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Abstract. Group encryption (GE), introduced by Kiayias, Tsiounis and
Yung (Asiacrypt’07), is the encryption analogue of group signatures. It
allows to send verifiably encrypted messages satisfying certain require-
ments to certified members of a group, while keeping the anonymity of
the receivers. Similar to the tracing mechanism in group signatures, the
receiver of any ciphertext can be identified by an opening authority -
should the needs arise. The primitive of GE is motivated by a number
of interesting privacy-preserving applications, including the filtering of
encrypted emails sent to certified members of an organization.

This paper aims to improve the state-of-affairs of GE systems. Our
first contribution is the formalization of fully dynamic group encryption
(FDGE) - a GE system simultaneously supporting dynamic user enrol-
ments and user revocations. The latter functionality for GE has not been
considered so far. As a second contribution, we realize the message fil-
tering feature for GE based on a list of t-bit keywords and 2 commonly
used policies: “permissive” - accept the message if it contains at least
one of the keywords as a substring; “prohibitive” - accept the message
if all of its t-bit substrings are at Hamming distance at least d from
all keywords, for d ≥ 1. This feature so far has not been substantially
addressed in existing instantiations of GE based on DCR, DDH, pairing-
based and lattice-based assumptions. Our third contribution is the first
instantiation of GE under code-based assumptions. The scheme is more
efficient than the lattice-based construction of Libert et al. (Asiacrypt’16)
- which, prior to our work, is the only known instantiation of GE under
post-quantum assumptions. Our scheme supports the 2 suggested poli-
cies for message filtering, and in the random oracle model, it satisfies the
stringent security notions for FDGE that we put forward.
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1 Introduction

The study of group encryption - the encryption analogue of group signatures [17]
- was initiated by Kiayias, Tsiounis and Yung (KTY) [29] in 2007. While group
signatures allow the signers to hide their identities within a set of certified
senders, group encryption protects the anonymity of the decryptors within a
set of legitimate receivers. To keep users accountable for their actions, signa-
tures/ciphertexts can be de-anonymized in cases of disputes, using a secret key
possessed by an opening authority.

In a group encryption scheme, the sender of a ciphertext can generate pub-
licly verifiable proofs that: (i) The ciphertext is well-formed and can be decrypted
by some registered group member; (ii) The opening authority can identify the
intended receiver should the needs arise; (iii) The plaintext satisfies certain
requirements, such as being a witness for some public relation.

Group encryption (GE) schemes are motivated by a number of appealing
privacy-preserving applications. A natural application is for encrypted email
filtering, where GE allows a firewall to accept only those incoming emails that
are intended for some certified organization user. If accepted, the encrypted
messages are guaranteed to satisfy some prescribed requirements, such as the
absence of spammy/unethical keywords or the presence of keywords that are of
the organization’s interests.

As pointed out in [29] and subsequent work [1,15,32,36], GE can also find
interesting applications in the contexts of anonymous trusted third parties, obliv-
ious retriever storage systems or asynchronous transfers of encrypted datasets.
For instance, it allows to archive on remote servers encrypted datasets intended
for some anonymous client who paid a subscription to the storage provider. Fur-
thermore, the recipient can be identified by a judge if a misbehaving server is
found guilty of hosting suspicious transaction records or any other illegal content.

From the theoretical point of view, one can build a secure GE scheme
based on anonymous CCA2-secure public key encryption schemes, digital sig-
natures, commitments and zero-knowledge proofs. The designs of GE are typi-
cally more sophisticated than for group signatures, due to the need of proving
well-formedness of ciphertexts encrypted via hidden-but-certified users’ public
keys. In particular, as noted by Kiayias et al. [29], GE implies hierarchical group
signatures [50] - a proper generalization of group signatures [4,5].

In their pioneering work, Kiayias et al. instantiated GE based on the Deci-
sional Composite Residuosity (DCR) and the Decisional Diffie Hellman (DDH)
assumptions. The zero-knowledge proof of ciphertext well-formedness in their
scheme is interactive, but can be made non-interactive in the random oracle
model using the Fiat-Shamir transformation [21]. Cathalo et al. [15] subse-
quently proposed a non-interactive realization based on pairings in the standard
model. El Aimani and Joye [1] then suggested various efficiency improvements
for pairing-based GE. The first construction of GE from lattice assumptions was
later presented by Libert et al. [32].

Libert et al. [36] enriched the KTY model of GE by introducing a refined
tracing mechanism inspired by that of traceable signatures [28]. In this setting,
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the opening authority can release a user-specific trapdoor that enables public
tracing of ciphertexts sent to that specific users without violating other users’
privacy. Izabachène et al. [26] suggested mediated traceable anonymous encryp-
tion - a related primitive that addresses the problem of eliminating subliminal
channels.

Current Limitations of GE. To date, GE has been much less well-studied
than group signatures [17], even though they are functionally dual to each other.
The group signature primitive has a longer history of development, and serves as
a primary case study for privacy-preserving authentication systems. Meanwhile,
GE was introduced close to the rises of powerful encryption systems such as
attribute-based [25], functional [8] and fully-homomorphic [22] encryption, and
has not gained much traction. Nevertheless, given its compelling features and
the nice applications it can potentially offer, we argue that GE deserves more
attention from the community. In this work, we thus aim to contribute to the
development of GE. To start with, we identify several limitations of existing GE
systems.

First, the problem of user revocation, which is a prominent issue in multi-
user cryptosystems, has not been formally addressed. The KTY model [29], while
allowing dynamic enrolments of new users to the group, does not provide any
mechanism to prevent revoked users (e.g., those who were expelled for misbe-
haviours, stopped subscribing to the services or retired from the organizations)
from decrypting new ciphertexts intended for them (unless the whole system
is re-initiated). We next observe that, although it was not discussed by authors
of [36], their refined tracing method might pave the way for a mechanism akin to
verifier-local revocation [9], in which verifiers test incoming ciphertexts using the
trapdoors corresponding to all revoked users. Beside incurring complexity linear
in the number of revoked users, such a mechanism is known to only provide a
weak notion of anonymity (called selfless-anonymity) for non-revoked users. A
formal treatment of fully dynamic GE (i.e., which supports both dynamic enrol-
ments and revocations of users) with strong security requirements is therefore
highly desirable.

The second limitation is about the usefulness of existing GE schemes in the
context of email filtering - which is arguably the most natural application of
the primitive. Recall that such filtering functionality is supposed to be done
by defining a relation R = {(x,w)} and accepting only messages w such that
(x,w) ∈ R, for a publicly given x. However, in all known instantiations of GE,
the relations for messages are defined according to the computationally hard
problems used in other system components. More precisely, the KTY scheme [29]
employs the discrete-log relation, i.e., it only accepts w if gw = h for given
(g, h). Subsequent works follow this pattern: pairing-based relations are used
in [1,15,36] and a Short-Integer-Solution relation is used in [32] for message
filtering. While such treatment does comply the definitions of GE, it seems too
limited to be useful for filtering spams. Designing GE schemes with expressive
policies that capture real-life spam filtering methods is hence an interesting open
question.
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Third, regarding the diversity of concrete computational assumptions used
in building GE, among all existing schemes, the only one that is not known
to be vulnerable against quantum computers [48] is the lattice-based construc-
tion from [32]. This raises the question of realizing GE based on alternative
quantum-resistant assumptions, e.g., those from codes, multivariates and isoge-
nies. In terms of privacy-preserving cryptographic protocols, other post-quantum
candidates are much less developed compared to lattice-based constructions, and
it would be tempting to catch up in the scope of GE.
Our Contributions and Techniques. This work addresses all the 3 limita-
tions of existing GE that we discussed above. Our first contribution is a formal
model for fully dynamic group encryption (FDGE), with carefully defined syntax
and robust security notions. Our model empowers the KTY model with the user
revocation functionality and paves the way for new instantiations of GE in which
enrolling new users and revoking existing users can be done simultaneously and
efficiently. As a second contribution, we suggest to realize message filtering for
GE not based on computationally hard problems, but a list of keywords and how
these keywords match with substrings of the encrypted messages. To this end,
we define 2 policies for accepting “good” messages and rejecting “bad” ones,
that capture the spirit of the String Matching problem and the Approximate
String Matching problem that are widely used in contemporary spam filtering
techniques. Our third contribution is the first code-based GE scheme that follows
our FDGE model and that supports both of the 2 message filtering policies we
propose. We provide more technical details in the following.
Group Encryption with Full Dynamicity. We formalize the primitive of
FDGE as the encryption analogue of fully dynamic group signatures [10]. Beyond
the usual joining algorithm of the KTY model [29], FDGE makes it possible to
update the group periodically to reflect user revocations. Our model is defined in
a way such that it captures the 2 most commonly used approaches for handling
user revocations in group signatures, based on revocation lists [13] and accu-
mulators [14]. As noted in [10], there is an attack inherently to group signature
schemes following the revocation-list-based approach. When translated into the
GE context, such attack would permit group users to decrypt ciphertexts sent
to them even before they join the group. Our FDGE model does not allow such
attack, and we view this as a preventative measure in case a revocation-list-based
revocable GE will be proposed in the future.

Regarding security requirements, we define the notions of message secrecy,
anonymity, and soundness that are inline with and carefully extended from the
KTY model [29]. We consider adversaries with strong capabilities, including
the ability to corrupt the group manager (GM) and/or the opening authority
(OA) to a large extent. Specifically, not only do we permit full corruption1 of
the GM and/or OA when defining message secrecy and anonymity, but we also
tolerate maliciously generated keys for the fully corrupted authorities. In terms

1 Full corruption means that the adversary entirely controls the authority - who may
no longer follow its program.
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of soundness, only partial corruption2 of OA is allowed. Note that the assumption
on partially corrupted OA is minimal, since otherwise a fully corrupted OA could
simply refuse to open ciphertexts.

Message Filtering. Spamming and spam filtering are complicated areas, and
currently there is no single filtering solution that can address all the clever tricks
of spammers. In the present work, we do not attempt to invent such a solution.
Our goal is to equip GE schemes with some basic, yet commonly used policies
for filtering. More precisely, we suggest to employ a public list S = {s1, . . . , sk}
of k binary keywords, each of which has bit-length t, to test against length t
substrings of the encrypted message w ∈ {0, 1}p. This list can be regularly
updated by the GM, depending on the interests and needs of the organization.
The keywords si could either be “good” ones that all legitimate messages are
expected to contain, or be “bad” ones that should be far - in terms of Hamming
distance - from all substrings of w. Respectively, we consider the following 2
policies.

1. “Permissive”: w is a legitimate message if and only if there exists i ∈ [1, k]
such that si is a substring of w. This policy captures the String Match-
ing problem and can be applied when the current interests of the group are
reflected by the keywords si’s, and all messages that do not contain any of
these keywords are rejected.

2. “Prohibitive”: w is a legitimate message if and only if for every length-
t substring y of w and every si ∈ S, their Hamming distance is at least d.
This policy is related to the Approximate String Matching problem. Here, the
keywords si’s could correspond to topics that are unethical, illegal, adultery,
or simply out of the group’s interests. The requirement on minimum Hamming
distance d is to address spammers who might slightly alter si so that it passes
the filtering while still being somewhat readable.

Having defined the policies, our next step is to derive methods for proving in
zero-knowledge that the secret message w satisfies each of the policies, which
will be used by the message sender when proving the well-formedness of the
ciphertext. Let us discuss the high-level ideas.

Regarding the permissive policy, our observation is that if we form matrix
W ∈ {0, 1}t×(p−t+1) whose columns are length-t substrings of w, and matrix
S ∈ {0, 1}t×k whose columns are the keywords si, then w is legitimate if and
only if there exist weight-1 vectors g ∈ {0, 1}p−t+1 and h ∈ {0, 1}k such that
W · g = S · h. Then, to handle this relation, we employ Stern’s permuting
technique [49] to prove knowledge of such g,h and we adapt Libert et al.’s
technique [32] for proving the well-formedness of the quadratic term W · g.

As for the prohibitive policy, we consider all the (p−t+1)·k sums zi,j ∈ {0, 1}t

over Z2 of substrings of w and keywords in S. Then, w is legitimate if and only
if all these sums have Hamming weight at least d. To prove these statements, we
perform the following extension trick, inspired by [37].
2 Partial corruption means that the adversary only knows the secret key of the author-

ity who still follows its prescribed program.
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We append (t − d) coordinates to zi,j ∈ {0, 1}t to get z∗
i,j ∈ {0, 1}2t−d with

Hamming weight exactly t. Such an extension is always possible if zi,j has weight
at least d. Furthermore, the converse also holds: if z∗

i,j has weight t, then the
original zi,j must have weight at least t − (t − d) = d. At this point, it suffices
to use Stern’s permuting technique [49] for proving knowledge of fixed-weight
binary vectors.

The techniques sketched above can be smoothly integrated into our code-
based instantiation of FDGE.

Code-Based Instantiation. To design a scheme satisfying our model of
FDGE, we would need: (1) An anonymous CCA2-secure public-key encryption
to encrypt messages under a group user’s public key and to encrypt the user’s
public key under the OA’s public key; (2) A secure digital signature to certify
public keys of group members; and (3) Zero-knowledge proofs compatible with
the encryption and signature layers, as well as with the message filtering layer.

In the code-based setting, the first ingredient can be obtained from the ran-
domized McEliece encryption scheme [46] that satisfies CPA-security and the
Naor-Yung transformation [44]. The second ingredient seems not readily avail-
able, as code-based signatures for which there are efficient zero-knowledge proofs
of knowledge of message/signature pairs are not known to date. To tackle this
issue, we adapt the strategy of Ling et al. in their construction of lattice-based
fully dynamic group signatures [38]. This amounts to replacing the signature
scheme by an accumulator scheme [6] equipped with zero-knowledge arguments
of membership. We hence can make use of the code-based realization of Merkle-
tree acummulators recently proposed by Nguyen et al. [45].

The main idea is to use Merkle-tree accumulators to certify users’ public key.
Let N = 2� be the maximum expected number of group users. Let pk = (G0,G1)
be a user public key, where G0,G1 are 2 McEliece encryption matrices (recall
that we employ the Naor-Yung double encryption technique). Then pk is hashed
to a vector d �= 0, which is placed at the tree leaf corresponding to the identity
j ∈ {0, 1}� of the user in the group. A tree root is then computed based on all
the 2� leaves. The user’s certificate, which is made available to message senders,
consists of pk, j and hash values in the path from her leaf to the root.

When sending a message w satisfying “permissive” or “prohibitive” policy to
user j, the sender uses pk to encrypt w as cw, and uses the OA’s public key to
encrypt j as coa, so that OA can recover j if necessary. As for well-formedness
of ciphertext, sender proves in zero-knowledge that:

1. w satisfies the given policy. This can be done using the discussed techniques.
2. coa is an honestly computed ciphertext of j. This part is quite straightforward

to realize via techniques for Stern’s protocol.
3. cw is a correct ciphertext of the w from (1.), computed under some hidden

public key pk, whose hash value d �= 0 is at the tree leaf corresponding to
the j from (2.). This is indeed the most sophisticated portion of our scheme.
It requires to demonstrate: (i) membership of d in the tree and d �= 0 is the
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hash of value of pk; (ii) cw has the form cw = pk ·
[
r
w

]
+e, where (r, e) is the

encryption randomness.

While statement (i) can be handled using the techniques from [37,45], (ii) would
require to prove an Learning-Parity-with-Noise-like relation with hidden-but-
certified matrix pk. We then tackle this problem by adapting the techniques for
Learning-with-Errors relations [47] from [32] into the binary setting.

Having discussed the main technical ingredients of the scheme, let us now
explain how user revocations and dynamic user enrolments can be done in a
simple manner based on Merkle trees. The ideas, first suggested in [38], are as
follows. At the setup phase, all leaves in the tree are set as 0. When a new user
joins the group, as mentioned, 0 is changed to d �= 0. If the user is later revoked
from the group, the value is set back to 0. For each change, the GM can efficiently
update the tree by re-computing the path in time O(log N). Note that in the
zero-knowledge layer above, the sender in part proves that d is non-zero - which
is interpreted as “the sender is indeed an active group user”.

Putting everything together, we obtain the first construction of code-based
(fully dynamic) GE. In the random oracle model, we prove that the scheme
satisfies all the stringent security notions of FDGE, namely, message secrecy,
anonymity and soundness, based on the security of the code-based technical
ingredients we employ.

The scheme, however, should only be viewed as a proof-of-concept, as it
is not practical - due to the involvement of heavy zero-knowledge arguments.
However, in comparison with [32] the only known GE scheme from post-quantum
assumptions, ours is more efficient. The main reason is that ours uses a Merkle
tree - which can be viewed as a weak form of signatures, while theirs relies on a
standard-model lattice-based signature scheme, whose supported zero-knowledge
arguments incurred an overhead factor of log2 q, where q > 230. We estimate
that, for 128 bits of security, our argument size is about 2 orders of magnitude
smaller than theirs. In other words, our scheme is more efficient than [32], but
is still not practical. We leave the problem of obtaining practically usable FDGE
schemes from post-quantum assumptions as an interesting open question.
Other related Work. Enabling efficient user revocations in advanced
privacy-preserving cryptographic constructions is generally a challenging prob-
lem, since one has to ensure that revoked users are no longer able to act as active
users, and the workloads of other parties (managers, non-revoked users, verifiers)
do not significantly increase in the meantime. In the context of group signatures,
several different approaches have been suggested [9,13,14] to address this prob-
lem, and efficient pairing-based constructions supporting both dynamic joining
and efficient revocation were given in [34,35,43]. Bootle et al. [10] pointed out
a few shortcomings of previous models, and put forward robust security notions
for fully dynamic group signatures. Here, we adapt the [10] model to provide the
first formal treatment of user revocation in the context of GE.

The major tools for building those privacy-preserving constructions are zero-
knowledge (ZK) proof [24] and argument [12,23] systems that allow to prove
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the truth of a statement while revealing no additional information. Almost all
known zero-knowledge proof/argument systems used in code-based cryptography
follow Stern’s framework [49]. Variants of Stern’s protocol have been employed
to design privacy-preserving constructions, such as proofs of plaintext knowl-
edge [42], linear-size ring signatures [11,18,40,41], linear-size and sublinear-size
group signatures [2,20], proofs of valid openings for commitments and proofs for
general relations [27]. Recently, Nguyen et al. [45] proposed a number of new
code-based privacy-preserving protocols, including accumulators, range proofs,
logarithmic-size ring signatures and group signatures. However, prior to our
work, no construction of code-based GE was known.
Organization. The rest of the paper is organized as follows. In Sect. 2, we
recall the background on Stern-like protocols and previous techniques for design-
ing zero-knowledge protocols in Stern’s framework. In Sect. 3, we present our ZK
argument for a quadratic relation. This is crucial for proving the permissive
relation in Sect. 4 - where we also present the strategies for proving the pro-
hibitive relation. Section 5 introduces the model and security requirements of
FDGE. Next, we present our code-based instantiation of FDGE in Sect. 6. Due to
space limit, several supporting materials are deferred to the full version of the
paper [51].

2 Preliminaries

Notations. Let a, b ∈ Z. Denote [a, b] as the set {a, . . . , b}. We simply write [b]
when a = 1. Let ⊕ denote the bit-wise addition operation modulo 2. If S is a finite
set, then x

$←− S means that x is chosen uniformly at random from S. Throughout
this paper, all vectors are column vectors. When concatenating vectors x ∈
{0, 1}m and y ∈ {0, 1}k, for simplicity, we use the notation (x‖y) ∈ {0, 1}m+k

instead of (x�‖y�)�. The Hamming weight of vector x ∈ {0, 1}m is denoted
by wt(x). The Hamming distance between vectors x,y ∈ {0, 1}m is denoted by
dH(x,y), and is equal to wt(x ⊕ y). Denote by B(n, ω) the set of all binary
vectors of length n with Hamming weight ω, and by Sn the symmetric group of
all permutations of n elements.

