
Steel: Composable Hardware-Based
Stateful and Randomised Functional

Encryption

Pramod Bhatotia1,2, Markulf Kohlweiss1, Lorenzo Martinico1(B),
and Yiannis Tselekounis1

1 School of Informatics, University of Edinburgh, Edinburgh, Scotland
{mkohlwei,lorenzo.martinico}@ed.ac.uk, tselekounis@sians.org

2 Department of Informatics, TU Munich, Munich, Germany
pramod.bhatotia@in.tum.de

Abstract. Trusted execution environments (TEEs) enable secure exe-
cution of programs on untrusted hosts and cryptographically attest the
correctness of outputs. As these are complex systems, it is essential to for-
mally capture the exact security achieved by protocols employing TEEs,
and ultimately, prove their security under composition, as TEEs are typ-
ically employed in multiple protocols, simultaneously.

Our contribution is twofold. On the one hand, we show that under
existing definitions of attested execution setup, we can realise crypto-
graphic functionalities that are unrealisable in the standard model. On
the other hand, we extend the adversarial model to capture a broader
class of realistic adversaries, we demonstrate weaknesses of existing secu-
rity definitions this class, and we propose stronger ones.

Specifically, we first define a generalization of Functional Encryption
that captures Stateful and Randomised functionalities (FESR). Then,
assuming the ideal functionality for attested execution of Pass et al. (Euro-
crypt ’2017), we construct the associated protocol, Steel, andwe prove that
Steel UC-realises FESR in the universal composition with global subrou-
tines model by Badertscher et al. (TCC ’2020). Our work is also a valida-
tion of the compositionality of the Iron protocol by Fisch et al. (CCS ’2017),
capturing (non-stateful) hardware-based functional encryption.

As the existing functionality for attested execution of Pass et al. is too
strong for real world use, we propose a weaker functionality that allows
the adversary to conduct rollback and forking attacks. We demonstrate
that Steel (realising stateful functionalities), contrary to the stateless
variant corresponding to Iron, is not secure in this setting and discuss
possible mitigation techniques.

1 Introduction

Due to the rise of cloud computing, most people living in countries with active dig-
ital economies can expect a significant amount of information about them to be
stored on cloud platforms. Cloud computing offers economies of scale for compu-
tational resources with ease of management, elasticity, and fault tolerance driving
c© International Association for Cryptologic Research 2021
J. A. Garay (Ed.): PKC 2021, LNCS 12711, pp. 709–736, 2021.
https://doi.org/10.1007/978-3-030-75248-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75248-4_25&domain=pdf
https://doi.org/10.1007/978-3-030-75248-4_25

710 P. Bhatotia et al.

further centralization. While cloud computing is ubiquitously employed for build-
ing modern online service, it also poses security and privacy risks. Cloud storage
and computation are outside the control of the data owner and users currently have
no mechanism to verify whether the third-party operator, even with good inten-
tions, can handle their data with confidentiality and integrity guarantees.

Hardware-Based Solutions. To overcome these limitations, trusted execution envi-
ronments (TEEs), such as Intel SGX [27], ARM Trustzone [45], RISC-V Keystone
[29,38], AMD-SEV [33] provide an appealing way to build secure systems. TEEs
provide a hardware-protected secure memory region called a secure enclave whose
residing code and data are isolated from any layers in the software stack including
the operating system and/or the hypervisor. In addition, TEEs offer remote attes-
tation for proving their trustworthiness to third-parties. In particular, the remote
attestation enables a remote party to verify that an enclave has a specific identity
and is indeed running on a genuine TEE hardware platform. Given they promise
a hardware-assisted secure abstraction, TEEs are now commercially offered by
major cloud computing providers including Microsoft Azure [47], Google Cloud
[46], and Alibaba Cloud [5].

Modeling Challenges. While TEEs provide a promising building block, it is not
straightforward to design secure applications on top of TEEs. In particular appli-
cations face the following three challenges: (1) Most practical applications require
combining trusted and untrusted components for improved performance and a
low trusted computing base; (2) TEEs are designed to protect only the volatile,
in-memory, “stateless” computations and data. Unfortunately, this abstraction
is insufficient for most practical applications, which rely on stateful computa-
tion on untrusted storage mediums (SSDs, disks). Ensuring security for such
untrusted storage mediums is challenging because TEEs are prone to rollback
attacks; and lastly, (3) TEE hardware designs are prone to numerous side chan-
nel attacks exploiting memory access patterns, cache timing channels, etc. These
side channel attacks have the potential to completely compromise the confiden-
tiality, integrity, and authenticity (remote attestation) of enclaves.

Therefore, it is important to carefully model the security achieved by the proto-
cols of such systems as well as the assumptions in the cryptography and the hard-
ware, and the trust afforded in protocol participants. Ideally such modelling must
be compositional to facilitate the construction of larger systems based on smaller
hardware and cryptography components. Given a sufficiently expressive model of
TEEs, they can be used as a powerful setup assumption to realise many protocols.

The model of Pass, Shi, and Tramer (PST) [44] takes an initial step towards
modelling protocols employing TEEs. The PST model provides a compositional
functionality for attested execution and shows how to instantiate various primi-
tives impossible in the standard model, as well as some limitations of TEEs. The
PST model was first weakened in [52], which provides a compelling example of how
an excessively weak enclave, susceptible to side channel attacks that break confi-
dentiality (but not integrity and authenticity), can still be used as setup for useful

Steel: Composable Hardware 711

cryptographic primitives. Both models, however, live at two opposite extremes,
and thus fail to capture realistic instantiations of real world trusted execution.

Functional Encryption and Limitations. One of the core primitives that enables
privacy preserving computation and storage is Functional Encryption (FE),
introduced by [16]. FE is a generalisation of Attribute/Identify Based Encryp-
tion [48,49], that enables authorized entities to compute over encrypted data,
and learn the results in the clear. In particular, parties possessing the so-called
functional key, skf , for the function f , can compute f(x), where x is the plain-
text, by applying the decryption algorithm on skf and an encryption of x. Access
to the functional key is regulated by a trusted third party. While out of scope
for our work, identifying such a party is an interesting question that requires
establishing metrics for the trustworthiness of entities we might want to be able
to decrypt functions, and the kind of functions that should be authorised for a
given level of trust. An obvious option for the role of trusted authority would be
that of a data protection authority, who can investigate the data protection prac-
tices of organisations and levy fines in case these are violated. Another approach
could be decentralising this role, by allowing the functional key to be generated
collectively by a number of data owners [1,23].

FE is a very powerful primitive but in practice highly non-trivial to construct.
Motivated by the inefficiency of existing instantiations of FE for arbitrary func-
tions, the work of [28] introduces Iron, which is a practically efficient protocol
that realises FE based on Intel’s SGX. In [28] the authors formally prove secu-
rity of the proposed protocol, however their proof is in the standalone setting.
In a related work, Matt and Maurer [41] show (building on [3]) that composable
functional encryption (CFE) is impossible to achieve in the standard model,
but achievable in the random oracle model. For another important variant of
the primitive, namely, randomized functional encryption, existing constructions
[2,30,37], are limited in the sense that they require a new functional key for each
invocation of the function, i.e., decryptions with the same functional key always
return the same output. Finally, existing notions of FE only capture stateless
functionalities, which we believe further restricts the usefulness and applicability
of the primitive. For instance, imagine a financial institution that sets its global
lending rate based on the total liquidity of its members. Financial statements can
be sent, encrypted, by each member, with each of these transactions updating
the global view for the decryptor, who can then compute the function’s result
in real time.

Given the above limitations, in this work we leverage the power of hardware
assisted computation to construct FE for a broader class of functionalities under
the strongest notion of composable security.

1.1 Our Contributions

We consider a generalization of FE to arbitrary stateful and probabilis-
tic functionalities (FESR), that subsumes multi-client FE [23] and enables

712 P. Bhatotia et al.

cryptographic computations in a natural way, due to the availability of inter-
nal randomness. Our contributions are as follows:

– We formally define functional encryption for stateful and randomized func-
tionalities (FESR), in the Universal Composition (UC) setting [28].

– We construct the protocol Steel and prove that it realizes FESR in the newly
introduced Universal Composition with Global Subroutines (UCGS) model
[9]. Our main building blocks are: (1) the functional encryption scheme of
[28] and (2) the global attestation functionality of PST. Our treatment lifts
the PST model to the UCGS setting, and by easily adapting our proofs one
can also establish the UCGS-security of [28].

– Finally, we introduce a weaker functionality for attested execution in the
UCGS model to allow rollback and forking attacks, and use it to demon-
strate that Steel does not protect against these. Finally, we sketch possible
mitigation techniques.

1.2 Technical Overview

Attested Execution via the Global Attestation Functionality Gatt of PST [44].
Our UC protocols assume access to the global attestation functionality, Gatt,
that captures the core abstraction provided by a broad class of attested execu-
tion processors, such as Intel SGX [27]. It models multiple hardware-protected
memory regions of a TEE, called secure enclaves. Each enclave contains trusted
code and data. In combination with a call-gate mechanism to control entry and
exit into the trusted execution environment, this guarantees that this memory
can only be accessed by the enclave it belongs to, i.e., the enclave memory is
protected from concurrent enclaves and other (privileged) code on the platform.
TEE processing environments guarantee the authenticity, the integrity and the
confidentiality of their executing code, data and runtime states, e.g. CPU regis-
ters, memory and others.

