Skip to main content

Isostasy – Geodesy

  • Living reference work entry
  • First Online:
Encyclopedia of Geodesy

Definition

Isostasy (Greek isos “equal,” stasis “stand still”) is a term in geology, geophysics, and geodesy to describe the state of mass balance (equilibrium) between the Earth’s crust and upper mantle. It describes a condition to which the mantle tends to balance the mass of the crust in the absence of external forces.

Introduction

The term isostasy was proposed in 1889 by the American geologist C. Dutton, but the first idea of mass balancing of the Earth’s upper layer goes back to Leonardo da Vinci (1452–1519). The term means that the Earth’s topographic mass is balanced (mass conservation) in one way or another, so that at a certain depth the pressure is hydrostatic. Isostasyis an alternative view of Archimedes’ principle of hydrostatic equilibrium . According to this principle, a floating body displaces its own weight. A light mountain chain can be compared with an iceberg or a cork floating in water or in proper term floating on...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Reading

  • Airy, G. B., 1855. On the computations of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys. Philosophical Transactions of the Royal Society of London, Series B, 145, 101–104.

    Article  Google Scholar 

  • Bagherbandi, M., and Sjöberg, L. E., 2012a. A synthetic Earth gravity model based on a topographic-isostatic model. Journal of Studia Geophysica and Geodetica, 56(2012). doi:10.1007/s11200-011-9045-1.

    Google Scholar 

  • Bagherbandi, M., and Sjöberg, L. E., 2012b. Non-isostatic effects on crustal thickness: a study using CRUST2.0 in Fennoscandia. Physics of the Earth and Planetary Interiors, 200–201, 37–44, doi:10.1016/j.pepi.2012.04.001.

    Article  Google Scholar 

  • Bagherbandi, M., and Sjöberg, L. E., 2013. Improving gravimetric-isostatic models of crustal depth by correcting for non-isostatic effects and using CRUST 2.0. Earth Science Review, 117, 29–39, doi:10.1016/j.earscirev.2012.12.002.

    Article  Google Scholar 

  • Bagherbandi M., Sjöberg L. E., Tenzer R., and Abrehdary, M., 2015. A new Fennoscandian crustal thickness model based on CRUST1.0 and gravimetric isostatic approach. Earth Science Review, 145, 132–145, doi:10.1016/j.earscirev.2015.03.003.

    Google Scholar 

  • Barrel, J., 1914. The strength of the Earth’s crust I. Geologic tests of the limits of strength. Journal of Geology, 22, 28–48.

    Article  Google Scholar 

  • Casenave, A., 1994. The geoid and oceanic lithosphere. In Vanicek, P., and Christou, N. T. (eds.), Geoid and its Geophysical Interpretation. Boca Raton: CRC Press, p. 13.

    Google Scholar 

  • Ebbing, J., 2007. Isostatic density modelling explains the missing root of the Scandes. Norwegian Journal of Geology, 87, 13–20.

    Google Scholar 

  • Gilbert, G. K., 1889. The strength of the Earth’s crust. Bulletin of the Geological Society of America, 1, 23–27.

    Google Scholar 

  • Haagmans, R., 2000. A synthetic earth for use in geodesy. Journal of Geodesy, 74, 503–511.

    Article  Google Scholar 

  • Hayford, J. F., 1909. The Figure of the Earth and Isostasy from Measurements in the United States. Washington, D.C.: GPO.

    Google Scholar 

  • Heiskanen, W. A., 1924. Untersuchungen ueber Schwerkraft und Isostasie. Finn. Geod. Inst. Publ. No. 4, Helsinki.

    Google Scholar 

  • Heiskanen, W. A., 1938. New isostatic tables for the reduction of the gravity values calculated on the basis of Airy’s hypothesis. Isostat. Inst. of IAG Publ. No. 2. Finnish Geodetic Institution, Helsinki.

    Google Scholar 

  • Heiskanen, W. A., and Moritz, H., 1967. Physical Geodesy. New York: W.H. Freeman.

    Google Scholar 

  • Heiskanen, W. A., and Vening Meinesz, F. A., 1958. The Earth and its Gravity Field. New York: McGraw-Hill.

    Google Scholar 

  • Kaban, M. K., Schwintzer, P., and Tikhotsky, S. A., 1999. A global isostatic gravity model of the Earth. Geophysical Journal International, 136, 519–536.

    Article  Google Scholar 

  • Martinec, Z., 1998. Boundary-Value Problems for Gravimetric Determination of a Precise Geoid. Berlin/Heidelberg/New York: Springer. Lecture Notes in Earth Sciences, Vol. 73.

    Google Scholar 

  • Mckenzie, D. P., 1967. Some remarks on heat flow and gravity anomalies. Journal of Geophysical Research, 72, 61–71.

    Article  Google Scholar 

  • Moritz, H., 1990. The Figure of the Earth. Karlsruhe: H Wichmann.

    Google Scholar 

  • Pratt, J. H., 1855. On the attraction of the Himalaya mountains, and on the elevated regions beyond; upon the plumb line in India. Philosophical Transactions of the Royal Society of London, 145, 53–100.

    Article  Google Scholar 

  • Pratt, J. H., 1859. On the deflection of the plumb-line in India, caused by the attraction of the Himalaya Mountains and of the elevated regions beyond, and its modification by the compensating effect of a deficiency of matter below the mountain mass. Philosophical Transactions of the Royal Society of London, 149, 745–778.

    Article  Google Scholar 

  • Sjöberg, L. E., 2009. Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophysical Journal International, 179(3), 1527–1536, doi:10.1111/j.1365-246X.2009.04397.x.

    Article  Google Scholar 

  • Sjöberg, L. E., 2013. On the isostatic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz inverse problem of isostasy. Geophysical Journal International, 193, 1277–128.

    Article  Google Scholar 

  • Tenzer, R., and Bagherbandi, M., 2012. Reformulation of the Vening-Meinesz Moritz inverse problem of isostasy for isostatic gravity disturbances. International Journal of Geosciences, 3, 918–929, doi:10.4236/ijg.2012.325094.

    Article  Google Scholar 

  • Tenzer, R., Chen, W., Tsoulis, D., Bagherbandi, M., Sjöberg, L. E., Novák, P., and Jin, S., 2015. Analysis of the refined CRUST1.0 crustal model and its gravity field. Surveys in Geophysics, 36, 139–165.

    Article  Google Scholar 

  • Vening Meinesz, F. A., 1931. Une nouvelle méthodepour la réduction isostatique régionale de l’intensité de la pesanteur. Bulletin Géodésique, 29, 33–51.

    Article  Google Scholar 

  • Watts, A. B., 2001. Isostasy and Flexure of the Lithosphere. Cambridge, UK: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars E. Sjöberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Sjöberg, L.E., Bagherbandi, M. (2014). Isostasy – Geodesy. In: Grafarend, E. (eds) Encyclopedia of Geodesy. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_111-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02370-0_111-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics