their own items. This functionality allows
parties to locally sort their data sets according to these universal identifiers, and
feed them into any general-purpose 2PC protocol for simplified processing. Our
construction is the first instantiation of Private ID using OT-based techniques
that are dominated by symmetric-key crypto operations.

We have implemented our protocols and give a full comparison to existing
protocols.

2 Preliminaries

Security Model. We use the standard notion of security in the presence of semi-
honest adversaries. Let π be a protocol for computing the function f(x1, x2),
where party Pi has input xi. We define security in the following way.

For each party P , let viewP (1κ, x1, x2) denote the view of party P during
an honest execution of π on inputs x1 and x2. The view consists of P ’s input,
random tape, and all messages exchanged as part of the π protocol.

Definition 1. 2-party protocol π securely realizes f in the presence of semi-
honest adversaries if there exists a simulator Sim such that, for all inputs x1, x2

and all i ∈ {1, 2}:
Sim(1κ, i, xi, f(x1, x2)) ∼=κ viewPi

(1κ, x1, x2)

where ∼=κ denotes computational indistinguishability with respect to security
parameter κ.

Essentially, a protocol is secure if the view of a party leaks no more informa-
tion than f(x1, x2).

3 Protocol Building Blocks

3.1 Oblivious Transfer

Oblivious Transfer (OT) is a fundamental cryptographic protocol widely used
in secure computation, and initially introduced in [Rab05]. It allows a sender

Private Set Operations from Oblivious Switching 595

with two inputs m0,m1 and a receiver with a bit b to engage in a protocol where
the receiver learns mb, and neither party learns any additional information. A
single OT requires public-key operations and hence is expensive. But a powerful
technique called OT extension [IKNP03,KK13,ALSZ13] allows one to perform
n OTs by only performing O(κ) public-key operations (where κ is a computa-
tional security parameter) and O(n) fast symmetric-key operations, allowing for
faster and more scalable implementation when invoking many OTs. In Fig. 1 we
formally define the ideal functionality for OT that provides n parallel instances
of OT.

3.2 Oblivious Switching Network

An oblivious switching network works as follows. One party chooses a permu-
tation π on n items, and the other party chooses a vector x. The parties learn
additive secret shares of π(x) (i.e., x permuted according to π). The formal
description of the functionality is given in Fig. 2.

Mohassel and Sadeghian [MS13] introduced oblivious switching and described
a semi-honest oblivious switching protocol that is based on oblivious transfers.
Briefly, the protocol works by considering a universal switching network (i.e.,
Waksman or Beneš network), which consists of O(n log n) 2-input, 2-output
switches. The receiver chooses programming of the switches (whether to swap
the order of the inputs or not) based on their permutation π. The sender chooses
a random one-time pad for each wire of the network, and the invariant is that
the receiver will learn the value on each wire but masked with the one-time pad
of that wire. The parties use oblivious transfer to allow the receiver to select
whether to learn the XOR of masks of input b and output b, or to learn the
XOR of masks of input b and output 1− b. These XOR values suffice to preserve
the invariant across the switches. At the output layer of the switching network,
the sender holds a vector of one-time pads, and the receiver holds the permuted
values masked by these one-time pads. We give more details in the full-version
of our paper.

The total cost of the switching network is O(n log n) oblivious transfers, one
for every switch in the switching network. Each OT is on a pair of 2�-bit strings
(two masks).

We described the ideal functionality to allow the input vector x to be longer
than the output (secret-shared) vectors, which leads to π being an injective func-
tion rather than a permutation. This can be accomplished by simply permuting
the input vector so that the desired items are “in the front”, and then both
parties truncating their vector of shares by the appropriate amount. In the full
version of our paper we describe an optimization for injective functions that
slightly improves over permuting-then-discarding.

3.3 Batch Oblivious PRF

Kolesnikov et al. [KKRT16] describe an efficient protocol for batched oblivious
PRF (OPRF) based on OT extension. The protocol provides a batch of oblivious

596 G. Garimella et al.

Fig. 1. Ideal functionality Fot for n oblivious transfers.

Fig. 2. Ideal functionality Fosn for oblivious switching network.

Fig. 3. Ideal functionality FbOPRF for batch oblivious PRF.

Fig. 4. Ideal functionality FbEQ for batch string equality testing.

PRF instances in the following way. In the ith instance, the receiver has an input
xi; the sender learns a PRF seed ki and the receiver learns PRF(ki, xi). Note
that the receiver learns the output of the PRF on only one value per key, and
the sender does not learn which output the receiver learned. The batch OPRF
functionality is described formally in Fig. 3.

The KKRT batch OPRF protocol is based on OT extension and extremely
fast. Each OPRF instance requires roughly only 4.5κ total bits of communication
between the parties, and a few calls to a hash function. On a fast network, a
million OPRF instances can be generated in just a few seconds.

Technically speaking, the KKRT protocol realizes OPRF instances where the
keys ki are related in some sense. However, the PRF that it instantiates has all
the expected security properties, even in the presence of such related keys. For

Private Set Operations from Oblivious Switching 597

the sake of simplicity, we ignore this issue in our notation. For more details, see
[KKRT16].

3.4 Private Equality Tests

A private equality test (PEqT) allows two parties to determine whether their
two input strings are equal (while leaking nothing else about the inputs).

An oblivious PRF can be used to realize a secure equality test in a simple
way. Suppose Alice has input x and Bob has input y, and they would like to
learn whether x = y. Alice acts as OPRF receiver with input x and learns
PRF(k, x). Bob learns PRF seed k and sends the value PRF(k, y). If x �= y then
the PRF property ensures that Bob’s message looks random to Alice; otherwise
the message is the PRF output that Alice already knows.

Using the batch OPRF protocol of [KKRT16], the parties can realize a large
batch of equality tests in a natural way. The functionality FbEQ of Fig. 4 formal-
izes this batch equality testing. We take advantage of the fact that its output
can be given to just one party.

3.5 Reducing PSI to O(n) Comparisons

The leading protocol for PCSI is due to Pinkas et al. [PSTY19]. One of their
main contributions is to show how to interactively reduce a PSI computation to
O(n) comparisons, using only a linear amount of communication.