Gatt is parametrised by a signature scheme and a registry that captures all
the platforms that are equipped with an attested execution processor. At a
high level, Gatt allows parties to register programs and ask for evaluations over
arbitrary inputs, while also receiving signatures that ensure correctness of the
computation. Since the manufacturer’s signing key pair can be used in multiple
protocols simultaneously, Gatt is defined as a global functionality that uses the
same key pair across sessions.

Universal Composition with Global Subroutines [10]. In our work we model global
information using the newly introduced UCGS framework, which resolves incon-
sistencies in GUC [19], an earlier work that aims to model executions in the
presence of global functionalities. UCGS handles such executions via a man-
agement protocol, that combines the target protocol and one or more instances
of the global functionality, and creates an embedding within the standard UC
framework. In our work, Gatt (cf. Sect. 2.2) is modeled as a global functionality
in the UCGS framework (updating the original PST formulation in GUC).

Steel: Composable Hardware 713

Setting, Adversarial Model and Security. Our treatment considers three types of
parties namely, encryptors, denoted by A, decryptors, denoted by B, as well as a
single party that corresponds to the trusted authority, denoted by C. The adver-
sary is allowed to corrupt parties in B and request for evaluations of functions of
it’s choice over messages encrypted by parties in A. We then require correctness
of the computation, meaning that the state for each function has not been tam-
pered with by the adversary, as well as confidentiality of the encrypted message,
which ensures that the adversary learns only the output of the computation
(and any information implied by it) and nothing more. Our treatment covers
both stateful and randomized functionalities.

Steel: UCGS-secure FE for Stateful and Randomized Functionalities. Steel is
executed by the sets of parties discussed above, where besides encryptors, all
other parties receive access to Gatt, abstracting an execution in the presence
of secure hardware enclaves. Our protocol is based on Iron [28], so we briefly
revisit the main protocol operations: (1) Setup, executed by the trusted party
C, installs a key management enclave (KME), running a program to generate
public-key encryption and digital signature, key pairs. The public keys are pub-
lished, while the equivalent secrets are kept encrypted in storage (using SGX’s
terminology, the memory is sealed). Each of the decryptors installs a decryption
enclave (DE), and attests its authenticity to the KME to receive the secret key
for the encryption scheme over a secure channel. (2) KeyGen, on input function
F, calls KME, where the latter produces a signature on the measurement of an
instantiated enclave that computes F. (3) When Encrypt is called by an encryp-
tor, it uses the published public encryption key to encrypt a message and sends
the ciphertext to the intended recipients. (4) Decrypt is executed by a decrypt-
ing party seeking to compute some function F on a ciphertext. This operation
instantiates a matching function enclave (or resume an existing one), whose role
is that of computing the functional decryption, if an authorised functional key
is provided.

Steel consists of the above operations, with the appropriate modifications
to enable stateful functionalities. In addition, Steel provides some simplifica-
tions over the Iron protocol. In particular, we repurpose attestation’s signature
capabilities to supplant the need for a separate signature scheme to generate
functional keys, and thus minimise the trusted computing base. In practice, a
functional key for a function F can be produced by just letting the key generation
process return F; as part of Gatt’s execution, this produces an attestation signa-
ture σ over F, which becomes the functional key skF for that function, provided
the generating enclave id is also made public (a requirement for verification, due
to the signature syntax of attestation in Gatt).

The statefulness of functional encryption is simply enabled by adding a state
array to each functional enclave. The array is also stored locally by the cor-
responding decryption enclave, and is updated for every decryption of a given
function. Similar to [44], a curious artefact in the protocol’s modeling is the
addition of a “backdoor” that programs the output of the function evaluation
subroutine, such that, if a specific argument is set on the input, the function

714 P. Bhatotia et al.

evaluation returns the value of that argument. The reason for this addition is
to enable simulation of signatures over function evaluations that have already
been computed using the ideal functionality. We note that this addition does not
impact correctness, as the state array is not modified if the backdoor is used,
nor confidentiality, since the output of this subroutine is never passed to any
other party besides the caller B. Finally, a further addition is that our protocol
requires the addition of a proof of plaintext knowledge on top of the underlying
encryption scheme. The Steel protocol definition is presented in Sect. 4.

Security of Steel. Our protocol uses an existentially unforgeable under cho-
sen message attacks (EU-CMA) signature scheme, Σ, a CCA-secure public-key
encryption scheme, PKE, and a non-interactive zero knowledge scheme, N. Infor-
mally, Σ provides the guarantees required for realizing attested computation (as
discussed above), PKE is used to protect the communication between enclaves,
and for protecting the encryptors’ inputs. For the latter usage, it is possible
to reduce the security requirement to CPA-security as we additionally compute
a simulation-extractable NIZK proof of well-formedness of the ciphertext that
guarantees non-malleability.

Our proof is via a sequence of hybrids in which we prove that the real world
protocol execution w.r.t. Steel is indistinguishable from the ideal execution, in the
presence of an ideal functionality that captures FE for stateful and randomized
functionalities. The goal is to prove that the decryptor learns nothing more than
an authorized function of the private input plaintext, thus our hybrids gradu-
ally fake all relevant information accessed by the adversary. In the first hybrid,1

all signature verifications w.r.t. the attestation key are replaced by an ideal-
ized verification process, that only accepts message/signature pairs that have
been computed honestly (i.e., we omit verification via Σ). Indistinguishability is
proven via reduction to the EU-CMA security of Σ. Next we fake all ciphertexts
exchanged between enclaves that carry the decryption key for the target cipher-
text, over which the function is evaluated (those hybrids require reductions to
the CCA security of PKE).2 The next hybrid substitutes ZK proofs over the
target plaintexts with simulated ones, and indistinguishability with the previous
one reduces to the zero knowledge property of N. Then, for maliciously generated
ciphertexts under PKE – which might result via tampering with honestly gener-
ated encryptors’ ciphertexts – instead of using the decryption operation of PKE,
our simulator recovers the corresponding plaintext using the extractability prop-
erty of N. Finally, we fake all ciphertexts of PKE, that encrypt the inputs to the
functions (this reduces to CPA security). Note that, in [28], the adversary out-
puts the target message, which is then being encrypted and used as a parameter
to the ideal world functionality that is accessed by the simulator in a black box
way. In this work, we consider a stronger setting in which the adversary directly
outputs ciphertexts of it’s choice. While in the classic setting for Functional
Encryption (where Iron lives) simulation security is easily achieved by asking

1 Here we omit some standard UC-related hybrids.
2 Here CCA security is a requirement as the adversary is allowed to tamper with
honestly generated ciphertexts.

Steel: Composable Hardware 715

the adversarial enclave to produce an evaluation for the challenge ciphertext,
in FESR the simulator is required to conduct all decryptions through the ideal
functionality, so that the decryptor’s state for that function can be updated. We
address the above challenge by using the extractability property of NIZKs: for
maliciously generated ciphertexts our simulator extracts the original plaintext
and ask the ideal FESR functionality for it’s evaluation. Simulation-extractable
NIZK can be efficiently instantiated, e.g., using zk-SNARKs [12]. Security of our
protocol is formally proven in Sect. 5. The simulator therein provided could be
easily adapted to show that the Iron protocol UCGS-realises Functional Encryp-
tion, by replacing the NIZK operations for maliciously generated ciphertexts
with a decryption from the enclave, as described above.

Rollback and Forking Attacks. Modeling attested execution via Gatt facilitates
composable protocol design, however, such a functionality cannot be easily real-
ized since real world adversaries can perform highly non-trivial rollback and
forking attacks against hardware components. In Sect. 6, we define a weaker
functionality for attested execution, called Grollback

att , that aims to capture roll-
back and forking attacks. To achieve this, we replace the enclave storage array
in Gatt with a tree data structure. While the honest party only ever accesses the
last leaf of the tree (equivalent to a linked list), a corrupt party is able to provide
an arbitrary path within the tree. This allows them to rollback the enclave, by
re-executing a previous (non-leaf) state, and to support multiple forks of the
program by interactively selecting different sibling branches. We give an exam-
ple FESR function where we can show that correctness does not hold if Grollback

att

is used instead of Gatt within Steel, and discuss how countermeasures from the
rollback protection literature can be adopted to address these attacks, with a
consideration on efficiency.

1.3 Related Work

Hardware is frequently used to improve performance or circumvent impossibility
results, e.g. [4,26,42]. As a relevant example, Chung et al. [25] show how to use
of stateless hardware tokens to implement functional encryption.

The use of attestation has been widely adopted in the design of computer
systems to bootstrap security [43]. In addition to formalising attested execution,
Pass, Shi and Tramer (PST) [44] show that two-party computation is realisable
in UC only if both parties have access to attested execution, and fair two-party
computation is also possible if additionally both secure processors have access to
a trusted clock. The PST model is the first work to formalise attested execution
in the UC framework. The compositional aspect of UC allows for the reused of
the model in several successive works [22,24,52,54]. Other attempts at providing
a formal model for attested execution include the game-based models of Barbosa
et al. [15], Bahmani et al. [13], Fisch et al. [28]. The latter model arises from
the need to evaluate the security of Iron, a hardware-based realisation of func-
tional encryption, which was later extended to verifiable functional encryption
in Suzuki et al. [51].