2.1 Stern-Like Protocols

The statistical zero-knowledge arguments of knowledge presented in this work
are Stern-like [49] protocols. In particular, they are Σ-protocols in the general-
ized sense defined in [7,27] (where 3 valid transcripts are needed for extraction,
instead of just 2). The basic protocol consists of 3 moves: commitment, challenge,
response. If a statistically hiding and computationally binding string commit-
ment is employed in the first move, then one obtains a statistical zero-knowledge
argument of knowledge (ZKAoK) with perfect completeness, constant soundness
error 2/3. In many applications, the protocol is repeated a sufficient number
of times to make the soundness error negligibly small. For instance, to achieve
soundness error 2−80, it suffices to repeat the basic protocol 137 times.
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An abstraction of Stern’s protocols. We recall an abstraction, adapted
from [31], which captures the sufficient conditions to run a Stern-like protocol.
Looking ahead, this abstraction will be helpful for us in presenting our ZK argu-
ment systems: we will reduce the relations we need to prove to instances of the
abstract protocol, using our specific techniques. Let K,L be positive integers,
where L ≥ K, and let VALID be a subset of {0, 1}L. Suppose that S is a finite set
such that one can associate every φ ∈ S with a permutation Γφ of L elements,
satisfying the following conditions:
{

w ∈ VALID ⇐⇒ Γφ(w) ∈ VALID,

If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.
(1)

We aim to construct a statistical ZKAoK for the following abstract relation:

Rabstract =
{(

(M,v);w
)

∈ Z
K×L
2 × Z

K
2 × VALID : M · w = v

}
.

The conditions in (1) play a crucial role in proving in ZK that w ∈ VALID: To

do so, the prover samples φ
$←− S and lets the verifier check that Γφ(w) ∈ VALID,

while the latter cannot learn any additional information about w thanks to the
randomness of φ. Furthermore, to prove in ZK that the linear equation holds,
the prover samples a masking vector rw

$←− Z
L
2 , and convinces the verifier instead

that M · (w ⊕ rw) = M · rw ⊕ v.
The interaction between prover P and verifier V can be found in [31] or the

full version of the paper. The resulting protocol is a statistical ZKAoK with
perfect completeness, soundness error 2/3, and communication cost O(L).

2.2 Previous Extension and Permutation Techniques

In this section, we first recall the permutation technique that is designed to prove
knowledge of a binary vector of fixed hamming weight, which originates from
Stern [49].

Technique for Handling Binary Vector with Fixed Hamming Weight.
For any e ∈ B(n, ω) and σ ∈ Sn, it is easy to see that the following equivalence
holds 3.

e ∈ B(n, ω) ⇐⇒ σ(e) ∈ B(n, ω), (2)

To show that the vector e has hamming weight ω, the prover samples a uniformly
random permutation σ ∈ Sn and shows the verifier that σ(e) ∈ B(n, ω). Due to
the above equivalence (2), the verifier should be convinced that e ∈ B(n, ω).
Furthermore, σ(e) reveal no information about e due to the uniformity of σ.

The above technique was later developed to prove various forms of secret
vectors. We now review the extension and permutation techniques for proving
the knowledge of arbitrary binary vectors, which were presented in [33].

3 Note that for e = [e1| · · · |em]�, σ(e) is defined as σ(ei) = eσ(i) for i ∈ [n].
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Let ⊕ denote the bit-wise addition operation modulo 2. For any bit b ∈ {0, 1},
denote by b the bit b = b ⊕ 1. Note that, for any b, d ∈ {0, 1}, we have b ⊕ d =
b ⊕ d ⊕ 1 = b ⊕ d.

Techniques for Handling Arbitrary Binary Vectors. To prove the knowl-
edge of a binary vector x ∈ {0, 1}n, define the extension process and permutation
as follows.

– For a binary vector x = [x1 | . . . |xn ]� ∈ {0, 1}n, where n ∈ Z
+, denote by

Encode(x) the vector [x1 |x1 | . . . |xn |xn ]� ∈ {0, 1}2n.
– Let I∗

n ∈ Z
n×2n
2 be an extension of the identity matrix In, obtained by insert-

ing a zero-column 0n right before each column of In. We have for x ∈ {0, 1}n,

x = I∗
n · Encode(x). (3)

– For b = [ b1 | . . . | bn ]� ∈ {0, 1}n, define the permutation Fb that transforms
vector z = [ z1,0 | z1,1 | . . . | zn,0 | zn,1 ]� ∈ {0, 1}2n into:

Fb(z) = [ z1,b1 | z1,b1
| . . . | zn,bn

| zn,bn
]�.

Note that, for any b,x ∈ {0, 1}n, we have:

z = Encode(x) ⇐⇒ Fb(z) = Encode(x ⊕ b). (4)

The above equivalence (4) is useful in the Stern’s framework [49] for proving
knowledge of binary witness-vectors. Towards the goal, one encodes x to z =
Encode(x), samples a random binary vector b and permutes z using Fb. Then
one demonstrates to the verifier that the permuted vector Fb(z) is of the correct
form Encode(x ⊕ b). Due to (4), the verifier should be convinced that z is well
formed, which further implies the knowledge of a binary vector x. Meanwhile,
vector b serves as a “one-time pad” that perfects hides x. In addition, if we have
to show that x appears somewhere else, we can use the same b at those places.

3 Zero-Knowledge Arguments for Quadratic Relations

In this section, we present our ZKAoK for quadratic relations. More concretely,
our arguments demonstrate that a given value c is an honest evaluation of the
form A · r ⊕ e, where A, r, e are all secret and may satisfy other constraints.
In the following, we present our ZKAoK for a variant of LPN relation, where we
consider secret A ∈ Z

n×m
2 , r ∈ B(m, tr), e ∈ B(n, t). Looking ahead, this protocol

is crucial in Sect. 4.2 that proves a message satisfies the permissive relation.

3.1 Proving a Variant of LPN Relation with Hidden Matrix

Let n,m, t, tr be positive integers, A ∈ Z
n×m
2 , r ∈ B(m, tr), e ∈ B(n, t), c ∈ Z

n
2 .

We now present our ZKAoK that allows P to prove its knowledge of A, r, e such
that c = A · r ⊕ e. The associated relation is defined as follows:

RVLPN =
{(

c; (A, r, e)
)

∈ Z
n
2 ×

(
Z

n×m
2 × B(m, tr) × B(n, t)

)
: c = A · r ⊕ e

}
.
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To prove r has fixed hamming, we introduce the following Hadamard product
extension and extended matrix-vector product expansion and their correspond-
ing permutations.

Hadamard Product Extension. Let vectors a ∈ {0, 1}m, r ∈ B(m, tr) and
c = [a1 ·r1|a2 ·r2| · · · |am ·rm]�. The goal is to prove the well-formedness of c, i.e.,
c is a Hadamard product of two binary vectors, one of which has fixed hamming
weight tr. We therefore introduce the following extension and permutation.

– Define extension of ci = ai · ri as ext′(ci)
�
= ext′(ai, ri) = [ai · ri|ai · ri]� ∈

{0, 1}2. Let h′ = [0|1], then we obtain ci = h′ · ext′(ci).
– Define the extension of c to be vector of the form

ext′(a, r) = [a1 · r1 |a1 · r1 |a2 · r2 |a2 · r2 | · · · |am · rm |am · rm ]� ∈ {0, 1}2m.

– For any b = [b1|b2| · · · |bm]� ∈ {0, 1}m, σ ∈ Sm, define permutation Ψb,σ that
transforms a vector

z = [ z(0)1 | z(1)1 | z(0)2 | z(1)2 | · · · | z(0)m | z(1)m ]� ∈ Z
2m

to a vector

Ψb,σ(z) = [ z(bσ(1))

σ(1) | z(bσ(1))

σ(1) | z(bσ(2))

σ(2) | z(bσ(2))

σ(2) | · · · | z(bσ(m))

σ(m) | z(bσ(m))

σ(m) ]�.

– For any a,b ∈ {0, 1}m, r ∈ B(m, tr), σ ∈ Sm, it is verifiable that the following
equivalence holds.

z = ext′(a, r) ⇐⇒ Ψb,σ(z) = ext′
(
σ(a ⊕ b), σ(r)

)
. (5)

Example. Let m = 4, tr = 2, a = [1|1|0|1]�, b = [0|1|0|1]�, r = [1|0|0|1]�,
σ(i) = i + 1 for i ∈ [3] and σ(4) = 1. We have d = σ(a ⊕ b) = [0|0|0|1]�,
e = σ(r) = [0|0|1|1]�, and

z = ext′(a, r) = [ z(0)1 | z(1)1 | z(0)2 | z(1)2 | z(0)3 | z(1)3 | z(0)4 | z(1)4 ]�

= [ 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 ]�;

Ψb,σ(z) = [ z(b2)2 | z(b2)2 | z(b3)3 | z(b3)3 | z(b4)4 | z(b4)4 | z(b1)1 | z(b1)1 ]�

= [ z(1)2 | z(0)2 | z(0)3 | z(1)3 | z(1)4 | z(0)4 | z(0)1 | z(1)1 ]�

= [ 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 ]�;
ext′(d, e) = [ d1 · e1 | d1 · e1 | d2 · e2 | d2 · e2 | d3 · e3 | d3 · e3 | d4 · e4 | d4 · e4 ]

= [ 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 ]�.