The main idea behind the PSTY19 preprocessing is for Alice to use hash
functions h1, h2, h3 to assign her items to m bins via Cuckoo hashing, so that
each bin has at most one item. Bob assigns each of his items y to all of the bins
h1(y), h2(y), h3(y). The parties use the batch OPRF functionality FbOPRF, with
Alice acting as receiver. If she has placed item x in bin j, then she will receive
output PRF(kj , x), while Bob learns each kj .

Now, Bob chooses a random value sj for each bin j. The goal is to arrange
that if Alice and Bob have a matching item in the jth bin, then Alice will
somehow learn that bin’s sj value. Suppose for example that one of Bob’s items
in bin #1 is y∗. Then Bob needs to somehow communicate to Alice “if you have
y∗ in bin #1, then XOR your PRF output with PRF(k1, y∗)⊕ s1”. But he needs
to do so without revealing y∗ and the rest of his input items. He can do this by
interpolating a polynomial P with the following property: if Bob has item y in
bin j, then P (y‖j) = PRF(kj , y) ⊕ sj . Using the pseudorandomness of PRF and
the randomness of the sj values, it is possible to show that P is indistinguishable
from a uniformly random polynomial, and hence it hides Bob’s y-values.

Alice therefore can take her PRF(kj , x) values and XOR with P (y‖j). In the
case that Bob also had this item x, then he would have assigned it to bin j (and
to other bins as well), so Alice’s result is sj . If Bob did not have this x, then
it is possible to show that Alice’s result matches sj with negligible probability
(assuming the polynomial is over a sufficiently large field).

Overall, Alice obtains a vector of values (call them t1, . . . , tm) where tj = sj

if and only if Alice’s item in the jth bin is in the intersection. Hence we have

598 G. Garimella et al.

reduced the problem of intersection to the problem of m = O(n) string equality
tests. These pairs of strings must be compared privately, since comparing them
in the clear leaks information to both parties.

More Details. We write Cuckoo hashing with the following notation:

C ← Cuckoom
h1,h2,h3

(X)

This expression means to hash the items of X into m bins using Cuckoo hashing
on hash functions h1, h2, h3 : {0, 1}∗ → [m]. The output is C = (C1, . . . , Cm),
where for each x ∈ X there is some i ∈ {1, 2, 3} such that Chi(x) = x‖i.1 Some
positions of C will not matter, corresponding to empty bins.

Using this notation, the PSTY19 preprocessing is as follows:

1. Alice does A ← Cuckoom
h1,h2,h3

(X).
2. The parties call FbOPRF, where Alice is receiver with input A and Bob

is sender. Bob receives output (k1, . . . , km) and Alice receives output
(f1, . . . , fm). For each x ∈ X assigned to bin j by hash function i, we
have fj = PRF(kj , x‖i).

3. For each j ∈ [m], Bob choose a random sj . He then interpolates a poly-
nomial P of degree < 3n such that for every y ∈ Y and i ∈ {1, 2, 3}:

P (y‖i) = shi(y) ⊕ PRF(khi(y), y‖i)

He sends P to Alice.
4. Alice computes a vector (t1, . . . , tm) where tj = P (Aj) ⊕ fj .

Mega-Bin Optimization. The PSTY19 approach requires parties to interpolate
and evaluate a polynomial of degree 3n, where n can be very large (e.g., n = 220).
The fastest algorithms for interpolating such a polynomial (and evaluating it on
n points) runs in O(n log2 n) time. The cost of such polynomial operations can
be prohibitive, so the authors of PSTY19 propose an alternative way to encode
the same information.

Call a mapping “y‖i �→ shi(y) ⊕ PRF(khi(y), y‖i)” a hint. Bob must convey
3n such hints to Alice in the protocol. One way to do this is to make n′ = n/ log n
so-called mega-bins and assign each hint into a mega-bin using a hash function—
i.e., assign the hint for y‖i to the mega-bin indexed H(y‖i) for a public random
function H : {0, 1}∗ → [n′]. With these parameters, all mega-bins hold fewer
than O(log n) items, with overwhelming probability. Bob adds dummy hints to
each mega-bin so that all mega-bins contain the worst-case O(log n) number of
hints (since the number of “real” hints per mega-bin leaks information about his
input set). In each mega-bin, Bob interpolates a polynomial over the hints in that
bin, and sends all the polynomials to Alice. For each x‖i held by Alice, she can
find the corresponding hint (if it exists) in the polynomial for the corresponding
mega-bin.
1 Appending the index of the hash function is helpful for dealing with edge cases like
h1(x) = h2(x), which happen with non-negligible probability.

Private Set Operations from Oblivious Switching 599

The total communication cost is a degree-O(log n) polynomial for each of
n/ log n mega-bins; in other words, a constant-factor increase over sending a
single degree-3n polynomial. However, the total computation cost is an inter-
polation of a degree-O(log n) polynomial in each mega-bin, a total cost of
O

(
(n/ log n)(log n)(log log n)2

)
= O(n(log log n)2). In practice, the mega-bins

are small enough that the asymptotically inferior quadratic polynomial interpo-
lation algorithm is preferable, but this still leads to O(n log n) computational
cost overall.

For simplicity, we describe our protocol in terms of the simpler single-
polynomial solution, while our implementations use the mega-bins optimization.

4 Protocol Overviews and Details

In this section we give the details of our protocols for PCSI and related problems.

4.1 Our Protocol Core: Permuted Characteristic

All of our protocols build on the same core, which roughly consists of: (1) the
PSTY19 preprocessing, reducing the intersection computation to O(n) string
equality tests; (2) an oblivious shuffle; (3) special-purpose equality tests.

We formalize this “protocol core” in terms of a permuted characteristic
functionality Fpc defined in Fig. 5. Roughly speaking, the sender Alice learns a
permutation π of her items, and the receiver Bob learns a vector e, where ei = 1
if Alice’s π(i)’th item is in Bob’s set. In other words, e is the characteristic vector
of Alice’s (permuted) set with respect to the intersection.