716 P. Bhatotia et al.

Rollback attacks (also known as reset attacks in the cryptographic liter-
ature) are a common attack vectors against third-party untrusted computing
infrastructure. An attacker who is in control of the underlying infrastructure
can at times simply restart the system to restore a previous system state. Yilek
[55] presents a general attack that is applicable to both virtual machine and
enclave executions: it shows that an adversary capable of executing multiple
rollback attacks on IND-CCA or IND-CPA secure encryption schemes might
learn information about encrypted messages by running the encryption algo-
rithm on multiple messages with the same randomness. In the absence of true
hardware-based randomness that cannot be rolled back, these kinds of attacks
can be mitigated using hedged encryption, a type of key-wrap scheme [32], such
that for each encryption round, the original random coin and the plaintext are
passed through a pseudorandom function to generate the randomness for the
ciphertext.

The area of rollback attacks on TEEs is well studied. Platforms like SGX
[21], TPMs [39], etc. provide trusted monotonic counters, from which it is pos-
sible to bootstrap rollback-resilient storage. However, trusted counters are too
slow for most practical applications. Furthermore, they wear out after a short
period of time. As their lifetime is limited, they are unreliable for applications
that require frequent updates [40]. Moreover, an adversary that is aware of this
vulnerability can attack protocols that rely exclusively on counters, by instan-
tiating a malicious enclave on the same platform that artificially damages the
counters.

To overcome the limitation of SGX counters, ROTE [40] uses a consensus
protocol to build a distributed trusted counter service, with performance neces-
sarily reduced through several rounds of network communication. In the same
spirit, Ariadne [50] is an optimized (local) synchronous technique to increment
the counter by a single bit flip for deterministic enclaves.

Speicher [14] and Palaemon [31] proposed an asynchronous trusted counter
interface, which provide a systematic trade-off between performance and roll-
back protection, addressing some limitations of synchronous counters. The asyn-
chronous counter is backed up by a synchronous counter interface with a period
of vulnerability, where an adversary can rollback the state of a TEE-equipped
storage server in a system until the last stable synchronous point. To protect
against such attacks, these systems rely on the clients to keep the changes in
their local cache until the counter stabilizes to the next synchronisation point.

Lightweight Collective Memory (Brandenburger et al. [17]) is a proposed
framework that claims to achieve fork-linearizability: each honest client that
communicates with a TEE (on an untrusted server that might be rolled back)
can detect if the server is being inconsistent in their responses to any of the pro-
tocol clients (i.e. if they introduce any forks or non-linearity in their responses).
Finally, [35,36,53], protect hardware memory against active attacks, while [6,34],
protect cryptographic hardware against tampering and Trojan injection attacks,
respectively.

Steel: Composable Hardware 717

2 Preliminaries

2.1 UC Background

Universal Composability (UC), introduced by Canetti [18], is a security frame-
work that enables the security analysis of cryptographic protocols. It supports
the setting where multiple instances of the same, or different protocols, can be
executed concurrently. Many extensions and variants of the framework have been
proposed over the years; our treatment is based on the recently released Uni-
versal Composability with Global Subroutines framework (UCGS) [10] and the
2020 version of UC [18]. We briefly summarise the aspects of UC and UCGS
necessary to understand our work.

Universal Composability. Consider two systems of PPT interactive Turing
machine instances (π,A,Z) and (φ,S,Z), where Z is the initial instance, and
π,A (and respectively φ,S) have comparable runtime balanced by the inputs of
Z. We say that the two systems are indistinguishable if Z making calls to π,A
(resp. φ,S) cannot distinguish which system it is located in. The two systems
are commonly referred to as the real and ideal world (respectively). Z can make
calls to instances within the protocol by assuming the (external) identity of arbi-
trary instances (as defined by the control function). Depending on the protocol
settings, it might be necessary to restrict the external identities available to the
environment. A ξ-identity-bounded environment is limited to assume external
identities as specified by ξ, a polynomial time boolean predicate on the current
system configuration.

We now recall a few definitions. Please consult [10,18] or our full version for
the formal definitions of terms such as balanced, respecting, exposing, compliant.

Definition 1 (UC emulation [18]). Given two PPT protocols π, φ and some
predicate ξ, we say that π UC-emulates φ with respect to ξ-identity bound envi-
ronments (or π ξ-UC-emulates φ) if for any balanced ξ-identity-bounded envi-
ronment and any PPT adversary, there exists a PPT simulator S such that the
systems (φ,S,Z) and (π,A,Z) are indistinguishable.

Given a protocol π which UC-emulates a protocol φ, and a third protocol ρ,
which calls φ as a subroutine, we can construct a protocol where all calls to φ
are replaced with calls to π, denoted as ρφ→π.

Theorem 1 (Universal Composition [18]). Given PPT protocols π, φ, ρ and
predicate ξ, if π, φ are both subroutine respecting and subroutine exposing , ρ is
(π, φ, ξ)-compliant and π ξ-UC-emulates φ, then protocol ρφ→π UC-emulates ρ

By the composition theorem, any protocol that leverages subroutine φ in its
execution can now be instantiated using protocol π.

718 P. Bhatotia et al.

UCGS. As the name suggests, generalised UC (GUC) [19] is an important gen-
eralization of the UC model. It accounts for the existence of a shared subroutine
γ, such that both ρ and its subroutine π (regardless of how many instances of π
are called by ρ) can have γ as a subroutine. The presence of the global subroutine
allows proving protocols that rely on some powerful functionality that needs to
be globally accessible, such as a public key infrastructure (PKI) [20], a global
clock [8], or trusted hardware [44].

Unfortunately GUC has inconsistencies and has not been updated from the
2007 to the 2020 version of UC.3 Universal Composability with Global Subrou-
tines [10] aims to rectify these issues by embedding UC emulation in the presence
of a global protocol within the standard UC framework.

To achieve this, a protocol π with access to subroutine γ is replaced by a
new structured protocol μ = M [π, γ], known as management protocol; μ allows
multiplexing a single instance of π and γ into however many are required by
ρ, by transforming the session and party identifiers. μ is a subroutine exposing
protocol, and is given access to an execution graph directory instance, which
tracks existing machines within the protocol, and the list of subroutine calls
(implemented as a structured protocol). The execution graph directory can be
queried by all instances within the extended session of μ, and is used to redirect
the outputs of π and γ to the correct machine.

Below we revisit the UC emulation with global subroutines definition from [10].

Definition 2 (UC Emulation with Global Subroutines [10]). Given proto-
cols π, φ, and γ, π ξ-UC emulates φ in the presence of γ if M [π, γ] ξ-UC emulates
M [φ, γ]

Now we state the main UCGS theorem.

Theorem 2 (Universal Composition with Global Subroutines [10]).
Given subroutine-exposing protocols π, φ, ρ, and γ, if γ is a φ-regular setup and
subroutine respecting, φ, π are γ-subroutine respecting, ρ is (π, φ, ξ)-compliant
and (π,M [x, γ], ξ)-compliant for x ∈ {φ, π}, then if π ξ-UC-emulates φ in the
presence of γ, the protocol ρφ→π UC-emulates ρ in the presence of γ.

2.2 The Gatt Functionality

We now reproduce the Gatt global functionality defined in the PST model [44].
The functionality is parameterised with a signature scheme and a registry to
capture all platforms with a TEE. The below functionality diverges from the
original one in that we let vk be a global variable, accessible by enclave programs
as Gatt.vk. This allows us to use Gatt for protocols where the enclave program
does not trust the caller to its procedures to pass genuine inputs, making it
necessary to conduct the verification of attestation from within the enclave.
3 In a nutshell the inconsistency arises from a discrepancy in the proof that emu-
lation for a single-challenge session version, called EUC (used to prove protocols
secure), implies UC-emulation for the multi-challenge GUC notion (used to prove
the composition theorem).

Steel: Composable Hardware 719

Functionality Gatt[Σ, reg, λ]

State variables Description

vk Master verification key, available to enclave programs
msk Master secret key, protected by the hardware

T ← ∅ Table for installed programs

On message initialize from a party P :

let (spk, ssk) ← Σ.Gen(1λ), vk ← spk, msk ← ssk

On message getpk from a party P :

return vk

On message (install, idx, prog) from a party P where P.pid ∈ reg:

if P is honest then
assert idx = P.sid

generate nonce eid ∈ {0, 1}λ, store T [eid,P] = (idx, prog, ∅)
send eid to P

On message (resume, eid,input) from a party P where P.pid ∈ reg:

let (idx, prog, mem) ← T [eid,P], abort if not found
let (output, mem′) ← prog(input, mem) , store T [eid,P] = (idx, prog, mem′)
let σ ← Σ.Sign(msk, (idx, eid,prog, output)) and send (output, σ) to P

The Gatt functionality is a generalisation over other TEE formalisations,
such as the one in [28], which tries to closely model some SGX implementa-
tion details. For instance, their hardware primitive distinguishes between local
and remote attestation by exposing two sets of functions to produce and verify
reports (for local attestation) and quotes (for remote attestation). Both data
structure include enclave metadata, a tag that can uniquely identify the running
program, input and output to the computation and some authentication primi-
tive based on the former (MAC for local reports, signature for remote quotes).
The Gatt primitive, intended as an abstraction over different vendor implemen-
tations, removes much of this detail: both local and remote attestation consist
in verifying the output of a resume call to some enclave through a public ver-
ification key, available both to machines with and without enclave capabilities.
The output of computations is similarly the (anonymous) id of the enclave, the
UC session id, some unique encode for the code computed by the enclave (which
could be its source code, or its hash), and the output of the computation. Unlike
in the Iron model, input does not have to be included in the attested return
value, but if security requires parties to verify input, the function ca return it as
part of its output. On enclave installation, its memory contents are initialised by
the specification of its code; this initial memory state is represented by symbol ∅.