Extended Matrix-Vector Product Expansion. Let vectors a, r be of the
form a = [a1,1| · · · |a1,n| · · · |am,1| · · · |am,n]� ∈ Z

mn
2 and r = [r1| · · · |rm]� ∈

B(m, tr), and c ∈ Z
mn
2 be of the form

c = [a1,1 · r1 | · · · |a1,n · r1 |a2,1 · r2 | · · · |a2,n · r2 | · · · |am,1 · rm | · · · |am,n · rm ]�.
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We now present the techniques to show the well-formedness of c.
Define extension of c to be a vector expand′(a, r) ∈ Z

2mn
2 of the form:

expand′(a, r) =
[

a1,1 · r1 | a1,1 · r1 | a1,2 · r1 | a1,2 · r1 | · · · |a1,n · r1 | a1,n · r1|
a2,1 · r2 | a2,1 · r2 | a2,2 · r2 |a2,2 · r2 | · · · |a2,n · r2 | a2,n · r2 | · · · |

am,1 · rm | am,1 · rm | am,2 · rm | am,2 · rm | · · · |am,n · rm | am,n · rm

]�
Now for b = [b1,1 | · · · |b1,n |b2,1 | · · · |b2,n | · · · |bm,1 | · · · |bm,n ]� ∈ Z

mn
2 and

σ ∈ Sm, we define Ψ ′
b,σ that transform vector z ∈ {0, 1}2mn of the following form

z =
[

z
(0)
1,1 | z

(1)
1,1 | z

(0)
1,2 | z

(1)
1,2 | · · · | z

(0)
1,n | z

(1)
1,n |

z
(0)
2,1 | z

(1)
2,1 | z

(0)
2,2 | z

(1)
2,2 | · · · | z

(0)
2,n | z

(1)
2,n | · · · |

z
(0)
m,1 | z

(1)
m,1 | z

(0)
m,2 | z

(1)
m,2 | · · · | z(0)m,n | z(1)m,n

]

to vector Ψ ′
b,σ of the following form

Ψ ′
b,σ(z) =

[
y
(0)
1,1 | y

(1)
1,1 | y

(0)
1,2 | y

(1)
1,2 | · · · | y

(0)
1,n | y

(1)
1,n |

y
(0)
2,1 | y

(1)
2,1 | y

(0)
2,2 | y

(1)
2,2 | · · · | y

(0)
2,n | y

(1)
2,n | · · · |

y
(0)
m,1 | y

(1)
m,1 | y

(0)
m,2 | y

(1)
m,2 | · · · | y(0)

m,n | y(1)
m,n

]

such that y
(0)
i,j = z

(bσ(i),j)

σ(i),j and y
(1)
i,j = z

(bσ(i),j)

σ(i),j for i ∈ [n], j ∈ [m]. For ease
of notation, given f = (f1‖ · · · ‖fm) ∈ {0, 1}mn, where each fi ∈ {0, 1}n, and
σ ∈ Sm, define

σ(n)(f) = ( fσ(1) ‖ · · · ‖ fσ(m) ).

Precisely, σ(n) permutes the blocks of f using σ. The following equivalence then
immediately follows from (5) for a,b ∈ {0, 1}mn, r ∈ B(m, tr), σr ∈ Sm.

z = expand′(a, r) ⇐⇒ Ψ ′
b,σr

(z) = expand′(σ(n)
r (a ⊕ b), σr(r)

)
. (6)

The Zero-Knowledge Argument. We now transform the relation RVLPN

to an instance of Rabstract such that the equivalences in (1) hold. Write A =
[a1 | · · · |am ] ∈ Z

n×m
2 and r = [ r1 | · · · | rm ]� ∈ Z

m
2 , then we have
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A · r =
m∑

i=1

ai · ri =
m∑

i=1

[ ai,1 · ri | ai,2 · ri | · · · |ai,n · ri ]�

=
m∑

i=1

[
h′ · ext′(ai,1, ri) |h′ · ext′(ai,2, ri) | · · · |h′ · ext′(ai,n, ri)

]�

=
m∑

i=1

H′
n,1

(
ext′(ai,1, ri) ‖ ext′(ai,2, ri) ‖ · · · ‖ ext′(ai,n, ri)

)

=
m∑

i=1

H′
n,1 · zi

= [H′
n,1| · · · |H′

n,1]︸ ︷︷ ︸
m times

·( z1 ‖ · · · ‖ zm ),

where H′
n,1 =

⎛
⎜⎜⎜⎝

h′

h′

. . .
h′

⎞
⎟⎟⎟⎠ ∈ Z

n×2n
2 and zi = (ext′(ai,1, ri)‖ · · · ‖ext′(ai,n,

ri)) ∈ Z
2n
2 . Denote H′

n,m = [H′
n,1| · · · |H′

n,1]︸ ︷︷ ︸
m times

∈ Z
n×2mn
2 , z = (z1‖ · · · ‖zm) ∈

Z
2mn
2 , and a = [a1,1| · · · |a1,n|a2,1| · · · |a2,n| · · · |am,1| · · · |am,n]� ∈ Z

mn
2 . Then z

is indeed the extended expansion vector of a and r, i.e., z = expand′(a, r). If no
ambiguity caused, we write z = expand′(A, r). Hence, we obtain the following:

c = A · r ⊕ e ⇐⇒ c = H′
n,m · expand′(A, r) ⊕ e. (7)

Denote MVLPN = [H′
n,m|In] ∈ Z

n×LVLPN
2 and wVLPN = (expand′(A, r)‖e) ∈

Z
LVLPN
2 with LVLPN = 2mn + n. Hence c

�
= vVLPN = MVLPN · wVLPN mod 2.

Now we are ready to specify the set VALIDVLPN that contains of secret vector
wVLPN, the set SVLPN, and permutations {Γφ : φ ∈ SVLPN} such that the
equivalences in (1) hold. To this end, let VALIDVLPN contain all vectors ŵVLPN =
(ẑ‖ê) ∈ Z

2mn+n
2 satisfying the following constraints:

– There exists â ∈ Z
nm
2 and r̂ ∈ B(m, tr) such that ẑ = expand′(â, r̂).

– ê ∈ B(n, t).

It is easy to that the secret vector wVLPN belongs to VALIDVLPN. Let SVLPN =
{0, 1}mn × Sm × Sn. Then for each φ = (b, σr, σe) ∈ SVLPN, define the
permutation Γφ that transforms vector of the form ŵVLPN = ( ẑ ‖ ê ) with
ẑ ∈ Z

2mn
2 , ê ∈ Z

n
2 to vector Γφ(ŵVLPN) = (Ψ ′

b,σr
(ẑ) ‖σe(ê) ).

Based on the equivalence observed in (6) and (2), it can be checked that
the conditions in (1) are satisfied and we have successfully reduced the consider
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relation RVLPN to an instance of Rabstract. Now P and V can run the Stern-like
protocol for the reduced statement RVLPN (see the full version). The resulting
protocol is a statistical ZKAoK with perfect completeness, soundness error 2/3,
and communication cost O(LVLPN) = O(mn) = O(λ2) bits.

4 Message Filtering in Zero-Knowledge

In this section, we first specify the 2 policies we use for filtering messages
encrypted in the code-based FDGE scheme of Sect. 6. Then we discuss our main
ideas for proving in ZK that the underlying messages satisfy the given policies.

4.1 Formulation

Let p, t, d ∈ Z
+ such that p > t > d. A string y = [y1| · · · |yt]� ∈ {0, 1}t is called

a substring of string w = [w1| · · · |wp]� ∈ {0, 1}p, denoted as y � w, if there
exists an integer i ∈ [1, p − t + 1] such that yj = wi+j−1 for all j ∈ [1, t]. The
Hamming distance between x,y ∈ {0, 1}t, denoted by dH(x,y), is the number
of coordinates at which x and y differ. In other words, dH(x,y) = wt(x ⊕ y).

Let w ∈ {0, 1}p be an encrypted message and let S = {s1, . . . , sk} be a given
list of k ≥ 1 keywords, where si ∈ {0, 1}t, for all i ∈ [1, k]. We will realize 2
commonly used policies of message filtering.

1. “Permissive”: w is a legitimate message if and only if there exists i ∈ [1, k]
such that si is a substring of w. The induced relation Rpermit is defined as

Rpermit =
{(

(s1, . . . , sk),w
) ∈ ({0, 1}t)k × {0, 1}p : ∃i ∈ [1, k] s.t. si � w

}
. (8)

2. “Prohibitive”: w is a legitimate message if and only if for every length-t
substring y of w and every si ∈ S, their Hamming distance is at least d. The
corresponding relation Rprohibit is defined as

Rprohibit =
{(

(s1, . . . , sk),w
)

∈ ({0, 1}t)k × {0, 1}p :

dH(si,y) ≥ d,∀i ∈ [1, k],∀y � w
}
. (9)

In the following, we will discuss our strategies for proving that message w satisfies
each of the above policies.

4.2 Zero-Knowledge for the Permissive and Prohibitive Relations

Let w = [w1| · · · |wp]�, and for each i ∈ [p− t+1], let w[i] = [wi| · · · |wi+t−1]� be
its i-th substring of length t. Our ideas for proving that

(
(s1, . . . , sk),w

)
∈ Rpermit

in ZK are as follows. First, we form matrices

W = [w[1] | · · · | w[p−t+1]] =

⎡
⎢⎢⎢⎣

w1 w2 · · · wp−t+1

w2 w3 · · · wp−t+2

...
...

...
...

wt wt+1 · · · wp

⎤
⎥⎥⎥⎦ ∈ {0, 1}t×(p−t+1),
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S = [s1 | · · · | sk] ∈ {0, 1}t×k, and denote permit(w) = (w[1]‖ · · · ‖w[p−t+1]) ∈
{0, 1}t(p−t+1). We note that

(
(s1, . . . , sk),w

)
∈ Rpermit if and only if there exist

a column w[i] of W and a column sj of S such that w[i] = sj . Then, we observe
that the task of the prover P is equivalent to proving the existence of W,g,h
such that

W · g = S · h ∧ g ∈ B(p − t + 1, 1) ∧ h ∈ B(k, 1).