Our protocol for permuted characteristic is given formally in Fig. 6.

Lemma 1. The protocol in Fig. 6 securely realizes Fpc against semi-honest
adversaries.

Proof. Alice’s view consists of her input, private randomness π̃, outputs from
FbOPRF and Fosn, and protocol message P from Bob. The simulator for a corrupt
Alice runs the protocol honestly with the following changes:

– In step 2, it simulates uniform outputs fj from FbOPRF.
– In step 4, it simulates a uniform polynomial P from Bob.
– In step 6, it chooses π̃ so that xπ(i) = Aπ̃(i), where π is the ideal output from

Fpc.

We show that this simulation is correct via the sequence of hybrids:

– Hybrid 0. The real interaction, in which Bob runs honestly with his input set
Y .

– Hybrid 1 The only change is that all terms of the form PRF(kj , ·) are replaced
with uniform values, including Alice’s outputs from the FbOPRF functionality
in step 2. This change is indistinguishable by the pseudorandomness of PRF.

600 G. Garimella et al.

Fig. 5. Permuted characteristic functionality Fpc.

Fig. 6. Permuted characteristic protocol.

Private Set Operations from Oblivious Switching 601

– Hybrid 2 The only change is that in step 4 the polynomial P is chosen uni-
formly at random. Previously, P was interpolated through points of the form
shi(y) ⊕ PRF(khi(y), y‖i). If Alice didn’t have item y or didn’t place item y
according to hash function i, then the PRF-output term has been replaced
by a random term that is independent of her view, so this output of P is
uniform. For all other outputs of P (corresponding to Alice’s placement of
intersection items), the corresponding sj values are uniform, making those
P -outputs uniform as well. Overall, P is being interpolated to give only uni-
form outputs; hence P itself is distributed uniformly among polynomials of
degree <3n. Hence this change in hybrids has no effect on Alice’s view.

– Hybrid 3 In the previous hybrid, Alice first chooses injective function π̃ and
then uses it to compute permutation π. This induces a uniform distribution
on π, so the same distribution can be obtained by first choosing uniform π
and then computing the corresponding π̃.

The final hybrid corresponds to the simulator as described above.
Bob’s view consists of his input, private randomness {sj}j , outputs from

FbOPRF, Fosn, FbEQ. Clearly the outputs ki from FbOPRF are distributed inde-
pendently of the honest party’s inputs. By definition, the output b from Fosn is
uniformly distributed, as a secret-share. This leaves only the output e of FbEQ.
It is a simple matter to check that e is distributed exactly as the ideal output
of Fpc. Namely, it is a uniform bit-vector with exactly |X ∩ Y | ones. Hence, all
of Bob’s view can be trivially simulated given the ideal output e from Fpc.

4.2 Intersection and Union

Our protocol core (permuted characteristic) Fpc can be used to realize plain
private set intersection (PSI) and private set union (PSU) in a simple
way. After Fpc, say Alice holds a permutation of her input set, and Bob holds the
characteristic vector e. If the characteristic vector is 0 in position i, this means
that Alice’s ith item is in X\Y . If the characteristic vector is 1 in position i,
then Alice’s ith item is in X ∩ Y .

For PSI, the parties can use n = |X| oblivious transfers to allow Bob to learn
the items in X ∩Y . If ei = 1, Bob will choose to learn Alice’s ith item; otherwise
he will choose to learn nothing.

Observe that PSU is equivalent to letting Bob learn X\Y : Given the ideal
PSU output X ∪ Y and Bob’s input Y , he can indeed compute X\Y = (X ∪
Y)\Y . Conversely, given X\Y and Bob’s input Y , he can compute the PSU
output X ∪ Y = (X\Y) ∪ Y . With that in mind, Bob can easily compute X\Y
by simply inverting his logic in the previous paragraph. If ei = 0, Bob will choose
to learn (via OT) Alice’s ith item; otherwise he will choose to learn nothing.

The formal details of these PSI/PSU protocols are given in Fig. 7. We remark
that this approach for PSI is not competitive with the state-of-the-art special-
purpose protocols for PSI. In particular, an oblivious shuffle is unnecessary for
PSI. We include this PSI protocol merely for illustrative purposes. However, as
we shall see, our approach for PSU is indeed competitive with the state of the
art, and is useful as a stepping stone to another interesting application.

602 G. Garimella et al.

Fig. 7. Ideal functionalities for intersection/union (Fpsi/Fpsu).

Fig. 8. Protocols for intersection and union.

Lemma 2. The PSI and PSU protocols of Fig. 8 securely realize Fpsi and Fpsu,
respectively, (Fig. 7) against semi-honest adversaries.

Proof (Proof sketch) We focus on the security proof for PSI, as the proof for PSU
is analagous. Security against a corrupt sender is trivial, since their view consists
of only the output π from Fpc. For a corrupt receiver, their view consists of the
vector e and OT outputs. If xπ(i) ∈ Y , then ei = 1 and the ith OT output is
xπ(i). Otherwise, ei = 0 and the ith OT outputs is ⊥. Furthermore, π is uniform,
and therefore this distribution can be simulated given only ideal output X ∩ Y :
Sample a uniform binary vector e containing |X ∩Y | 1s. Then choose a uniform
assignment of elements of X ∩ Y to OT instances i for which ei = 1.

Our protocols give output only to one party (the receiver). In the semi-
honest setting, the receiver can simply report the output to the sender in order
to provide output to both parties.

4.3 PCSI: Computing on the Intersection

We now discuss PCSI: computing a function of the intersection. Our approach
inherently leaks the cardinality, and we formalize this in the ideal functionality

Private Set Operations from Oblivious Switching 603

Fpcsi+card of Fig. 9, which outputs the cardinality of the intersection along with
a function g of the intersection.

Fig. 9. Ideal functionality for computing cardinality and an arbitrary function of the
intersection Fg

pcsi+card.

Perhaps the most common instance of PCSI is to compute only the cardinality
(i.e., g is empty). This special case can be obtained trivially by our Fpc protocol
core:

Proposition 1. If the parties run Fpc on their inputs and the receiver outputs
the hamming weight of e, then the resulting protocol securely realizes Fg

pcsi+card

for g = ⊥, against semi-honest adversaries.