720 P. Bhatotia et al.

3 Functional Encryption for Stateful and Randomized
Functionalities

In this section we define the ideal functionality of functional encryption for
stateful and randomized functionalities (FESR).

FESR syntax.

– (Setup): given security parameter 1λ as input, KeyGen outputs master keypair
mpk,msk

– (Key generation): Setup takes msk,F ∈ F and returns functional key skF
– (Encryption): given string x ∈ X and mpk, Enc returns ciphertext ct or an

error
– (Decryption): on evaluation over some ciphertext ct and functional key skF,

Dec returns y ∈ Y
While the above definition matches with that of classical functional encryption,
we inject non-determinism and statefulness (respectively) by adding two addi-
tional inputs to functions in the allowed function class

F : X × S × R → Y × S

where S = {0, 1}s(λ),R = {0, 1}r(λ) for polynomials s(·) and r(·).

3.1 Properties of FESR

Matt and Maurer [41] shows that the notion of functional encryption is equiva-
lent, up to assumed resources, to that of an access control (AC) repository, where
some parties A are allowed to upload data, and other parties B are allowed to
retrieve some function on that data, if they have received authorisation (granted
by a party C). A party B does not learn anything else about the stored data,
besides the function they are authorised to compute (and length leakage F0).

To allow stateful and randomized functions, we extend the function class
with support for private state and randomness as above. Whenever B accesses a
function on the data from the repository, the repository draws fresh randomness,
evaluates the function on the old state. The function updates the state and
evaluates to a value. Intuitively, this ideal world AC repository models both
confidentiality and correctness:

Confidentiality. Confidentiality holds as B does not learn anything about the
data besides the evaluations of these stateful randomized functions.

Correctness. A stateful functionality defines a stateful automaton, a set of
states S, the initial state ∅ ∈ S, a probabilistic transition function δ : X × S →
Y ×S. For every transition, a new input is sampled from R and given to F along
with the input, to determine the next state. The transition function determines,

Steel: Composable Hardware 721

for a given input and the current state, the probability Prδ that the automaton
will find itself in a certain next state, as well as an output value. Correctness
requires that all consecutive outputs must always be justified by some input and
a state reachable via δ from ∅.

Correctness holds for the ideal world AC repository as B can make exactly
those state transitions by accessing a function on the data from the repository.

3.2 UC Functionality

Our treatment considers the existence of several parties of type A (encryptors),
B (decryptors), and a singular trusted authority C. The latter is allowed to run
the KeyGen,Setup algorithms; parties of type A run Enc, and those of type B
run Dec. The set of all decryptors (resp. encryptors) is denoted by B (resp. A).
When the functionality receives a message from such a party, their UC extended
id is used to distinguish who the sender is and store or retrieve the appropriate
data. For simplicity, in our ideal functionality we refer to all parties by their
type, with the implied assumption that it might refer to multiple distinct UC
parties. For the sake of conciseness, we also omit including the sid parameter as
an argument to every message.

The functionality reproduces the four algorithms that comprise functional
encryption. During KeyGen, a record P is initialised for all t instances of B, to
record the authorised functions for each instance, and its state. The Setup call
marks a certain B as authorised to decrypt function F, and initialises its state to
∅. The Enc call allows a party A, B, to provide some input x, and receive a unique
identifying handle h. This handle can then be provided, along with some F, to
a decryption party to obtain an evaluation of F on the message stored therein.
Performing the computation will also result in updating the state stored in P.

Functionality FESR[sid, F,A,B,C]

The functionality is parameterized by the randomized function class F such that
for each F ∈ F : X × S × R → Y × S, over state space S and randomness
space R, and by three distinct types of party identities A, B, C interacting with
the functionality via dummy parties (that identify a particular role). For each
decryptor/function pair, a state value is recorded.

State variables Description

F0 Leakage function returning the length of the message
setup[·] ← false Table recording which parties were initialized.

M[·] ← ⊥ Table storing the plaintext for each message handler
P[·] ← ⊥ Table of authorized functions and their states for all

decryption parties

On message (setup, P) from party C, for P ∈ {A, B}:
setup[P] ← true
send (setup, P) to A

On message (setup, P) from A, for P ∈ {A, B}:
setup[P] ← true

722 P. Bhatotia et al.

P[P,F0] ← ∅
send setup to P

On message (encrypt, x) from party P ∈ {A, B}:
if setup[P] = true ∧ x ∈ X then

compute h ← getHandle

M[h] ← x
send (encrypted, h) to P

On message (keygen,F, B) from party C:

if F ∈ F+ ∧ setup[B] = true then
send (keygen,F, B) to A and receive Ack
P[B,F] ← ∅
send (assigned,F) to B

On message (decrypt, h,F) from party B:

x ← M[h]
if C is honest then

if P[B,F] �= ⊥ ∧ x ∈ X then
r ← R
s ← P[B,F]
(y, s) ← F(x, s, r)
P[B,F] ← s′

return (decrypted, y)

else
send (decrypt, h,F, x) to A and receive (decrypted, y)
return (Decrypted, y)

The functionality is defined for possible corruptions of parties in B, A. If C
is corrupted, we can no longer guarantee the evaluation to be correct, since C
might authorize the adversary to compute any function in F. In this scenario,
we allow the adversary to learn the original message value x and to provide an
arbitrary evaluation y.

Note that, our definition is along the lines of [11,41], however, as opposed
to [11], in which A and/or C might also get corrupted, in this work we primar-
ily focus on the security guarantees provided by FE, which is confidentiality of
the encrypted message against malicious decryptors, B. Yet, it provides secu-
rity against malicious encryptors, A, thus it satisfies input consistency, which
was originally introduced by [11]. In addition, our definition is the first one
that captures stateful and randomized functionalities, where the latter refers to
the standard notion of randomized functionalities in which each invocation of
the function uses independent randomness. Therefore, our protocol achieves a
stronger notion of randomized FE than [2,30,37], which require a new functional
key for each invocation of the function, i.e., decryptions with the same functional
key always return the same output.

Both correctness and confidentiality clearly hold for the ideal functionality by
inspection of the 4 lines r ← R, s ← P[B,F], (y, s′) ← F(x, s, r), and P[B,F] ← s′.

Steel: Composable Hardware 723

4 A UC-Formulation of Steel

In this section we present Steel in the UCGS setting. As we already state above,
our treatment involves three roles: the key generation party C, the decryption
parties B, and the encryption parties A. Among them, only the encryptor does
not need to have access to an enclave. Like the FESR functionality, the protocol
fulfills confidentiality and correctness in the face of an adversarial B. We do not
give any guarantees of security for corrupted A,C; although we remark informally
that, as long as its enclave is secure, a corrupted C has little chances of learning
the secret key. Besides the evaluation of any function in F it authorises itself
to decrypt, it can also fake or extract from proofs of ciphertext validity π by
authorizing a fake reference string crs. Before formally presenting our protocol
we highlight important assumptions and conventions:

– For simplicity of presentation, we assume a single instance each for A, B
– all communication between parties (α, β) occurs over secure channels

SCβ
α,SCα

β

– Functional keys are (attestation) signatures by an enclave progKME on input
(keygen,F) for some function F; it is easy, given a list of keys, to retrieve the
one which authorises decryptions of F

– keyword fetch retrieves a stored variable from memory and aborts if the value
is not found

– on keyword assert , the program checks that an expression is true, and pro-
ceeds to the next line, aborting otherwise

– all variables within an enclave are erased after use, unless saved to encrypted
memory through the store keyword

Protocol Steel is parameterised by a function family F : X × S × R → Y × S,
UC parties A,B,C, a CCA secure public key encryption scheme PKE, a EU-CMA
secure signature scheme Σ, a Robust non-interactive zero-knowledge scheme N,
and security parameter λ.