To this end, we employ techniques for proving linear relation and quadratic rela-
tion (specifically the variant of LPN relation), as well as, for fix-weight relations in
the framework of Stern’s protocols. In the process, we prove the well-formedness
of W. Details are in the full version of this paper. The resulting protocol has
communication cost O(t ·(p−t)+k) and is a sub-protocol in our FDGE construc-
tion of Sect. 6, where we additionally prove that w is the same as the plaintext
encrypted in a given McEliece ciphertext.

On the other hand, to prove that
(
(s1, . . . , sk),w

)
∈ Rprohibit, we consider

(p− t+1) ·k pairs (w[i], sj) and aim to prove that all the sums zi,j = w[i] ⊕ sj ∈
{0, 1}t have Hamming weight at least d. In other words, we reduce the problem
to (p − t + 1) · k sub-problems, for each of which, we needs to prove that zi,j

contains at least d coordinates equal to 1. To this end, we perform the following
extension trick, adapted from [37].

We append (t − d) coordinates to zi,j ∈ {0, 1}t to get z∗
i,j ∈ {0, 1}2t−d such

that wt(z∗
i,j) = t, i.e., z∗

i,j ∈ B(2t−d, t). We note that such an extension is always
possible if wt(zi,j) ≥ d. Furthermore, the converse also holds: if z∗

i,j ∈ B(2t−d, t),
then the original zi,j must have weight at least t − (t − d) = d. Details are in
the full version of this paper. As a result, we obtain a ZK protocol for Rprohibit

with communication cost O(t · (p − t + 1) · k). Similarly to the case of Rpermit,
this protocol can serve as a sub-protocol in our FDGE construction of Sect. 6,
allowing us to realize the “prohibitive” filtering policy.

5 Fully Dynamic Group Encryption: Model and Security
Requirements

In this section, we first present the model of fully dynamic group encryption
FDGE that offers both dynamic join and revocation, which is developed from
the one proposed by Kiayias et al. [29]. Our model is analogous to the fully
dynamic group signature one proposed by Bootle et al. [10]. In a FDGE scheme,
the parties involved are the sender, the verifier, the group manager GM who
manages the group of receivers, and the opening authority OA who is capable
of identifying the recipients of ciphertexts. R is a public relation for which a
FDGE should be verifiable. Receivers can join and leave the group at the choice
of the GM. We assume that the GM will publish group information infoτ at the
beginning of each time epoch τ . The information depicts changes to the group
such as the existing group members or the revoked members at current epoch
τ . It is required that anyone can verify the authenticity and well-formedness of
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the group information. In addition, by comparing the current group information
with the previous one, it is possible to recover the list of members revoked from
the group at the current epoch. We also assume that the epoch maintains the
order in which the group information was published, i.e., infoτ1 precedes infoτ2

if τ1 < τ2.
Compared to [29], our model enables the GM to remove some users from

the group through a group updating algorithm GUpdate. Another difference is
that we avoid interaction by employing a non-interactive zero-knowledge (NIZK)
proof, which has already been considered by Cathalo, Libert and Yung [15]. As
highlighted by the authors, non-interaction is highly desirable as the sender, who
might be required to repeat the proof with many verifiers, needs to maintain a
state and remember all the random coins used to generate the ciphertext.

Formally, a FDGE that is verifiable for a public relation R consists of the
following polynomial-time algorithms.

Setupinit(1λ) The algorithm takes as input the security parameter 1λ and outputs
a set of public parameters pp.

SetupOA(pp) This algorithm is run by the opening authority OA. It takes as input
pp and outputs a key pair (pkOA, skOA).

SetupGM(pp) This algorithm is run by the group manger GM. It takes as input
the public parameters pp and outputs a key pair (pkGM, skGM). Meanwhile,
GM initializes the group information info and a public registration directory
reg.

GR(1λ) This randomized algorithm takes as input the security parameter λ and
outputs public and secret parameters (pkR, skR) for the relation R. Note that
skR is an empty string if a publicly samplable relation R is considered.

SampleR(pkR, skR) This probabilistic algorithm takes (pkR, skR) as input and
outputs a statement and witness pair (x,w).

R(pkR, x, w) The polynomial-time testing algorithm takes as input (pkR, x, w)
and returns 1 if and only if (x,w) is in the relation based on the public
parameter pkR.

〈Join, Issue(skGM)〉(pkGM, infoτcurrent) This is an interactive protocol securely run
between a user and the GM. Both the Join and Issue algorithms takes as
inputs pkGM and infoτcurrent at current time epoch τcurrent while the the latter
algorithm takes skGM as an additional input. Upon successful completion, the
algorithm Join outputs a user key pair (pk, sk) while Issue adds a new record
in the directory reg. Note that GM may update group information and that
reg may store information like user identifier or user public key that may be
used by GM and OA for later updating and opening.

GUpdate(skGM,S, infoτcurrent , reg) This algorithm is run by the GM who will
advance the epoch and update the group information. Given the secret key
skGM, a set S of active users to be deleted from the group, current group
information infoτcurrent , and the directory reg, the GM computes new group
information infoτnew and may update the directory reg as well. If there is no
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change to the group information or S contains inactive users (who has never
joined the group yet or who has been revoked from the group), this algorithm
aborts.

Enc(pkGM, pkOA, infoτ , w, pk, L) This randomized encryption algorithm is run by
the sender who wishes to encrypt a witness w for its chosen user pk. It returns
a ciphertext ψ with a certain label L. As in [29], L is a public string bound to
the ciphertext that may contain some transaction related data or be empty.
If pk is not an active user at current time epoch τ or R(pkR, x, w) = 0, this
algorithm aborts. Let coinsψ be the random coins used to generate ψ.

P
(
pp, pkGM, pkOA, infoτ , pkR, x, ψ, L,w, pk, coinsψ

)
This randomized proof algo-

rithm is run by the sender who acts as a prover and demonstrates the honest
computation of ciphertext ψ. Given all the inputs, it outputs a proof πψ. The
proof ensures that there exists a certified and active group member at time
τ , who is able to decrypt ψ and obtain w′ such that R(pkR, x, w′) = 1, and
whose public key is encrypted under pkOA and can be later revealed using the
OA’s secret key skOA.

V
(
(pp, pkGM, pkOA, infoτ , pkR, x, ψ, L), πψ

)
This verification algorithm is run by

any verifier who on input the tuple (pp, pkGM, pkOA, infoτ , pkR, x, ψ, L) and a
corresponding proof πψ outputs bit 1 or 0. If the output is 1, we say the proof
πψ is valid.

Dec(infoτ , sk, ψ, L) This decryption algorithm is run by the user in possession of
the secret key sk. Given all the inputs, it outputs w′ such that R(pkR, x, w′) =
1 or ⊥ otherwise.

Open(infoτ , skOA, ψ, L) This opening algorithm is run by the OA who holds the
key skOA. Given the inputs, it returns an active user public key pk or ⊥ to
indicate opening failure.

To ease the notations, we additionally use the following algorithms in the security
experiments.

IsActive(infoτ , pk) This algorithm returns 1 if user pk is an active user at time τ
and 0 otherwise.

Correctness. Informally, correctness of a GE scheme requires that an honest
proof of correct encryption is always valid, that the designated receiver can
always recover the encrypted message, and that the GM is capable of identifying
the receiver. We model this requirement in the experiment ExptcorrA (1λ). Below,
we first define some oracles that are accessible to the adversary.

AddU(skGM) This oracle adds an honest user to the group at current time τcurrent.
It simulates the interactive protocol 〈Join, Issue(skGM)〉(pkGM, infoτcurrent) and
maintains an honest user list HUL. Let the output of Join be (pk, sk). It then
adds pk to HUL.

GUp(·) This oracle allows the adversary to remove a set of active users from the
group at current time epoch τcurrent. When a set S is queried, it advances
the time epoch to τnew and updates the group information to infoτnew by
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executing the algorithm GUpdate(skGM,S, infoτcurrent , reg). As the algorithm
GUpdate, it may update the reg.

Definition 1. Define Advcorr
A (1λ) = Pr[ExptcorrA (1λ) = 1] as the advantage of

an adversary A against correctness in the experiment ExptcorrA (1λ). A FDGE is
correct if, for any PPT adversary A, the advantage of A is negligible in λ.

Experiment ExptcorrA (1λ)
pp ← Setupinit(1λ); (pkOA, skOA) ← SetupOA(pp); (pkGM, skGM) ←

SetupGM(pp).
(pkR, skR) ← GR(1λ); HUL ← ∅.
(pk, τ, x, w, L) ← AAddU,GUp(pp, pkOA, pkGM, pkR).
If pk /∈ HUL or infoτ = ⊥ or IsActive(infoτ , pk) = 0

or R(pkR, x, w) = 0, return 0.
ψ ← Enc(pkGM, pkOA, infoτ , w, pk, L).
πψ ← P

(
pp, pkGM, pkOA, infoτ , pkR, x, ψ, L,w, pk, coinsψ

)
.

w′ ← Dec(infoτ , sk, ψ, L); pk′ ← Open(infoτ , skOA, ψ, L).
If V

(
(pp, pkGM, pkOA, infoτ , pkR, x, ψ, L), πψ

)
= 0 or w′ �= w

or pk′ �= pk, return 1 otherwise return 0.

5.1 Formulation of the Security Requirements

We now present three security requirements: message secrecy, anonymity, and
soundness for FDGE, which are carefully adapted from the dynamic case. We
formulate those requirements through experiments that are run between a chal-
lenger and an adversary. As mentioned earlier, the adversary is empowered with
attack capability to the maximum extent possible. Specifically, in the definition
of message secrecy and anonymity, it fully corrupts GM and/or OA and generates
keys arbitrarily on behalf of them. Regarding soundness, only partial corruption
of the OA whose key is still honestly generated is allowed. Details of the security
requirements are described below.