Proof (Proof sketch). Security against corrupt sender is trivial since the sender’s
view consists only of a uniformly distributed permutation (i.e., independent
of anyone’s inputs). Regarding a corrupt receiver: since π is uniformly chosen
among permutations, the vector e is distributed as a uniform vector of length
n with exactly |X ∩ Y | ones. This distribution can therefore be simulated given
only the ideal output |X ∩ Y |.

Note also that if the sizes of X and Y are public, then computing |X ∩ Y | is
equivalent to computing |X ∪ Y |, via the standard inclusion-exclusion formula.

Cardinality-Sum. If the function g is simple enough, then Fg
pcsi+card can be real-

ized in a very simple way from Fpc. We illustrate with an example, which does
not exactly fit into the definition of Fpcsi+card since one party has a set of key-
value pairs. Our example involves the cardinality-sum functionality proposed
by Ion et al. [IKN+19]. The functionality is described formally in Fig. 10. It
reveals the intersection of the cardinality as well as the sum of all values whose
keys are in the intersection.

In Fig. 11 we describe a simple protocol realizing the cardinality-sum func-
tionality. Similar to how we achieve PSI & PSU from Fpc, this protocol uses
oblivious transfers to let the receiver learn things, based on the characteris-
tic vector. In this case, instead of learning the sender’s items in the clear, the
receiver learns either an additive secret share of 0 or a secret share of that item’s
associated value. Then the receiver can compute the sum by locally adding the
shares.

Lemma 3. The protocol of Fig. 11 securely realizes ideal functionality Fcard+sum

(Fig. 10), against semi-honest adversaries.

604 G. Garimella et al.

Fig. 10. Ideal functionality Fcard+sum for cardinality-sum.

Fig. 11. Protocol for cardinality-sum.

Proof (Proof sketch). Security against a corrupt sender is immediate. Relative
to the cardinality protocol, the only addition to a corrupt receiver’s view are the
outputs of the OTs. View these outputs as the vector r + q, where r is uniform
subject to having sum 0; and qi = vi if xi ∈ Y and qi = 0 otherwise. Since the
ri’s are a perfect additive secret share of 0, the distribution of r + q depends
only on

∑
i qi, which is the ideal output s.

General Case. More generally, suppose the sender has a set of key-value pairs
(xi, vi), and the receiver has a set of keys Y . The parties can use parallel oblivious
transfers to secret share a vector q, where:

qi =

{
vi xi ∈ Y

ṽ xi �∈ Y

where ṽ is some dummy/default value. In the case of cardinality-sum, ṽ = 0.
With secret shares of such a vector, the parties can compute a function g

that takes in a vector of inputs and ignores the dummy/default values in the
input. In the case of cardinality-sum, g was simple addition and no interaction
was required to compute it.

Private Set Operations from Oblivious Switching 605

4.4 Secret-Shared Intersection

In some settings, it is more convenient for the parties to obtain secret shares of
the items of the intersection, so that it can be fed into a generic 2PC.

To illustrate the challenges here, let’s first consider a very natural approach
that doesn’t work. The parties run Fpc, so that Bob learns the indices of Alice’s
intersection items, permuted according to the secret permutation π. Whereas
with PSI/PSU, Bob used OT to selectively learn the items of the intersection
(or set-difference), we might be tempted to have Bob now learn secret-shares of
the items in the intersection.

To see why this isn’t so straight forward, imagine that each party has 1
million items, and there are 10 in the intersection. Bob could indeed use OT
to learn secret shares of those 10 items. But now it is time to run the 2PC to
compute g on those 10 items. Alice prepared 1M additive shares, and she doesn’t
know which 10 of them should be given to g! Bob knows which ones are the right
ones, but he can’t tell Alice because she knows the secret permutation π—this
would reveal the entire contents of the intersection to Alice!

We address this challenge by simply doing another oblivious switching net-
work. Alice holds a secret permutation of her items. Bob knows which indices in
this permutation correspond to items in the intersection. He chooses an injec-
tive function ρ whose range covers exactly those intersection items. They use an
oblivious switching network, so that both parties learn additive shares of only
those items referenced by ρ.

Details of this protocol are given in Fig. 13. Bear in mind that the input to g
is necessarily given as an ordered vector. Most applications of PCSI will involve
a function g that is symmetric, meaning that g is insensitive to the order of its
inputs. However, note that the values that are fed into g are randomly permuted,
from both parties’ perspective (Bob didn’t know π and Alice didn’t know ρ).
Hence, our protocol is meaningful even if g is sensitive to the order of its input
items. In that case, we still achieve the most natural security, where the items
of the intersection are randomly shuffled before being given as input to g.

Lemma 4. The protocol of Fig. 13 securely realizes Fss-int (Fig. 12), against
semi-honest adversaries.

Proof. Beyond the output of Fpc, the only thing added to parties’ views in
Fig. 13 is the cardinality c and the secret shares output by Fosn. The former can
be inferred by the ideal output of Fss-int, and the latter coincides with the ideal
output itself.

4.5 Private ID

Buddhavarapu et al. [BKM+20] proposed a useful functionality that they called
private-ID. In this functionality, both parties provide a set of items. The func-
tionality assigns to each item a truly random identifier (where identical items
receive the same identifier). It then reveals to each party the identifiers corre-
sponding to their own items, and also the entire set of all identifiers (i.e., the
identifiers of the union of their input sets).

606 G. Garimella et al.

Fig. 12. Ideal functionality for computing secret shares of the intersection Fss-int.

Fig. 13. Protocol for secret-shared intersection.

The advantage of Private ID is that both parties can sort their private data
relative to the global set of identifiers. They can then proceed item-by-item,
doing any desired private computation, being assured that identical items are
aligned.

Fig. 14. Private ID functionality Fpriv-ID.

Private Set Operations from Oblivious Switching 607

Fig. 15. Private-ID protocol.