Protocol Steel[F,A,B,C,PKE,Σ,N, λ]
State variables Description

mpk ← ⊥ Local copy of master public key for participants
prog{KME,DE,FE} ← . . . Source code of enclaves as defined below

K[·] ← ∅ Table of function keys at B
Key Generation Authority C:
On message (Setup, P):

if mpk = ⊥ then
eidKME ← Gatt.install(C.sid, progKME)
send Get to CRS and receive (Crs, crs)
(mpk, ·) ← Gatt.resume(eidKME, (init, crs, C.sid))

if P = A then
send (setup, mpk) to SCA

else if P = B then
send (setup, mpk, eidKME) to SCB and receive (provision, σ, eidDE, pkKD)
(ctkey, σsk) ← Gatt.resume(eidKME, (provision, (σ,eidDE, pkKD, eidKME))))
send (provision, ctkey, σsk) to SCB

724 P. Bhatotia et al.

On message (Keygen,F, B):

assert F ∈ F ∧ mpk �= ⊥
((keygen,F), σ) ← Gatt.resume(eidKME, (keygen,F))
skF ← σ; send (keygen, (F, skF)) to SCB

Encryption Party A:

On message (Setup, mpk) from SCC:

send Get to CRS and receive (Crs, crs)
store mpk, crs; return setup

On message (encrypt,m):

assert mpk �= ⊥ ∧ m ∈ X
ct

r←− PKE.Enc(mpk,m)
π ← P((mpk, ct), (m, r), crs), ctmsg ← (ct, π)
send (write, ctmsg) to REP and receive h
return (encrypted, h)

Decryption Party B:

On message (Setup, mpk, eidKME) from SCC:

store mpk; eidDE ← Gatt.install(B.sid, progDE)
send Get to CRS and receive (Crs, crs)
((pkKD, ·, ·), σ) ← Gatt.resume(eidDE, init-setup, eidKME, crs, B.sid)
send (provision, σ, eidDE, pkKD) to SCC and receive (provision, ctkey, σKME)
Gatt.resume(eidDE, (complete-setup, ctkey, σKME))
return setup

On message (keygen, (F, skF)) from SCC:

eidF ← Gatt.install(B.sid, progFE[F])
(pkFD, σF) ← Gatt.resume(eidF, (init, mpk, B.sid))
K[F] ← (σF, eidF, pkFD, skF)
return (assigned, F)

On message (decrypt,F, h):

assert K[F] �= ⊥
send (read, h) to REP and receive ctmsg

(σF, eidF, pkFD, skF) ← K[F]
((ctkey, crs), σDE) ← Gatt.resume(eidDE, (provision, σF, eidF, pkFD, skF,F))
((computed, y), ·) ← Gatt.resume(eidF, (run, σDE, eidDE, ctkey, ctmsg, crs, ⊥))
return (Decrypted, y)

progKME:
on input (init, crs, idx):

assert pk = ⊥; (pk, sk) ← PKE.PGen()
store sk, crs, idx; return pk

on input (provision, (σDE, eidDE, pkKD, eidKME)):
vkatt ← Gatt.vk; fetch crs, idx
assert Σ.Vrfy(vkatt, (idx, eidDE, progDE, (pkKD, eidKME, crs), σDE)
ctkey ← PKE.Enc(pkKD, sk)
return ctkey

on input (keygen,F):
return (keygen,F)

Steel: Composable Hardware 725

progDE:
on input (init-setup, eidKME, crs, idx):

assert pkKD �= ⊥
(pkKD, skKD) ← PKE.Gen()
store skKD, eidKME, crs, idx
return pkKD, eidKME, crs

on input (complete-setup, ctkey, σKME):
vkatt ← Gatt.vk
fetch eidKME, skKD, idx
m ← (idx, eidKME, progKME, ctkey)
assert Σ.Vrfy(vkatt,m, σKME)
sk ← PKE.Dec(skKD, ctkey)
store sk, vkatt

on input (provision, σ, eid, pkFD, skF,F):
fetch eidKME, vkatt, sk, idx
m1 ← (idx, eidKME, progKME, (keygen,F))
m2 ← (idx, eid, progFE[F], pkFD)
assert Σ.Vrfy(vkatt,m1, skF) and
Σ.Vrfy(vkatt,m2, σ)
return PKE.Enc(pkFD, sk), crs

progFE[F]:
on input (init, mpk, idx):

assert pkFD = ⊥
(pkFD, skFD) = PKE.Gen(1λ)
mem ← ∅; store skFD, mem, mpk, idx
return pkFD

on input (run, σDE, eidDE, ctkey, ctmsg, crs, y
′):

if y′ �= ⊥
return (computed, y′)

vkatt ← Gatt.vk; (ct, π) ← ctmsg

fetch skFD, mem, mpk, idx
m ← (idx, eidDE, progDE, ctkey, crs)
assert Σ.Vrfy(vkatt,m, σDE)
sk = PKE.Dec(skFD, ctkey)
assert N.V((mpk, ct), π, crs)
x = PKE.Dec(sk, ct)
out, mem′ = F(x, mem)
store mem ← mem′

return (computed, out)

As we mention in the Introduction, our modeling considers a “backdoor” in
the progFE.run subroutine, such that, if the last argument is set, the subroutine
just returns the value of that argument, along with a label declaring computa-
tion. The addition of the label computed is necessary, otherwise the backdoor
would allow producing an attested value for the public key generated in subrou-
tine progFE.init.

As a further addition we strengthen the encryption scheme with a plaintext
proof of knowledge (PPoK). For public key pk, ciphertext ct, plaintext m, cipher-
text randomness r, the relation R = {(pk, ct), (m, r)|ct = PKE.Enc(mpk,m; r)}
defines the language LR of correctly computed ciphertexts. As a chosen-plaintext
secure PKE scheme becomes CCA secure when extended with a simulation-
extractable PPoK this is a natural strengthening of the CCA security require-
ment of Iron. However, it enables the simulator to extract valid plaintexts from
all adversarial ciphertexts. In our security proof the simulator will submit these
plaintexts to FESR on behalf of the corrupt B to keep the decryption states of
the real and ideal world synchronized.

5 UC-Security of Steel

We now prove the security of Steel in the UCGS framework. To make the PST
model compatible with the UCGS model, we first define the identity bound ξ.

The Identity Bound ξ on the Environment. Our restrictions are similar to [44],
namely we assume that the environment can access Gatt in the following ways:
(1) Acting as a corrupt party, and (2) acting as an honest party but only for
non-challenge protocol instances.

We now prove our main theorem.

726 P. Bhatotia et al.

Theorem 3 Steel (Sect. 4) UC-realizes the FESR functionality (Sect. 3) in the
presence of the global functionality Gatt and local functionalities CRS,REP,SC,
with respect to the identity bound ξ defined above.

We present a simulator algorithm such that, for all probabilistic adversaries
running in polynomial time with the ability of corrupting B. Following [41],
our proof considers static corruption of a single party B, we did, however, not
encounter any road-blocks to adaptive corruption of multiple decryptors besides
increased proof notational complexity. The environment is unable to distinguish
between an execution of the Steel protocol in the real world, and the protocol
consisting of SFESR, dummy parties A, C and ideal functionality FESR. Both
protocols have access to the shared global subroutines of Gatt. While hybrid
functionalities REP, SC, CRS (for their definition, see the full version) are only
available in the real world and need to be reproduced by the simulator, we use
SC in the simulator to denote simulated channels, either between the simulator
and corrupted parties (for corrupt parties), or between the simulator and itself
(for honest parties).

Given protocols Steel, FESR, and Gatt, Steel ξ-UC emulates FESR in the
presence of Gatt if M [Steel, Gatt] ξ-UC emulates M [FESR, Gatt] (see Definition 2).
We focus or exposition on the messages exchanged between the environment and
the machine instances executing Steel, FESR, and Gatt, since the machine M is
simply routing messages; i.e., whenever Z wants to interact with the protocol,
M simply forwards the message to the corresponding party; the same holds for
Gatt.

The simulator operates in the ideal world, where we have the environment Z
sending message to dummy protocol parties which forward their inputs to the
ideal functionality FESR. SFESR is activated either by an incoming message from
a corrupted party or the adversary, or when FESR sends a message to the ideal
world adversary. As A is a dummy adversary which normally forwards all queries
between the corrupt party and the environment, SFESR gets to see all messages
Z sends to A. The simulator is allowed to send messages to the FESR and Gatt

functionalities impersonating corrupt parties. In the current setting, the only
party that can be corrupted such that FESR still gives non trivial guarantees is
party B. Thus, whenever the real world adversary or the ideal world simulator
call Gatt.install and Gatt.resume for the challenge protocol instance, they must do
so using an extended identity of B.