Message Secrecy. This security notion protects the appointed receiver from
a malicious adversary who tries to extract the information about the encrypted
message. It requires that the adversary cannot distinguish a ciphertext that is an
encryption of a real witness or encryption of a randomly chosen one even though
it could fully corrupt the GM, the OA, and all group members except one that
is chosen as the receiver. We model this requirement using Exptsec−b

A (1λ) for
b ∈ {0, 1}. In the following, we define some oracles that will be used in the
experiment.

USER() This oracle simulates the algorithm Join, when interacted with adversary
A who plays the role of GM, to introduce an honest user to the group at
current time τcurrent. it maintains an honest user list HUL. Let the output of
this oracle be (pk, sk) and add pk to HUL.
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RevealU(·) This oracle allows the adversary to learn an honest user secret key.
It maintains a bad user list BUL. When a user public key pk is queried, it
returns the corresponding secret key sk and adds pk to BUL if pk /∈ BUL, and
aborts otherwise.

CHb
ror(τ, pk, w, L) This is a real-or-random challenge oracle which is only called
once. It returns (ψ, coinsψ) such that ψ ← Enc(pkGM, pkOA, infoτ , w, pk, L) if
b = 1, whereas if b = 0 ψ ← Enc(pkGM, pkOA, infoτ , w′, pk, L) where w′ is sam-
pled uniformly from the space of all possible plaintexts. In both cases, coinsψ
are the random coins used for the computation of the challenged ciphertext
ψ.

DEC(sk, ·) This is an oracle for the decryption function Dec. When (ψ, τ, L) is
queried to this oracle, it returns the output of Dec(infoτ , sk, ψ, L). When a
tuple (pk, ψ, τ, L) should be rejected by this oracle, we write DEC¬(ψ,τ,L,)(·).

PROVEb
P,P′(pk, τ, pkR, x, w, L, ψ, coinsψ) This oracle can be invoked a polyno-

mial number times. It generates proofs of validity of the challenged cipher-
text. If b = 1, let πψ ← P

(
pp, pkGM, pkOA, infoτ , pkR, x, ψ, L,w, pk, coinsψ

)
and return the output πψ. If b = 0, it runs a simulator P ′ that takes the same
inputs as P except (w, coinsψ) and returns whatever P ′ outputs.

In the experiment Exptsec−b
A (1λ), the adversary A fully controls the GM and

the OA, and enrolls honest users to the group by interacting with the oracle
USER. It is entitled to corrupt at most all but one honest users by querying
the RevealU oracle and to update the group information, insofar as info and reg
are well-formed. At some point, the adversary chooses a targeted receiver pk∗

and has access to the DEC oracle with respect to pk∗. It then specifies a certain
epoch τ∗, a label L∗ together with the relation pk∗

R and the statement witness
pair (x∗, w∗). Afterwards, the challenger encrypts the witness w∗ if b = 1 or a
random message if b = 0 to the receiver pk∗, and sends the resultant ciphertext
ψ∗ to A. After receiving it, A is allowed to query the PROVE oracle for proofs
of its validity and still has access to the DEC oracle with respect to pk∗ with the
natural restriction that (ψ∗, τ∗, L∗) is forbidden. Finally, A is asked to guess the
challenger’s choice.

Definition 2. Let the advantage of an adversary A against message secrecy be
Advsec−b

A (1λ) = |Pr[Exptsec−1
A (1λ) = 1] − Pr[Exptsec−0

A (1λ) = 1]|. A FDGE
satisfies message secrecy if, for any PPT adversary A, the advantage of A is
negligible in λ.

Experiment Exptsec−b
A (1λ)

pp ← Setupinit(1λ); (aux, pkGM, pkOA) ← A(pp); HUL ← ∅, BUL ← ∅.
Throughout the experiment, if info or reg is not well-formed, return 0.
(pk∗, aux) ← AUSER,RevealU(aux); if pk∗ /∈ HUL \ BUL, return 0.
Let sk∗ be the corresponding secret key of pk∗.
(τ∗, pk∗

R, x∗, w∗, L∗) ← ADEC(sk∗,·)(aux).
If IsActive(infoτ∗ , pk∗) = 0 or R(pk∗

R, x∗, w∗) = 0 return 0.
(ψ∗, coinsψ∗) ← CHb

ror(τ
∗, pk∗, w∗, L∗).
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Let ð
∗ = (pk∗, τ∗, pk∗

R, x∗, w∗, L∗, ψ∗, coinsψ∗).

b′ ← APRVOEb
P,P′ (ð∗),DEC¬(ψ∗,τ∗,L∗)(sk∗,·)(aux, ψ∗).

Return b′.

Anonymity. This notion aims to prevent the adversary from learning informa-
tion about the identity of the receiver of a ciphertext. It requires that an adver-
sary without possession of the secret key of OA is not capable of distinguishing
which one of two group members of its choice is the recipient of a ciphertext. Note
that the adversary is forbidden from corrupting these two challenged members
since they know whether a ciphertext is intended for them by simply decrypting
it. We model this requirement in Exptanon−b

A (1λ) for b ∈ {0, 1}, which will utilize
the following challenge oracle CHb

anon and opening oracle OPEN.

CHb
anon(τ, pk0, pk1, w, L) This is a challenge oracle that can be called only once.
It returns (ψ, coinsψ) such that ψ ← Enc(pkGM, pkOA, infoτ , w, pkb, L).

OPEN(skOA, ·) This is an oracle for the opening algorithm Open. When decryp-
tion of a tuple (ψ, τ, L) is requested, it returns Open(infoτ , skOA, ψ, L). When
a tuple (ψ, τ, L) is forbidden, we write OPEN¬(ψ,τ,L)(skOA, ·).

In the experiment, the adversary A can fully corrupt the GM. By interacting with
the oracles USER,RevealU, it can also introduce honest users to the group and
learn up to all but two secret keys at a later point. As in the Exptsec−b

A (1λ), A is
allowed to update the group at its will, provided that the group information info
and reg are well-formed. Moreover, A has access to the OPEN(skOA, ·) oracle.
At some point, A specifies two targeted receivers pk∗

0, pk
∗
1 and is granted access

to the DEC oracle with respect to both recipients. Next, it outputs a specific
epoch τ∗ and (pk∗

R, x∗, w∗) to the challenger, who will encrypt the witness to
receiver pk∗

b . Thereafter, the challenger sends the challenge ciphertext ψ∗ to A.
The latter is further allowed to query the proof of validity of ψ∗ and accessible to
oracles DEC(sk∗

0, ·),DEC(sk∗
1, ·),OPEN(skOA, ·) with the constraint that the tuple

(ψ∗, τ∗, L∗) is not queried to any of the oracles. Lastly, A is asked to guess which
one of the two users is the challenger’s choice.

Definition 3. Define the advantage of an adversary A against anonymity as
Advanon

A (1λ) = |Pr[Exptanon−1
A (1λ) = 1] − Pr[Exptanon−0

A (1λ) = 1]|. A FDGE
satisfies anonymity if, for any PPT adversary A, the advantage of A is negligible
in λ.

Experiment Exptanon−b
A (1λ)

pp ← Setupinit(1λ); (pkOA, skOA) ← SetupOA(pp); (aux, pkGM) ← A(pp, pkOA).
HUL ← ∅, BUL ← ∅.
Throughout the experiment, if info or reg is not well-formed, return 0.
(pk∗

0, pk
∗
1, aux) ← AUSER,RevealU,OPEN(skOA,·)(aux).

If pk∗
0 /∈ HUL \ BUL or pk∗

1 /∈ HUL \ BUL, return 0.
Let sk∗

0 and sk∗
1 be the secret keys of pk∗

0 and pk∗
1, respectively.

(τ∗, pk∗
R, x∗, w∗, L∗, aux) ← ADEC(sk∗

0 ,·),DEC(sk∗
1 ,·),OPEN(skOA,·)(aux).

If IsActive(infoτ∗ , pk∗
0) = 0 or IsActive(infoτ∗ , pk∗

1) = 0 or



698 K. Nguyen et al.

R(pk∗
R, x∗, w∗) = 0 return 0.

(ψ∗, coinsψ∗) ← CHb
anon(τ

∗, pk∗
0, pk

∗
1, w

∗, L∗).
Let ð

∗ = (pp, pkGM, pkOA, infoτ∗ , pk∗
R, x∗, ψ∗, L∗, w∗, pk∗

b , coinsψ∗).
Let t∗ = (ψ∗, τ∗, L∗).
b′ ← AP(ð∗),DEC¬t∗

(sk∗
0 ,·),DEC¬t∗

(sk∗
1 ,·),OPEN¬t∗

(skOA,·)(aux, ψ∗).
Return b′.

Soundness. This notion requires that the adversary cannot generate a cipher-
text with a valid proof associated with time epoch τ such that (1) the opening of
the ciphertext is a public key that does not belong to any active group member
at time τ , (2) the revealed public key is not in the language Lpp

pk of valid public

keys, (3) the ciphertext is not in the space L(pkGM,pkOA,τ,pkR,x,L,pk)
ciphertext of valid cipher-

texts. Note that Lpp
pk = {pk : ∃ sk such that (pk, sk) is a valid user key pair} and

that

L(pkGM,pkOA,τ,pkR,x,L,pk)
ciphertext = {ψ : ∃ w such that ψ = Enc(pkGM, pkOA, infoτ , w, pk, L),

R(pkR, x, w) = 1, and IsActive(infoτ , pk) = 1}.

We model this requirement in the experiment ExptsoundA (1λ). The adversary is
given the secret key of OA and is permitted to adaptively register users to the
group through oracle queries REG(skGM), as defined below. In addition, it can
remove some users from the group by querying the oracle GUp(·).