Our Approach. Our approach for private-ID builds on oblivious PRF and private
set union. Roughly speaking, suppose the parties run an oblivious PRF twice:
first, so that Alice learns kA and Bob learns PRF(kA, yi) for each of his items yi;
and second so that Bob learns kB and Alice learns PRF(kB , xi) for each of her

608 G. Garimella et al.

items xi. We will define the random identifier of an item x as

R(x) def= PRF(kA, x) ⊕ PRF(kB , x).

Note that after running the relevant OPRF protocols, both parties can compute
R(x) for their own items. To complete the private-ID protocol, they must simply
perform a private set union on their sets R(X) and R(Y).

This approach indeed leads to a fine private-ID protocol. In the full-version
of our paper we present and prove secure an optimization we observe that a
full-fledged OPRF is not needed and a so-called “sloppy OPRF” would suffice.

In particular, if Bob has an item y∗ that is not held by Alice, then it
doesn’t matter whether Bob learns the “correct” value PRF(kA, y∗). Suppose
that Bob instead learns some other value z∗ instead. Then Bob will consider
z∗ ⊕ PRF(kB , y∗) to be the identifier of this item. Since Alice doesn’t know kB ,
this identifier looks random to Alice, which is the only property we need from
private-ID for an item that is held by Bob and not Alice.

Hence we instantiate this general OPRF-based approach, but with a more
efficient “sloppy OPRF” protocol. In a sloppy OPRF, Alice provides a set X;
Bob provides a set Y ; Alice learns kA and Bob learns a list of output values
z1, . . . , zn. For every yi ∈ Y , if yi ∈ X, then zi = PRF(kA, yi), but for other zi

values there is no correctness guarantee.
We achieve a sloppy OPRF using the OPPRF idea that is also used in the

PSTY19 pre-processing. Namely, Bob hashes his items into bins with Cuckoo
hashing. They perform a batch-OPRF, where Bob will learn PRF(khi(y), y‖i) if
he placed item y according to hash function hi. Alice chooses a random seed
s for a different PRF PRF′ and sends a polynomial P that satisfies P (x‖i) =
PRF′(s, x)⊕PRF(khi(y), y‖i) for all x ∈ X and all i ∈ {1, 2, 3}. Bob will compute
his final output as P (y‖i) ⊕ PRF(khi(y), y‖i), which will equal PRF′(s, y) in the
case that Alice held the item y.

Lemma 5. The protocol in Fig. 15 securely realizes the Fpriv-ID functionality
Fig. 14 in the presence of semi-honest adversaries.

Proof. The protocol is symmetric with respect to the parties’ roles, so we focus
on the case of a corrupt Alice.

Claim. In step 8, when Bob computes RB, it satisfies the property that if
y ∈ X ∩ Y then RB(y) = PRF′(sA, y) ⊕ PRF′(sB , y).

Proof. Suppose Bob placed item y into bin hi(y) according to hash function
i. Then Bob computed RB(y) as RB(y) = PA(y‖i) ⊕ PRF(kB

hi(y)
, y‖i) ⊕

PRF′(sB , y). Since y ∈ X also, the polynomial PA satisfies PA(y‖i) =
PRF(kB

hi(y)
, y‖i) ⊕ PRF′(sA, y). Substituting, we see that indeed RB(y) =

PRF′(sA, y) ⊕PRF′(sB , x). This implies in particular that RA(y) = RB(y)
for y ∈ X ∩ Y .

The simulator for corrupt Alice receives ideal output (R∗, R(x1), . . . , R(xn))
and simulates Alice’s view as follows:

Private Set Operations from Oblivious Switching 609

– in step 2, uniform output fA
j from FbOPRF.

– in step 4, a polynomial PB satisfying PB(x‖i) = fA
hi(x)

⊕ R(x) ⊕PRF′(sA, x)
for every item x ∈ X placed according to hash function i, and uniform oth-
erwise.

– in step 6, uniform keys kA
j from FbOPRF.

– in step 9, output U = R∗ from Fpsu.

We show the correctness of this simulation via a sequence of hybrids:

– Hybrid 0: The real protocol interaction.
– Hybrid 1: Replace all terms of the form PRF′(sB , y) with random; this change

is indistinguishable from the pseudorandomness property.
– Hybrid 2: Replace all terms of the form PRF(kj , x‖i) with random (including

outputs fA
j given to Alice); this change is indistinguishable from the security

of FbOPRF and the pseudorandomness of PRF.
Previously PB was interpolated as PB(y‖i) = PRF′(sB , y)⊕PRF(kB

hi(y)
, y‖i).

Now, if Alice did not have item y and placed it according to hash function i,
then the PRF(kB

hi(y)
, y‖i) term is now uniform and independent of her view,

making this output of PB random. For y‖i corresponding to Alice’s item
placement, the y’s are distinct, and the PRF′(sB , y) in those terms are now
uniform, making this output of PB random. In short, PB is now a uniform
polynomial.
Note also that RB(y) is uniform for y ∈ Y \X, because of the fresh random
PRF′(sB , y) term in its definition.

– Hybrid 3: Instead of computing RA(x) as in step 4, where one of the terms
PB(x‖i) is a uniform value, we instead compute RA(x) randomly and then
interpolate PB to go through the correct value (and be otherwise uniform),
i.e.,

PB(x‖i) = RA(x) ⊕ fA
hi(x)

⊕ PRF′(sA, x)

This change has no effect on Alice’s view distribution. Note that in this hybrid,
every RA(x) is random, and every RB(y) is random subject to RB(y) = RA(y)
in the case that y ∈ X ∩ Y .

This final hybrid corresponds to the final simulation, after some slight rear-
ranging. First, a random R(z) is chosen for every z ∈ X ∩ Y . Then the polyno-
mial PB is interpolated according to {R(x) | x ∈ X}, via the expression in the
simulator description. Finally, the output of Fpsu is {R(z) | z ∈ X ∩ Y }.

5 Comparing Communication Costs

In this section we compare our new approach to existing protocols. The focus
in this section is on quantitative differences and communication complexity. In
Sect. 6 we report on the running time of the implemented protocols.