Simulator SFESR[PKE,Σ,N, λ, F]

State variables Description

H[·] ← ∅ Table of ciphertext and handles in public repository
K ← [] List of progFE[F] enclaves and their eidF

G ← {} Collects all messages sent to Gatt and its response
B ← {} Collects all messages signed by Gatt

(crs, τ) ← N.S1 Simulated reference string and trapdoor

Steel: Composable Hardware 727

For Key Generation Authority C:
On message (setup, P) from FESR:

if mpk = ⊥ then
eidKME ← Gatt.install(C.sid, progKME)
(mpk, ·) ← Gatt.resume(eidKME, init)

if P = A then
send (setup, mpk) to SCA

else if P = B then
send (setup, mpk, eidKME) to SCB and receive (provision, σ, eidDE, pkKD)
assert (C.sid, eidDE, progDE, pkKD) ∈ B[σ]
(ctkey, σsk) ← Gatt.resume(eidKME, (provision, (σ,eidDE, pkKD, eidKME, crs))))
send (provision, ctkey, σsk) to SCB

On message (keygen, F, B) from FESR:

assert F ∈ F ∧ mpk �= ⊥
((keygen,F), σ) ← Gatt.resume(eidKME, (keygen,F))
skF ← σ
send (keygen, (F, skF)) to SCB

For Decryption Party B:
On message Get from party B to CRS:

send (CRS, crs) to B

On message (read, h) from party B to REP:

send (decrypt,F0, h) to FESR on behalf of B and receive |m|
assert |m| �= ⊥
ct ← PKE.Enc(mpk, 0|m|)
π ← N.S2(crs, τ, (mpk, ct))
ctmsg ← (ct, π); H[ctmsg] ← h
send (read, ctmsg) to B

On message (install, idx, prog) from party B to Gatt:

eid ← Gatt.install(idx, prog)
G[eid].install ← (idx, prog)
// G[eid].install[1] is the program’s code

forward eid to B

On message (resume, eid, input) from party B to Gatt:

// The Gatt registry does not allow B to access eidKME in real

world

assert G[eid] �= ⊥ ∧ eid �= eidKME

if G[eid].install[1] �= progFE[·] ∨ input[−1] �= ⊥ then
(output, σ) ← Gatt.resume(eid, input)
G[eid].resume ← G[eid].resume ‖ (σ, input, output))
B[σ] ← (G[eid].install[0], eid, G[eid].install[1], output)
if G[eid].install[1] = progDE ∧ input[0] = provision then

(provision, σ, eid, pkFD, skF,F) ← input
fetch (·, (init-setup, eidKME, crs), ·) ∈ G[eid].resume
assert (idx, eidKME, progKME, (keygen,F)) ∈ B[skF]
assert (idx, eidDE, progDE, ctkey, crs) ∈ B[σDE]

forward (output, σ) to B
else

728 P. Bhatotia et al.

idx, progFE[F] ← G[eid].install
(run, σDE, eidDE, ctkey, ctmsg, crs, ⊥) ← input
assert (σF, (init), (pkFD)) ∈ G[eid].resume
assert (idx, eid, progFE[F], pkFD) ∈ B[σF]
assert (idx, eidDE, progDE, ctkey, crs)) ∈ B[σDE]
// If the ciphertext was not computed honestly and saved to H
if H[ctmsg] = ⊥ then

(ct, π) ← ctmsg

(m, r) ← N.E(τ, (mpk, ct), π)
if m = ⊥ then send (decrypt,F, ⊥) to B and abort

send (encrypt,m) to FESR on behalf of B and receive h
H[ctmsg] ← h

h ← H[ctmsg]
send (decrypt,F, h) to FESR on behalf of B and receive y
((computed, y), σ) ← Gatt.resume(eidF, (run, ⊥, ⊥, ⊥, ⊥, ⊥, y))
G[eid].resume ← G[eid].resume ‖ (σ, input, (computed, y)))
B[σ] ← (G[eid].install[0], eid, G[eid].install[1], (computed, y))
forward ((computed, y), σ) to B

Designing the Simulation. The ideal functionality FESR and protocol Steel
share the same interface consisting of messages setup, keygen, encrypt,
decrypt. During Steel’s setup, the protocol generates public parameters when
first run, and provisions the encrypted secret key to the enclaves of B. As neither
of these operations are executed by the ideal functionality, we need to simulate
them, generating and distributing keys outside of party C.

As in Steel, we distribute the public encryption key on behalf of C to any
newly registered B and A over secure channels. Once B has received this message,
it will try to obtain the (encrypted) decryption key for the global PKE scheme
from party C and its provision subroutine of progKME. Since C is a dummy party
in the ideal world, it would not respond to this request, so we let SFESR respond.
In Steel key parameters are generated within the key management enclave, and
communication of the encrypted secret key to the decryption enclave produces
an attestation signature. Thus, the simulator, which can access Gatt imperson-
ating B, is required to install an enclave. Because of the property of anonymous
attestation, the environment cannot distinguish whether the new enclave was
installed on B or C. If the environment tries to resume the program running
under eidKME through B, this is intercepted and dropped by the simulator.

Before sending the encrypted secret key, the simulator verifies that B’s public
key was correctly produced by an attested decryption enclave, and was initialised
with the correct parameters. If an honest enclave has been instantiated and we
can verify that it uses pkKD, eidKME, crs, we can safely send the encrypted sk to
the corrupted party as no one can retrieve the decryption key from outside the
enclave.

On message (keygen,F, B) from the functionality after a call to keygen,
SFESR simply produces a functional key by running the appropriate progKME pro-

Steel: Composable Hardware 729

cedure through Gatt. Similarly, on receiving (read, h) for REP, SFESR produces
an encryption of a canonical message (a string of zeros) and simulates the response.

When the request to compute the functional decryption of the corresponding
ciphertext is sent to progFE[F], we verify that the party B has adhered to the
Steel protocol execution, aborting if any of the required enclave installation or
execution steps have been omitted, or if any of the requests were made with
dishonest parameters generated outside the enclave execution (we can verify this
through the attestation of enclave execution). If the ciphertext was not obtained
through a request to REP, we use the NIZK extractor to learn the plaintext m
and submit a message (encrypt,m) to FESR on behalf of the corrupt B. This
guarantees that the state of FESR is in sync with the state of progFE[F] in the
real world.

If all such checks succeed, and the provided functional key is valid, SFESR

fetches the decryption from the ideal functionality. While the Steel protocol
ignores the value of the attested execution of run, we can expect the adversary
to check its result for authenticity. Therefore, it is necessary to pass the result
of our decryption y through the backdoor we constructed in progFE[F]. This will
produce an authentic attestation signature on y, which will pass any verification
check convincingly (as discussed in the previous section, the backdoor does not
otherwise impact the security of the protocol).

The full proof of security is available in the full version; for an overview, refer
to Sect. 1.2.

6 Rollback and Forking Attacks

While the Attested Execution functionality modelled by Gatt is a meaningful
first step for modeling attested execution, it is easy to argue that it is not
realisable (in a UC-emulation sense) by any of the existing Trusted Execution
Environment platforms to date. In a follow-up paper, Tramer et al. [52] weaken
the original Gatt model to allow complete leakage of the memory state. This is
perhaps an excessively strong model, as the use of side channel attacks might
only allow a portion of the memory or randomness to be learned by the adversary.
Additionally, there are many other classes of attacks that can not be expressed by
this model. We now extend the Gatt functionality to model rollback and forking
attacks against an enclave.

6.1 Grollback
att Functionality

Our model of rollback and forking attacks is drawn from the formulation
expressed in Matetic et al. [40], but with PST’s improved modelling of attesta-
tion, which does not assume perfectly secure authenticated reads/writes between
the attester and the enclave.

Matetic et al. model rollback by distinguishing between enclaves and enclave
instances. Enclave instances have a distinct memory state, while sharing the same
code. As with Gatt, where the outside world has to call subroutines individually,

730 P. Bhatotia et al.

the environment is not allowed to interact directly with a program once it is
instantiated, except for pausing, resuming, or deleting enclave instances. Addi-
tionally, their model provides functions to store encrypted memory outside the
enclave (Seal) and load memory back (Unseal).

In a typical rollback attack, an attacker crashes an enclave, erasing its volatile
memory. As the enclave instance is restarted, it attempts to restart from the
current state snapshot. By replacing this with a stale snapshot, the attacker is
able to rewind the enclave state.

In a forking attack an attacker manages to run two instances of the same
enclave concurrently, such that, once the state of one instance is changed by an
external operation, querying the other instance will result in an outdated state.
This relies on both enclaves producing signature that at the minimum attest
the same program. On a system where attestation uniquely identifies each copy
of the enclave, a forking attack can still be launched by an attacker conducting
multiple rollback attacks and feeding different stale snapshots to a single enclave
copy [17].

Our new functionality Grollback
att employs this idea to model the effect of both

rollback and forking attacks. We replace the internal mem variable of Gatt with
a tree data structure. The honest caller to the functionality will always continue
execution from the memory state of an existing leaf of the tree while an adversary
can specify an arbitrary node of the tree (through a unique node identifier),
to which the state of the enclave gets reset. The output mem′ will then be
appended as a new child branch to the tree. To model a rollback attack, the
adversary specifies the parent node for the next call to resume (or any ancestor
node to execute a second rollback). To model a forking attack, the adversary can
interactively choose nodes in different branches of the tree. The functionality is
parameterised with a signature scheme and a registry to capture all platforms
with a TEE, like in the original formulation.

Functionality Gatt[Σ, reg, λ]

State variables Description

vk Master verification key, available to enclave programs
msk Master secret key, protected by the hardware

T ← ∅ Table for installed programs

On message initialize from a party P :

let (spk, ssk) ← Σ.Gen(1λ), vk ← spk, msk ← ssk

On message getpk from a party P :

return vk

On message (install, idx, prog) from a party P where P.pid ∈ reg:

if P is honest then
assert idx = P.sid

generate nonce eid ∈ {0, 1}λ, store T [eid,P] = (idx, prog,root, Tree(∅))
send eid to P

On message (resume, eid,input, node) from a party P where P.pid ∈ reg:

Steel: Composable Hardware 731

let (idx, prog, lastnode, tree) ← T [eid,P], abort if not found
if P is honest then

let node ← lastnode
let mem ← access(tree, node)
let (output, mem′) ← prog(input, mem)
let tree′, child ← insertChild(tree, node, mem′)
let update T [eid, P] = (idx, prog, child, tree′)
let σ ← Σ.Sign(msk, (idx, eid,prog, output)) and send (output, σ) to P

The proposed rollback model is perhaps somewhat reductive, as it only allows
“discrete” rollback operations, where memory states are quantised by program
subroutines. It is conceivable that real world attackers would have a finer-grained
rollback model, where they can interrupt the subroutine’s execution, and resume
from an arbitrary instruction.