REG(skGM) This oracle simulates the GM and runs the algorithm Issue. When
queried by adversary A who plays the role of a user, it interacts with A and
if successful registers an adversarially controlled user to the group at current
time τcurrent. As the algorithm Issue, it maintains a public directory reg and
may update the group information as well.

Definition 4. Define Advsound
A (1λ) = Pr[ExptsoundA (1λ) = 1] as the advantage

of an adversary A against soundness in the experiment ExptsoundA (1λ). A FDGE
satisfies soundness if, for any PPT adversary A, the advantage of A is negligible
in λ.

Experiment ExptsoundA (1λ)
pp ← Setupinit(1λ); (pkOA, skOA) ← SetupOA(pp); (pkGM, skGM) ←

SetupGM(pp).
(τ, pkR, x, ψ, L, πψ, aux) ← AREG,GUp(pp, pkGM, pkOA, skOA).
If V

(
(pp, pkGM, pkOA, infoτ , pkR, x, ψ, L), πψ

)
= 0, return 0.

pk ← Open(infoτ , skOA, ψ, L).
If IsActive(infoτ , pk) = 0 or pk /∈ Lpp

pk or ψ /∈ L(pkGM,pkOA,pkR,x,L,pk)
ciphertext ,
return 1 else return 0.
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6 A Code-Based Fully Dynamic Group Encryption
Scheme

To build a code-based FDGE scheme, we require a key-private CCA2-secure
encryption scheme [3], a digital signature scheme, and a zero-knowledge proof
(argument) of knowledge protocol. In this paper, we work with the ZKAoK
within Stern’s framework [49]. In terms of the encryption scheme, we choose
to work with the McEliece cryptosystem [39], specifically the randomized vari-
ant from [46]. The latter indeed has pseudorandom ciphertexts, which implies
key-private CPA-security. To further achieve CCA2-security, we apply the Naor-
Yung double encryption technique [44]. Note that there are other CCA2-secure
variants of McEliece scheme like [16,19,30]. However, they either do not oper-
ate well in the Stern’s framework or are completely impractical. Regarding the
digital signature, we employ the Merkle-tree accumulator suggested in [45]. Pre-
cisely, when a user requests to join the group, it first generates its encryption
key pair (pk, sk), and sends pk and its non-zero hash value d to GM. The latter,
if accepts, then computes the Merkle tree root, where the leaf nodes are the
hash values of all users. The witness for d is the proof of user’s membership. To
achieve dynamicity, following [38], we use an updating algorithm akin to [38] to
set up the system so that (1) the value of the leaf node associated with a user
who has not joined or who has been removed from the group is 0 (2) while it is
updated to d when this user joins the group. When a sender encrypts messages
to a user at some epoch, it has to show that the user’s non-zero hash value is
accumulated in the tree in this epoch. This mechanism effectively distinguish
active users who are valid recipients of ciphertexts from those who are not.

As in the KTY model [29], we also require that user encryption keys are
valid (i.e., in the language Lpp

pk). One possible solution would be requiring a
proof of knowledge of the McEliece decryption key when a user joins the group.
This is however quite complicated and inefficient. Instead, GM encrypts random
messages under the user’s encryption key and asks the user to output the correct
messages. By choosing the parameters properly, the running time of guessing
correctly the messages if the user does not know the underlying decryption key
is exponential. This then enforces validity of user encryption keys.

6.1 Description of the Scheme

Our scheme allows encryption witness w ∈ {0, 1}p that satisfies the permis-
sive relation Rpermit and/or the prohibitive relation Rprohibit. For simplicity, we
present Rpermit in the following construction. The details are described below.

Setupinit(1λ) On input the security parameter 1λ, this algorithm proceeds as
follows.

– Specify an integer � = �(λ) that determines the maximum expected num-
ber N = 2� of potential users.
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– Choose n = O(λ), c = O(1) such that c divides n, and set m = 2c · 2n
c .

Choose an integer tm < m.
– Choose t1 = t1(λ), k1 = k1(λ) and t2 = t2(λ), k2 = k2(λ) such that

(n, k1, t1), (n, k2, t2) are two sets of parameters for the McEliece encryp-
tion scheme.

– Sample a random matrix B $←− Z
n×m
2 that specifies a hash function hB

that will be used build Merkle tree (see the full version of this paper, as
well as [45]).

– Pick a statistical hiding and computationally binding commitment scheme
COM : {0, 1}∗ → {0, 1}n like the one in [45, Section 3.1]. This will serve
as a building block for the ZK argument systems.

– Let HFS : {0, 1}∗ → {1, 2, 3}κ, where κ = ω(log λ), be a hash function that
will be modeled as a random oracle in the Fiat-Shamir transforms [21].

Output public parameters

pp = {N, �, n, c,m, tm, t1, k1, p, t2, k2, v,B,COM, κ,HFS}.

SetupOA(pp) This algorithm is run by the OA. Given the input pp, it triggers the
McEliece key generation algorithm KeyGenME(n, k1, t1) (see the full version)
twice to obtain encryption key pairs (Goa,0, sk

(oa,0)
ME ) and (Goa,1, sk

(oa,1)
ME ). Set

pkOA = (Goa,0,Goa,1) and skOA = (sk(oa,0)ME , sk
(oa,1)
ME ).

SetupGM(pp) This algorithm is run by the GM. It samples skGM
$←− B(m, tm), then

computes pkGM = B ·skGM mod 2, and outputs (pkGM, skGM). It also initializes
the following.

– Let the registration table be reg := (reg[0], reg[1], . . . , reg[N−1]), where
for each i ∈ [0, N −1]: reg[i][1] = 0n, reg[i][2] = −1, and reg[i][3] = −1.
Here, reg[i][1] denotes the hash value of the public encryption key of a
registered user while reg[i][2], reg[i][3] represent the epoch at which the
user joins and leaves the group, respectively.

– Construct a Merkle tree T on top of reg[0][1], . . . , reg[N −1][1]. (Note
that T is an all-zero tree at this stage, when a new user joins the group,
it will affect the Merkle tree.)

– Initialize a counter of registered users j := 0.
Then, GM outputs its public key pkGM and announces reg and the initial
group information info = ∅ while keeping T and j for himself. We remark
that reg and info are visible to everyone but only editable by a party who
knows skGM. In addition, anyone is able to verify the well-formedness of reg
and info.

〈GR,SampleR〉 The algorithm GR(1λ, pp) proceeds by sampling parameters t, k
for the relation Rpermit (8). Let (pkR, skR) = ((p, t, k), ε). Given pkR, the
algorithm SampleR outputs a set of keywords S = {s1, . . . , sk}, w ∈ Z

p
2 such

that (S,w) ∈ Rpermit.
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〈Join, Issue〉. This is an interactive protocol securely run between a user and the
GM. If a user requests to join the group at epoch τ , he will follow steps below.

1. The user first generates its encryption key pair. It runs McEliece key gen-
eration KeyGenME(n, k2, t2) twice, obtaining (G0, sk

(0)
ME) and (G1, sk

(1)
ME).

Set encryption key pk′ = (G0,G1) and secret key sk = (sk(0)ME, sk
(1)
ME).

2. It then computes the hash of its encryption key pk′. For b ∈ {0, 1}, write
Gb = [gk2b| · · · |gk2b+k2−1]. Let D = {g0,g1, . . . ,g2k2−1}. It then runs
the accumulation algorithm AccuB(D) (see the full version) to build a
(sub)-Merkle tree based on D and the hash function hB, obtaining an
accumulated hash value d ∈ Z

n
2 . We call d the hash of pk′. If there is no

ambiguity, we sometimes write AccuB(pk′) instead of AccuB(D).
3. If d = 0n, the user repeats Step 1 and 2. Otherwise, he sends (pk′,d) to

the GM.
Upon receiving the tuple (pk′,d) from the user, the GM first computes the
ranks r1, r2 of G0,G1, respectively, and d′ = AccuB(pk′). If r1 �= k2 or
r2 �= k2 or d′ �= d or d′ = 0n, GM rejects. Otherwise, the two parties proceed
as follows.
1. First, GM encrypts two random messages by running the determinis-

tic McEliece encryption algorithm using the key pk′. It first samples
m0,m1

$←− Z
k2
2 and e0, e1

$←− B(n, t2), then computes y0 = G0 · m0 ⊕
e0,y1 = G1 · m1 ⊕ e1, and sends y0,y1 to the user.

2. Upon receiving the ciphertexts, user runs the deterministic McEliece
decryption algorithm, obtaining m′

0,m
′
1. The user then sends m′

0,m
′
1

to the GM.
3. If m′

0 �= m0 or m′
1 �= m1, GM rejects. Otherwise GM issues an identifier

to the user as uid = bin(j) ∈ {0, 1}�. The user then sets his public key
as pk = (pk′, bin(j)). From now on, we write pk′

j = (Gj,0,Gj,1), skj =

(sk(j,0)ME , sk
(j,1)
ME ) to distinguish keys of different users.

4. GM also performs the following updates:
– Update T by running the algorithm TUpdateB(bin(j),d).
– Register the user to table reg as reg[j][1] := d; reg[j][2] := τ .
– Increase the counter j := j + 1.

GUpdate(skGM,S, infoτcurrent , reg) This algorithm is run by GM to update the
group information while also advancing the epoch to τnew. It works as follows.

1. Let the set S contain all the identifiers of registered users to be revoked.
If S = ∅, then go to Step 2.

Otherwise, S = {i1, . . . , ir}, for some i1, . . . , ir ∈ [0, N −1]. Then, for all
t ∈ [r], GM runs TUpdateB(bin(it),0n) to update the tree T . Meanwhile,
GM updates reg[j][3] = τnew.
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2. At this point, each of the zero leaves in the tree T corresponds to either
a revoked user or a potential user who has not yet registered. In other
words, only active users in the new epoch τnew have non-zero hashes of
their encryption keys, denoted by {dj}j , accumulated in the root uτnew

of the updated tree.
For each j, let w(j) ∈ {0, 1}� × ({0, 1}n)� be the witness for the fact that
dj is accumulated in uτnew . Then GM publishes the group information of
the new epoch as:

infoτnew =
(
uτnew , {w(j)}j

)
.