610 G. Garimella et al.

5.1 PSU

The state of the art PSU protocol is due to Kolesnikov et al. [KRTW19]. In
that protocol, each party’s n items are hashed into m = O(n/ log n) bins. The
expected number of items per bin is n/m, but the worst-case load among the
bins is larger by a constant factor. In order to hide the true number of items per
bin, each party must add dummy items up to this worst-case maximum.

Within each bin, the parties perform a subprotocol with linear number of
OPRFs, linear number of OTs, and quadratic communication. Specifically, the
additional communication for β items in a bin is β2σ, where σ = λ+2 log n and
λ is the statistical security parameter.

Let c be the constant factor expansion within a bin to accommodate the
dummy items (i.e., n/m expected items in a bin, padded to cn/m including
dummies). For usual set sizes, the constant is 3.2–3.6. Then the total communi-
cation cost for the protocol is:

cn · bOPRF + cn · OT + (c2n log n)σ

Here bOPRF and OT refer to the communication costs for a single bOPRF and
OT, respectively.

Our protocol requires the following: 1.27n OPRFs, sending one degree-3n
polynomial (for the PSTY19 preprocessing), roughly 1.27n log n OTs (for the
switching network), and then n additional OTs (to selectively transfer the union).
Note the constant bounding the size of the Beneš network is indeed 1. The total
communication cost is therefore:

1.27n · bOPRF + 3nσ + (1.27n log n + n) · OT

In comparings the protocols, the dominant term is the one containing
O(n log n). Our protocol is superior if 1.27OT < c2σ. Indeed, the cost of an
OT is κ + 2� (where � is the length of the item being transferred), which in our
implementation is 128 + 2.60 = 248. Hence 1.27OT ≈ 315. In [KRTW19], c2σ is
at least 10 · 80 = 800.

These pen-and-paper calculations match what we find empirically in Table 2
where our communication cost is half that of Kolesnikov et al. [KRTW19]. Our
protocol is a significant constant factor better.

5.2 PCSI

For general-purpose PCSI, the leading protocol is due to Pinkas et al. [PSTY19]
(PSTY19). Recall that our protocol builds on the first several steps of their
protocol, which we call the PSTY19 preprocessing. We focus on the difference
between the two approaches, after performing the common preprocessing. In
[PSTY19], the authors report that the cost of preprocessing is roughly 4% of the
total protocol cost; hence the differences we discuss in this section are reflective
of the overall cost difference in the protocols.

Private Set Operations from Oblivious Switching 611

In [PSTY19], the pre-processing is followed up with 1.27n private equality
tests, which are performed inside generic MPC (e.g., garbled circuits). To com-
pare �-bit items, the cost of such a private equality test is 2�κ using the state-
of-the-art garbled circuit construction [ZRE15]. Hence the total communication
cost is 2.54�κn.

In our protocol, the pre-processing is followed up by an oblivious switching
network of roughly 1.27n log n nodes, each requiring OT on strings of length
2�. The cost of each OT is κ + 4� bits, and our total communication cost is
1.27(n log n)(κ + 4�).

Focusing on the asymptotically dominant term, our implementation is supe-
rior if the costs per items satisfy 1.27(log n)(κ+4�) < 2.54�κ. In our implementa-
tions, � = 60 and κ = 128. Hence our cost per item is 1.27 ·368 · log n = 467 log n
and theirs is 2.54 · 60 · 128 ≈ 19500. We can see that for all reasonable values
of n, our cost will be significantly less than their cost (the break-even point for
these particular parameters is an unrealistic n = 241).

5.3 Cardinality-Sum, Private ID

For cardinality-sum, private-ID, and secret-shared intersection, our approach
is the first based on efficient symmetric-key operations. The prior protocols of
[IKN+19,MPR+20,BKM+20] are all based on public-key techniques (Diffie-
Hellman and partially homomorphic encryption). As such, their protocols will
have superior communication cost but significantly higher computation costs,
due to their use of public-key operations linear in the size of the input sets.

6 Performance

In this section we discuss details of our implementation and report our perfor-
mance in computing the following set operations: (1) card: cardinality of the
intersection (permuted characteristic); (2) psu: union of the sets/psi: intersec-
tion of the sets; (3) priv-ID: computing a universal identifier for every item
in the union; (4) card-sum sum of the associated values for every item in
the intersection. We compare our work with the current fastest known proto-
col implementation for each functionality. To the best of our knowledge, there is
no known implementation to compare our card-sum protocol and we leave it
out of our comparison. Our run times for card-sum is almost equal to that of
psu.

6.1 Experimental Setup

We ran all our protocols on a single Intel Xeon processor at 2.30 GHz with 256 GB
RAM. We execute the protocol on a single thread and emulate the two network
connections using Linux tc command. For the LAN setting, we set the network
latency to 0.02 ms and bandwidth of 10 Gbps and for the WAN setting the
latency is set to 80 ms and bandwidth 50 Mbps. We also use a tc sub-command

612 G. Garimella et al.

to compute the communication complexity for all the protocols evaluated in
the performance section. We stress that we used the same methodology and
environment to compute all the reported costs in this section.

6.2 Implementation Details

For concrete analysis we set the computational security parameter κ = 128 and
the statistical security parameter σ = 40. Our protocols are written in C++ and
we use the following libraries in our implementation.

– PSTY19 pre-processing phase. We re-use the implementation by the authors
of the paper [PSTY19]. Found: https://github.com/encryptogroup/OPPRF-
PSI.git

– Private equality tests. We use the batch-OPRF construction of [KKRT16]
implemented in libOTe library to compute the string equality tests. Found:
https://github.com/osu-crypto/libOTe.git

– Oblivious transfers and switching. We generate many instances of oblivious
transfer using the implementation of IKNP OT extension [IKNP03] from
libOTe. Found: https://github.com/osu-crypto/libOTe.git
Recent advances in OT extension [BCG+19b,BCG+19a] provide better
asymptotic performance, but we found the existing implementations to
improve over IKNP only in the multi-threaded case, while we measure only
single-threaded performance. We developed our own implementation of Beneš
network programming/evaluation. We used the code base in https://github.
com/elf11/benes network implementation as a starting point. We emphasize
that we made many corrections, implemented the functions to evaluate the
network, augment it to an oblivious switching network. Further, we imple-
mented the generalized OSN that can process any choice of input size n as
opposed input sizes that are powers of 2.