Attack on Stateful Functional Encryption. Although our protocol uses
probabilistic primitives, we deem the generic reset attack presented in [55] unre-
alistic for TEE platforms such as SGX, where an enclave is allowed direct access
to a hardware-based source of randomness [7].

On the other hand, it easy to find a protocol-specific rollback attack on
Steel. While F’s state remains secret to a corrupt B interacting with Grollback

att

(the memory is still sealed when stored), an adversary can make enclave calls
produce results that would be impossible in the simpler model. As an example,
take the following function from F that allows setting a key and sampling the
output of a PRF function F for a single message:

function PRF-Wrapper(x, mem)
if mem = ∅ then

K ← x
Store mem ← K
return ACK

else if mem = �1 then
return ⊥

else
Store mem ← �1
return FK(x)

An adversary who has completed initialisation of its decryption enclave with
enclave id eidDE, obtained a functional key sk through the execution of keygen
on eidKME, and initialised a functional enclave for PRF-Wrapper with enclave
id eidF, public key pkFD and attestation σ, executes the current operations for
three ciphertexts ctK, ctx, ctx′ , encrypting a key K and plaintexts x, x′:

1: ((ctkey, crs), σDE) ← Gatt.resume(eidDE, (provision, σ, eid, pkFD, sk))
2: ((computed, ACK), ·) ← Grollback

att .resume(eidF, (run, vkatt, σDE, eidDE, ctkey, ctk, crs,
⊥), node)

3: // node is the node id for a leaf for eidF’s mem tree

4: ((computed, y), ·) ← Grollback
att .resume(eidF, (run, vkatt, σDE, eidDE, ctkey, ctx, crs, ⊥),

node′)

732 P. Bhatotia et al.

5: // node′ is the node id for a leaf for eidF’s mem tree

6: ((computed, y′), ·) ← Grollback
att .resume(eidF, (run, vkatt, σDE, eidDE, ctkey, ctx′ , crs, ⊥),

node′)
7: // node′ is the same node id as in the previous call (and thus to the

parent of the current leaf in mem)

As a result of this execution trace, the adversary violates correctness by
inserting an illegal transition (with input ε) in the stateful automaton for PRF-
Wrapper, from state access(tree, node′.child) =
1 back to access(tree, node′) =
[K], and then back to state
1 with input x′. The adversary can then obtain the
illegal set of values y ← FK(x) and y′ ← FK(x′), whereas in the ideal world after
obtaining y, the only possible output for the function would be ⊥ (the only legal
transition from state
1 leads back to itself). The simulator is unable to address
this attack, as the memory state is internal to the ideal functionality, and the
key will always be erased after the second call.

One might think that the simulator could respond by sampling a value from
the uniform distribution and feed it through the enclave’s backdoor; however,
the environment can reveal the key k and messages x, x′ to the adversary, or
conversely the adversary could reveal the uniform value to the environment.
Thus the environment can trivially distinguish between the honest PRF output
and the uniform distribution, and thus between the real and ideal world. Note
that this communication between environment and adversary is necessary for
universal composition as this leakage of k, x, x′ could happen as part of a wider
protocol employing functional encryption.

Mitigation Techniques. In Sect. 1.3, we showed that rollback resilience for
trusted execution environments is an active area of research, with many compet-
ing protocols. However, most solutions inevitably entail a performance trade-off.

Due to the modular nature of Steel, it is possible to minimise the performance
impact. Observe that party B instantiates a single DE and multiple FE. We
can reduce the performance penalty by making only DE rollback resilient. We
guarantee correctness despite rollbacks of FE, by encoding a counter alongside
the function state for each F. On a decryption request, the progFE enclave is
required to check in with the progDE enclave to retrieve the decryption key as
part of the provision call. To enable rollback resilience, we include the counter
stored by progFE as an additional parameter of this call. progDE compares the
counter received for the current evaluation of F with the one received during
the last evaluation, and authorises the transfer of the secret key only if greater.
Before evaluating the function, progFE increases and stores its local counter.

To achieve rollback resilience for the progDE enclave, we can rely on existing
techniques in the literature, such as augmenting the enclave with asynchronous
monotonic counters [14], or using protocols like LCM [17] or ROTE [40]. For-
malising how these protocols can be combined with the Grollback

att functionality to
achieve the fully secure Gatt is left for future work.

We also note that Stateless functional encryption as implemented in IRON
is resilient to rollback and forking because there is little state held between

Steel: Composable Hardware 733

computation. Since we assume C is honest, the only programs liable to be
attacked are DE and FE[F].

DE stores PKE Parameters after init setup, and the decrypted master secret
key after complete setup. The adversary could try to gain some advantage by
creating multiple PKE pairs before authenticating with the authority, but will
never has access to the raw sk unless combining it with a leakage attack. Denial
of Service is possible by creating concurrent enclaves (either DE or FE) with
different PKs, and passing encrypted ciphertexts to the “wrong” copy which
would be unable to decrypt (but it’s not clear what the advantage of using
rollback attacks would be, as the adversary could always conduct a DoS attack
by denying the necessary resources to the enclave).

Acknowledgements. This research was partially supported by the National Cyber
Security Centre, the UK Research Institute in Secure Hardware and Embedded Systems
(RISE), and the European Union’s Horizon 2020 Research and Innovation Programme
under grant agreement 780108 (FENTEC).

References

1. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-
product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol.
11443, pp. 128–157. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17259-6 5

2. Agrawal, S., Wu, D.J.: Functional encryption: deterministic to randomized func-
tions from simple assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10211, pp. 30–61. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56614-6 2

3. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40084-1 28

4. Ahmad, A., Joe, B., Xiao, Y., Zhang, Y., Shin, I., Lee, B.: OBFUSCURO:
a commodity obfuscation engine on intel SGX. In: 26th Annual Network and
Distributed System Security Symposium, NDSS 2019, San Diego, California, USA,
February 24–27, 2019. The Internet Society (2019). ISBN 1-891562-55-X. https://
www.ndss-symposium.org/ndss-paper/obfuscuro-a-commodity-obfuscation-
engine-on-intel-sgx/

5. Cloud, A.: TEE-based confidential computing. https://www.alibabacloud.com/
help/doc-detail/164536.htm (2020)

6. Ateniese, G., Kiayias, A., Magri, B., Tselekounis, Y., Venturi, D.: Secure outsourc-
ing of cryptographic circuits manufacturing. In: Baek, J., Susilo, W., Kim, J. (eds.)
ProvSec 2018. LNCS, vol. 11192, pp. 75–93. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01446-9 5

7. Aumasson, J., Merino, L.: SGX secure enclaves in practice: security and crypto
review. Black Hat 2016, 10 (2016)

8. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-319-56614-6_2
https://doi.org/10.1007/978-3-319-56614-6_2
https://doi.org/10.1007/978-3-642-40084-1_28
https://doi.org/10.1007/978-3-642-40084-1_28
https://www.ndss-symposium.org/ndss-paper/obfuscuro-a-commodity-obfuscation-engine-on-intel-sgx/
https://www.ndss-symposium.org/ndss-paper/obfuscuro-a-commodity-obfuscation-engine-on-intel-sgx/
https://www.ndss-symposium.org/ndss-paper/obfuscuro-a-commodity-obfuscation-engine-on-intel-sgx/
https://www.alibabacloud.com/help/doc-detail/164536.htm
https://www.alibabacloud.com/help/doc-detail/164536.htm
https://doi.org/10.1007/978-3-030-01446-9_5
https://doi.org/10.1007/978-3-030-01446-9_5
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11

734 P. Bhatotia et al.

9. Badertscher, C., Canetti, R., Hesse, J., Tackmann, B., Zikas, V.: Universal com-
position with global subroutines: capturing global setup within plain UC. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 1–30. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64381-2 1

10. Badertscher, C., Canetti, R., Hesse, J., Tackmann, B., Zikas, V.: Universal com-
position with global subroutines: capturing global setup within plain UC. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 1–30. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64381-2 1

11. Badertscher, C., Kiayias, A., Kohlweiss, M., Waldner, H.: Consistency for func-
tional encryption. Cryptology ePrint Archive, Report 2020/137 (2020). https://
eprint.iacr.org/2020/137

12. Baghery, K., Kohlweiss, M., Siim, J., Volkhov, M.: Another look at extraction and
randomization of groth’s zk-SNARK. Cryptology ePrint Archive, Report 2020/811
(2020). https://eprint.iacr.org/2020/811

13. Bahmani, R., et al.: Secure multiparty computation from SGX. In: Kiayias, A.
(ed.) FC 2017. LNCS, vol. 10322, pp. 477–497. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70972-7 27

14. Bailleu, M., Thalheim, J., Bhatotia, P., Fetzer, C., Honda, M., Vaswani, K.:
SPEICHER: securing lsm-based key-value stores using shielded execution. In:
Merchant, A., Weatherspoon, H. (eds.) 17th USENIX Conference on File and
Storage Technologies, FAST 2019, Boston, MA, February 25–28, 2019, pages
173–190. USENIX Association (2019). URL https://www.usenix.org/conference/
fast19/presentation/bailleu