We remark that even though infoτnew can be as large as O(λ · 2� · �), it is not
necessary for the sender or verifier to download them all. In deed, the sender
when running the P algorithm only needs to download the respective witness
w(j) of size O(λ · �) bits. Meanwhile, the verifier who runs the V algorithm
only needs to download uτnew of size O(λ) bits. It is also worth noting that
one is able to verify the well-formedness of registration table reg from group
information infoτcurrent and infoτnew

4, and vice versa5.
Enc(pkGM, pkOA, infoτ ,w, pk, L) pkOA = (Goa,0,Goa,1), pk = (pk′

j , bin(j)) for
some j ∈ [0, N − 1] and let L ∈ {0, 1}∗. This algorithm is run by a sender
who wishes to send a message w ∈ Z

p
2 such that (S,w) ∈ Rpermit to a chosen

user j with encryption key pk′
j . If user j is an active user at current epoch τ ,

the sender downloads the corresponding witness w(j) = (bin(j), (w�, · · · ,w1))
from infoτ and performs the following steps.
1. It first encrypts the message w under the encryption key pk′

j .
– Parse pk′

j = (Gj,0,Gj,1).

– Sample randomnesses rw,0, rw,1
$←− Z

k2−p
2 and noises ew,0, ew,1

$←−
B(n, t2).

– For b ∈ {0, 1}, compute

cw,b = Gj,b ·
(

rw,b

w

)
⊕ ew,b ∈ Z

n
2 . (10)

Let cw = (cw,0, cw,1) ∈ Z
n
2 × Z

n
2 .

2. Next, it encrypts the user’s identity j under the key pkOA = (Goa,0,Goa,1).
– Let bin(j) = [j1| . . . |j�]� ∈ {0, 1}�.

– Sample randomnesses roa,0, roa,1
$←− Z

k1−�
2 and noises eoa,0, eoa,1

$←−
B(n, t1).

– For b ∈ {0, 1}, compute

coa,b = Goa,b ·
(

roa,b
bin(j)

)
⊕ eoa,b ∈ Z

n
2 . (11)

4 For instance, if w(j) does not appear in infoτcurrent but infoτnew then reg[j][2] = τnew.
On the other hand, if w(j) appears in infoτcurrent but not in infoτnew then reg[j][3] =
τnew.

5 It is easy to figure out all active users at specific time τ from reg, and thus enables
verification of well-formedness of infoτ .
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Let coa = (coa,0, coa,1) ∈ Z
n
2 × Z

n
2 .

3. It then generates a proof showing that cw,0, cw,1 both encrypt w and
that coa,0, coa,1 both encrypt bin(j). The proof employs a Stern-like inter-
active ZK protocol on public input (Goa,0,Goa,1, cw, coa, L) and secret
input (Gj,0,Gj,1,w, bin(j), rw,0, rw,1, ew,0, ew,1, roa,0, roa,1, eoa,0, eoa,1),
described in detail in the full version. The interactive protocol is repeated
κ times to achieve negligible soundness error and made non-interactive
via Fiat-Shamir transform [21]. The resulting proof is a triple of form
πct = ({CMTct,i}κ

i=1,Chct, {RSPct,i}κ
i=1) such that

Chct = HFS({CMTct,i}κ
i=1,Goa,0,Goa,1, cw, coa, L).

Output the ciphertext ψ = (cw,0, cw,1, coa,0, coa,1, πct) and coins

coinsψ = (rw,0, rw,1, ew,0, ew,1, roa,0, roa,1, eoa,0, eoa,1). (12)

P
(
pp, pkGM, pkOA, infoτ , S, ψ, L,w, pk, coinsψ

)
Let coinsψ be of the form (12) and

ψ = (cw,0,cw,1,coa,0,coa,1, πct). This algorithm is implemented by the sender
above who has encrypted a message w to a user j at time epoch τ . The sender
extracts B from pp. In addition to the witness w(j), he downloads uτ as well
from infoτ . The goal of the sender is to convince the verifier in zero-knowledge
that the following conditions hold.
1. The secret message w ∈ Z

p
2 is such that (S,w) ∈ Rpermit.

2. The user encryption key pk′
j is correctly hashed to a non-zero value dj .

In other words, AccuB(pk′
j) = dj and dj �= 0n.

3. The non-zero hash value dj is honestly accumulated to value uτ at epoch
τ , i.e., the equation VerifyB(uτ ,dj , w

(j)) = 1 holds.
4. (cw,0, cw,1), (coa,0, coa,1) are honest encryptions of w and bin(j), respec-

tively. In other words, for b ∈ {0, 1}, Eqs. (10) and (11) hold.
5. The randomnesses rw,0, rw,1, roa,0, roa,1 are binary vectors while noises

ew,0, ew,1 and eoa,0, eoa,1 are in the sets B(n, t2) and B(n, t1), respectively.

The proof employs a Stern-like interactive ZK protocol on public input(
B, pkOA,uτ , S, ψ, L

)
and secret input (w, pk, coinsψ, w(j)), provided in the

full version. To achieve negligible soundness error, the protocol is repeated κ
times. Then the Fiat-Shamir heuristic [21] is applied. The resulting proof is
a triple πψ = ({CMTi}κ

i=1,Ch, {RSPi}κ
i=1) where

Ch = HFS({CMTi}κ
i=1,B, pkOA,uτ , S, ψ, L) ∈ {1, 2, 3}κ.

V
(
(pp, pkGM, pkOA, infoτ , S, ψ, L), πψ

)
This algorithm verifies the legitimacy of

the ciphertext label pair (ψ,L) with respect to epoch τ and the set of keywords
S by checking the validity of the proof πψ. It proceeds as follows.
1. Download uτ from infoτ .
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2. Parse πψ = ({CMTi}κ
i=1,Ch, {RSPi}κ

i=1).
3. If Ch = [ch1| · · · |chκ]� �= HFS({CMTi}κ

i=1,B, pkOA,uτ , S, ψ, L), return 0.
4. For i ∈ [1, κ], verify the validity of RSPi with respect to the commitment

CMTi and the challenge chi. If any of the verifications does not hold,
return 0. Else return 1.

Dec(infoτ , sk, ψ, L) This algorithm is run by a user j with secret key sk. Parse
sk = (sk(j,0)ME , sk

(j,1)
ME ). It performs the following steps.

1. Parse ψ = (cw,0, cw,1, coa,0, coa,1, πct). It verifies the validity of πct as
follows.

– Let πct = ({CMTct,i}κ
i=1,Chct, {RSPct,i}κ

i=1).
– If Chct �= HFS({CMTct,i}κ

i=1,Goa,0,Goa,1, cw,0, cw,1, coa,0, coa,1, L),
return ⊥. Otherwise, let Chct = [chct,1| · · · |chct,κ]�.

– For i ∈ [1, κ], verify the validity of RSPct,i with respect to the com-
mitment CMTct,i and the challenge chct,i. If any of the verifications
does not hold, return ⊥.

2. If the above step does not return 0, it then runs the McElice decryption
algorithm DecME(sk

(j,0)
ME , cw,0) (see the full version), obtaining w′.

3. If (S,w′) ∈ Rpermit, return w′. Otherwise, return ⊥.
Open(infoτ , skOA, ψ, L) This algorithm is run by the OA who possesses the key

skOA = (sk(oa,0)ME , sk
(oa,1)
ME ). It proceeds as follows.

1. Parse ψ = (cw,0, cw,1, coa,0, coa,1, πct). It verifies πct as in the algorithm
Dec. It πct is invalid, it returns ⊥.

2. Otherwise, it runs the decryption algorithm DecME(sk
(oa,0)
ME , coa,0), obtain-

ing [j′
1| · · · |j′

�]
�.

3. If infoτ does not include a witness containing the string [j′
1| · · · |j′

�]
�, then

return ⊥.
4. Let j′ ∈ [0, N − 1] be the integer that has binary representation

[j′
1| · · · |j′

�]
�. Output j′.

6.2 Asymptotic Efficiency, Correctness, and Security

Efficiency. We now analyze the efficiency of our construction with respect to
the security parameter λ.

– The public key and secret key of GM have bit size O(λ).
– The public key and secret key of OA and each user have bit size O(λ2).
– At each epoch, the sender who runs the P algorithm needs to download data

of bit size O(λ · �) while the verifier who runs the V algorithm needs to
download data of bit size O(λ).

– The size of ciphertext ψ is O(λ2) and size of proof πψ is ω(log λ) ·O(λ2+� ·λ).



Group Encryption: Full Dynamicity, Message Filtering 705

Correctness. The above FDGE scheme is correct with all but negligible prob-
ability. It relies on the following three facts: (a) the correctness of the underly-
ing McEliece encryption scheme and (b) the perfect completeness of the zero-
knowledge argument used in the Enc algorithm and (c) the perfect complete-
ness of the zero-knowledge argument used in the P algorithm. Therefore, in
ExptcorrA (1λ) defined in Sect. 5, the V algorithm will output 1 by fact (c), and
the Dec and Open algorithms will output w′ = w and pk′ = pk, respectively, by
fact (a) and (b).
Security. In Theorem 1, we prove the given FDGE satisfies the proposed security
requirements in Sect. 5.1.

Theorem 1. Assume the zero-knowledge argument used in the Enc algorithm is
simulation-sound and zero-knowledge, the zero-knowledge argument used in the
P algorithm is sound and zero-knowledge, the randomized McEliece encryption
schemes have pseudorandom ciphertexts, and the hash function hB is collision
resistant. Then, in the random oracle model, the above FDGE scheme satisfies
message secrecy, anonymity, and soundness.

Due to space limit, details of the proof are provided in the full version.
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