– Additionally, we rely use the cryptoTools library as the general framework
to compute hash functions, PRNG calls, creating channels, sending 128-bit
blocks and so on. Found: https://github.com/ladnir/cryptoTools.git

In Table 1 we present a breakdown run time of each step in our permuted char-
acteristic protocol. Unsurprisingly, the oblivious switching network is the most
expensive step in the WAN setting, as its communication scales as O(n log n),
while all other steps are linear.

6.3 Comparison Running Times

Now, we compare the run time of our protocol with the state-of-the-art for
each of the functionalities. We analyse how our work compares to the previous
best protocol and highlight the settings in which we beat their performance.
For a fair comparison, we compiled and ran the comparison protocols and our
protocol in the same hardware environment. We report the numbers for 3 input
sizes n = {212, 216, 220} all executed over a single thread. We choose our LAN

https://github.com/encryptogroup/OPPRF-PSI.git
https://github.com/encryptogroup/OPPRF-PSI.git
https://github.com/osu-crypto/libOTe.git
https://github.com/osu-crypto/libOTe.git
https://github.com/elf11/benes_network_implementation
https://github.com/elf11/benes_network_implementation
https://github.com/ladnir/cryptoTools.git

Private Set Operations from Oblivious Switching 613

Table 1. Run time (in seconds) of our protocol core to compute the permuted charac-
teristic (with breakdown for each step) for input set sizes n = {212, 216, 220} executed
over a single thread for the LAN and WAN configurations.

LAN (s) WAN (s)

212 216 220 212 216 220

Protocol steps

PSTY19 0.70 2.97 43.47 1.03 6.27 67.53

OSN 0.39 2.39 32.44 2.72 12.19 186.68

PEqT 0.49 1.00 8.50 3.36 6.38 28.68

Protocol core 1.58 6.36 84.41 7.11 24.84 282.89

setting to have latency set to 0.02 ms and a bandwidth of 10 Gbps and our
WAN setting to have latency set to 80 ms and bandwidth of 50 Mbps. For our
protocol, we report the average run time over 5 iterations.

Private Set Union. From Table 2, we can see that the empirical communication
cost of our protocol is roughly half the cost of [KRTW19]. This is consistent with
our back-of-the-envelope estimates from Sect. 5. We highlight that our improve-
ment over [KRTW19] increases with the size of the input set. This is because
the run time is dominated by O(n log n) term and this becomes more significant
with increased input sizes.

Table 2. Communication (in MB) and run time (in seconds) of private set union
protocol for input set sizes n = {212, 216, 220} executed over a single thread for LAN
and WAN configurations.

PSU LAN (s) WAN (s) Comm (MB)

212 216 220 212 216 220 212 216 220

[KRTW19] 1.42 12.77 243.03 4.76 46.56 823.01 7.74 131.4 2476

Our protocol 1.87 8.54 114.42 9.56 28.80 319.87 3.85 67.38 1155

Cardinality of Intersection. From Table 3 we can observe that the communica-
tion cost of our protocol is roughly a third of the cost of [PSTY19]. This con-
tributes to our improved run time in the WAN setting. In the LAN setting, our
cardinality protocol is comparable but does not beat the numbers of [PSTY19].
This can be attributed to the time-intensive programming of the switching net-
work in the OSN step of our protocol.

614 G. Garimella et al.

Table 3. Communication (in MB) and run time (in seconds) of cardinality of inter-
section protocol for input set sizes n = {212, 216, 220} executed over a single thread for
LAN and WAN configurations.

Card LAN (s) WAN (s) Comm (MB)

212 216 220 212 216 220 212 216 220

[PSTY19] 1.230 5.07 65.12 7.90 38.79 530.15 10.53 166.18 2656

Our protocol 1.60 6.56 84.882 8.40 24.57 284.62 2.93 55.49 1030

Private-ID. The implementation in Table 4 relies on techniques from public-key
cryptography which explains their significantly lower communication costs. In
comparison, our OT-based implementation that largely relies on symmetric-key
operations has better performance. This is more noticeable with larger input sets,
where the number of public-key operations increases linearly for [BKM+20]. It’s
consistent with this reasoning to see that our improvement in run times in more
noticeable in the LAN setting. Unlike our Private-ID protocol, the run time of
the protocol in [BKM+20] is a function of the intersection size. We sampled
inputs where roughly half the elements were present in the intersection, for
our experiments with both protocols. [BKM+20] implemented their protocol in
Rust programming language with specific libraries that are tailored to be more
efficient with elliptic curve operations speeding up their run time despite using
public-key operations.

Table 4. Communication (in MB) and run time (in seconds) of the private-ID protocol
for input set sizes n = {212, 216, 220} executed over a single thread for LAN and WAN
configurations.

priv-ID LAN (s) WAN (s) Comm (MB)

212 216 220 212 216 220 212 216 220

[BKM+20] 2.76 34.70 394.60 6.63 40.49 426.11 0.99 14.85 224.26

Our protocol 2.75 9.70 118.14 12.74 34.09 346.32 4.43 76.57 1293

References

ALSZ13. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious
transfer and extensions for faster secure computation. In: Sadeghi, A.-R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 535–548. ACM Press
(November 2013)

BA12. Blanton, M., Aguiar, E.: Private and oblivious set and multiset operations.
In: Youm, H.Y., Won, Y. (eds.) ASIACCS 12, pp. 40–41. ACM Press (May
2012)

BCG+19a. Boyle, E., et al.: Efficient two-round OT extension and silent non-
interactive secure computation. In: Cavallaro, L., Kinder, J., Wang, X.F.,
Katz, J. (eds.) ACM CCS 2019, pp. 291–308. ACM Press (November 2019)

Private Set Operations from Oblivious Switching 615

BCG+19b. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient
pseudorandom correlation generators: silent OT extension and more. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 16