15. Barbosa, M., Portela, B., Scerri, G., Warinschi, B.: Foundations of hardware-based
attested computation and application to SGX. Cryptology ePrint Archive, Report
2016/014 (2016). http://eprint.iacr.org/2016/014

16. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

17. Brandenburger, M., Cachin, C., Lorenz, M., Kapitza, R.: Rollback and forking
detection for trusted execution environments using lightweight collective memory.
CoRR (2017). URL http://arxiv.org/abs/1701.00981v2

18. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000). http://eprint.iacr.
org/2000/067

19. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

20. Canetti, R., Shahaf, D., Vald, M.: Universally composable authentication and key-
exchange with global PKI. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 265–296. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49387-8 11

21. Cen, S., Zhang, B.: Trusted time and monotonic counters with intel software guard
extensions platform services (2017). https://software.intel.com/sites/default/files/
managed/1b/a2/Intel-SGX-Platform-Services.pdf

22. Cheng, R., et al.: Ekiden: a platform for confidentiality-preserving, trustworthy,
and performant smart contract execution. CoRR, abs/1804.05141 (2018). URL
http://arxiv.org/abs/1804.05141

https://doi.org/10.1007/978-3-030-64381-2_1
https://doi.org/10.1007/978-3-030-64381-2_1
https://eprint.iacr.org/2020/137
https://eprint.iacr.org/2020/137
https://eprint.iacr.org/2020/811
https://doi.org/10.1007/978-3-319-70972-7_27
https://doi.org/10.1007/978-3-319-70972-7_27
https://www.usenix.org/conference/fast19/presentation/bailleu
https://www.usenix.org/conference/fast19/presentation/bailleu
http://eprint.iacr.org/2016/014
https://doi.org/10.1007/978-3-642-19571-6_16
http://arxiv.org/abs/1701.00981v2
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-662-49387-8_11
https://software.intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
https://software.intel.com/sites/default/files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
http://arxiv.org/abs/1804.05141

Steel: Composable Hardware 735

23. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 703–732. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3 24

24. Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in an unfair
world: fair multiparty computation from public bulletin boards. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS, Dallas, TX, USA, Oct. 31 -
Nov. 2, 2017. pp. 719–728. ACM (2017)

25. Chung, K.-M., Katz, J., Zhou, H.-S.: Functional encryption from (small) hardware
tokens. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
120–139. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-
0 7

26. Ciampi, M., Lu, Y., Zikas, V.: Collusion-preserving computation without a medi-
ator. Cryptology ePrint Archive, Report 2020/497 (2020). https://eprint.iacr.org/
2020/497

27. Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive, Report
2016/086 (2016). http://eprint.iacr.org/2016/086

28. Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: IRON: functional encryp-
tion using intel SGX. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS, Dallas, TX, USA, Oct. 31 - Nov. 2, 2017, pp. 765–782. ACM (2017)

29. Garlati, C., Pinto, S.: A clean slate approach to Linux security RISC-V enclaves
(2020)

30. Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized
functionalities. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
325–351. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-
7 13

31. Gregor, F., et al.: Trust management as a service: enabling trusted execution in
the face of byzantine stakeholders. CoRR, abs/2003.14099 (2020). URL https://
arxiv.org/abs/2003.14099

32. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-
encryption and its nonce-reuse misuse-resistance. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 493–517. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 24

33. Kaplan, D., Powell, J., Woller, T.: AMD memory encryption. White paper (2016)
34. Kiayias, A., Tselekounis, Y.: Tamper resilient circuits: the adversary at the gates.

In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 161–180.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0 9

35. Kiayias, A., Liu, F.H., Tselekounis, Y.: Practical non-malleable codes from l-more
extractable hash functions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) ACM CCS, Vienna, Austria, Oct. 24–28, 2016. pp. 1317–
1328. ACM (2016)

36. Kiayias, A., Liu, F.-H., Tselekounis, Y.: Non-malleable codes for partial functions
with manipulation detection. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018.
LNCS, vol. 10993, pp. 577–607. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96878-0 20

37. Komargodski, I., Segev, G., Yogev, E.: Functional encryption for randomized func-
tionalities in the private-key setting from minimal assumptions. J. Cryptol. 31(1),
60–100 (2017). https://doi.org/10.1007/s00145-016-9250-8

38. Lee, D., Kohlbrenner, D., Shinde, S., Asanović, K., Song, D.: Keystone: an open
framework for architecting trusted execution environments. In: Proceedings of the
Fifteenth European Conference on Computer Systems, pp. 1–16 (2020)

https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-642-42045-0_7
https://doi.org/10.1007/978-3-642-42045-0_7
https://eprint.iacr.org/2020/497
https://eprint.iacr.org/2020/497
http://eprint.iacr.org/2016/086
https://doi.org/10.1007/978-3-662-46497-7_13
https://doi.org/10.1007/978-3-662-46497-7_13
https://arxiv.org/abs/2003.14099
https://arxiv.org/abs/2003.14099
https://doi.org/10.1007/978-3-662-47989-6_24
https://doi.org/10.1007/978-3-642-42045-0_9
https://doi.org/10.1007/978-3-319-96878-0_20
https://doi.org/10.1007/978-3-319-96878-0_20
https://doi.org/10.1007/s00145-016-9250-8

736 P. Bhatotia et al.

39. Levin, D., Douceur, J.R., Lorch, J.R., Moscibroda, T.: Trinc: small trusted hard-
ware for large distributed systems. NSDI 9, 1–14 (2009)

40. Matetic, S., et al.: ROTE: rollback protection for trusted execution. Cryptology
ePrint Archive, Report 2017/048 (2017). http://eprint.iacr.org/2017/048

41. Matt, C., Maurer, U.: A definitional framework for functional encryption. In: Four-
net, C., Hicks, M. (eds.) CSF 2015Computer Security Foundations Symposium,
Verona, Italy, jul 13–17, pp. 217–231 IEEE (2015)

42. Nayak, K., et al.: HOP: hardware makes obfuscation practical. In: NDSS 2017, San
Diego, CA, USA, Feb. 26 - Mar. 1, The Internet Society (2017)

43. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping trust in commodity computers.
In: 2010 IEEE Symposium on Security and Privacy, Berkeley/Oakland, CA, USA,
May 16–19, pp. 414–429. IEEE Computer Society Press (2010)

44. Pass, R., Shi, E., Tramèr, F.: Formal abstractions for attested execution secure
processors. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10210, pp. 260–289. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 10

45. Pinto, S., Santos, N.: Demystifying arm trustzone: a comprehensive survey. ACM
Comput. Surv. 51, 1–36 (2019)

46. Porter, N., Golanand, G., Lugani, S.: Introducing google cloud confidential com-
puting with confidential VMs. (2020)

47. Russinovich, M.: Introducing azure confidential computing (2017)
48. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-

CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

49. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

50. Strackx, R., Piessens, F.: Ariadne: a minimal approach to state continuity. In: Holz,
T., Savage, S. (eds.) USENIX Security, Austin, TX, USA, Aug. 10–12, 2016, pp.
875–892. USENIX (2016)

51. Suzuki, T., Emura, K., Ohigashi, T., Omote, K.: Verifiable functional encryption
using intel SGX. Cryptology ePrint Archive, Report 2020/1221 (2020). https://
eprint.iacr.org/2020/1221

52. Tramer, F., Zhang, F., Lin, H., Hubaux, J. P., Juels, A., Shi, E.: Sealed-glass
proofs: using transparent enclaves to prove and sell knowledge. Cryptology ePrint
Archive, Report 2016/635 (2016). http://eprint.iacr.org/2016/635

53. Tselekounis, I.: Cryptographic techniques for hardware security. PhD thesis, Uni-
versity of Edinburgh, UK (2018). http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.
ethos.763966

54. Wu, P., Shen, Q., Deng, R. H., Liu, X., Zhang, Y., Wu, Z.: ObliDC: an SGX-based
oblivious distributed computing framework with formal proof. In: Galbraith, S.D.,
Russello, G., Susilo, W., Gollmann, D., Kirda, E., Liang, Z. (eds.) ASIACCS 19,
Auckland, New Zealand, July 9–12, pp. 86–99. ACM (2019)

55. Yilek, S.: Resettable public-key encryption: how to encrypt on a virtual machine.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 41–56. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5 4

http://eprint.iacr.org/2017/048
https://doi.org/10.1007/978-3-319-56620-7_10
https://doi.org/10.1007/978-3-319-56620-7_10
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/3-540-39568-7_5
https://eprint.iacr.org/2020/1221
https://eprint.iacr.org/2020/1221
http://eprint.iacr.org/2016/635
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763966
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.763966
https://doi.org/10.1007/978-3-642-11925-5_4

	Steel: Composable Hardware-Based Stateful and Randomised Functional Encryption
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 UC Background
	2.2 The Gatt Functionality

	3 Functional Encryption for Stateful and Randomized Functionalities
	3.1 Properties of FESR
	3.2 UC Functionality

	4 A UC-Formulation of Steel
	5 UC-Security of Steel
	6 Rollback and Forking Attacks
	6.1 Grollbackatt Functionality

	References