BKM+20. Buddhavarapu, P., Knox, A., Mohassel, P., Sengupta, S., Taubeneck, E.,
Vlaskin, V.: Private matching for compute. Cryptology ePrint Archive,
Report 2020/599 (2020). https://eprint.iacr.org/2020/599

CGT12. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of
cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R.,
Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-5 17

CM20. Chase, M., Miao, P.: Private set intersection in the Internet setting
from lightweight oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12172, pp. 34–63. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56877-1 2

CO18. Ciampi, M., Orlandi, C.: Combining private set-intersection with secure
two-party computation. In: Catalano, D., De Prisco, R. (eds.) SCN 2018.
LNCS, vol. 11035, pp. 464–482. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-98113-0 25

CT10. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols
with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp.
143–159. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14577-3 13

CT12. De Cristofaro, E., Tsudik, G.: Experimenting with fast private set intersec-
tion. In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter,
M., Zhang, X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 55–73. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30921-2 4

CZ09. Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In:
Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4 7

DCW13. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data:
an efficient and scalable protocol. In: Sadeghi, A.-R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 2013, pp. 789–800. ACM Press (November 2013)

DD15. Debnath, S.K., Dutta, R.: Secure and efficient private set intersection car-
dinality using bloom filter. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015.
LNCS, vol. 9290, pp. 209–226. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-23318-5 12

EFG+15. Egert, R., Fischlin, M., Gens, D., Jacob, S., Senker, M., Tillmanns, J.:
Privately computing set-union and set-intersection cardinality via bloom
filters. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144,
pp. 413–430. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19962-7 24

FHNP16. Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection
with simulation-based security. J. Cryptol. 29(1), 115–155 (2016)

FNP04. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set
intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24676-3 1

https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://eprint.iacr.org/2020/599
https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-642-30921-2_4
https://doi.org/10.1007/978-3-642-03549-4_7
https://doi.org/10.1007/978-3-319-23318-5_12
https://doi.org/10.1007/978-3-319-23318-5_12
https://doi.org/10.1007/978-3-319-19962-7_24
https://doi.org/10.1007/978-3-319-19962-7_24
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1

616 G. Garimella et al.

HEK12. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits
better than custom protocols? In: 19th Annual Network and Distributed
System Security Symposium, NDSS 2012, San Diego, California, USA,
February 5–8, 2012 (2012)

HFH99. Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in
electronic communities. In: EC, pp. 78–86 (1999)

IKN+19. Ion, M., et al.: On deploying secure computing commercially: private
intersection-sum protocols and their business applications. Cryptology
ePrint Archive, Report 2019/723 (2019). https://eprint.iacr.org/2019/723

IKNP03. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 9

KK13. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring
short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8043, pp. 54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40084-1 4

KKRT16. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched
oblivious PRF with applications to private set intersection. In: Weippl,
E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 2016, pp. 818–829. ACM Press (October 2016)

KRTW19. Kolesnikov, V., Rosulek, M., Trieu, N., Wang, X.: Scalable private set union
from symmetric-key techniques. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11922, pp. 636–666. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34621-8 23

KS05. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg
(2005). https://doi.org/10.1007/11535218 15

Mea86. Meadows, C.A.: A more efficient cryptographic matchmaking protocol for
use in the absence of a continuously available third party. In: Proceedings of
the 1986 IEEE Symposium on Security and Privacy, Oakland, California,
USA, April 7–9, 1986, pp. 134–137 (1986)

MPR+20. Miao, P., Patel, S., Raykova, M., Seth, K., Yung, M.: Two-sided malicious
security for private intersection-sum with cardinality. In: Micciancio, D.,
Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 3–33. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 1

MRR19. Mohassel, P., Rindal, P., Rosulek, M.: Fast database joins for secret shared
data. Cryptology ePrint Archive, Report 2019/518 (2019). https://eprint.
iacr.org/2019/518

MS13. Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient frame-
work for private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9 33

PRTY19. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight pri-
vate set intersection from sparse OT extension. In: Boldyreva, A., Miccian-
cio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 13

PRTY20. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, mali-
cious private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 25

https://eprint.iacr.org/2019/723
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-030-34621-8_23
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-030-56877-1_1
https://eprint.iacr.org/2019/518
https://eprint.iacr.org/2019/518
https://doi.org/10.1007/978-3-642-38348-9_33
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-45724-2_25

Private Set Operations from Oblivious Switching 617

PSSZ15. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set inter-
section using permutation-based hashing. In: 24th USENIX Security Sym-
posium, USENIX Security 15, pp. 515–530 (2015)

PSTY19. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based
PSI with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 5

PSWW18. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based
PSI via Cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 5

PSZ14. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based
on OT extension. In: 23rd USENIX Security Symposium, USENIX Security
14, pp. 797–812 (2014)

Rab05. Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology
ePrint Archive, Report 2005/187 (2005). http://eprint.iacr.org/2005/187

RR17a. Rindal, P., Rosulek, M.: Improved private set intersection against mali-
cious adversaries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 235–259. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56620-7 9

RR17b. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual
execution. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017, pp. 1229–1242. ACM Press (October/November 2017)

VC05. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application
to association rule mining. J. Comput. Secur. 13(4), 593–622 (2005)

ZRE15. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
http://eprint.iacr.org/2005/187
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/978-3-662-46803-6_8

	Private Set Operations from Oblivious Switching
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	3 Protocol Building Blocks
	3.1 Oblivious Transfer
	3.2 Oblivious Switching Network
	3.3 Batch Oblivious PRF
	3.4 Private Equality Tests
	3.5 Reducing PSI to O(n) Comparisons

	4 Protocol Overviews and Details
	4.1 Our Protocol Core: Permuted Characteristic
	4.2 Intersection and Union
	4.3 PCSI: Computing on the Intersection
	4.4 Secret-Shared Intersection
	4.5 Private ID

	5 Comparing Communication Costs
	5.1 PSU
	5.2 PCSI
	5.3 Cardinality-Sum, Private ID

	6 Performance
	6.1 Experimental Setup
	6.2 Implementation Details
	6.3 Comparison Running Times

	References

