Skip to main content

Adaptive Visual Servo Control

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science

Glossary

Camera-in-Hand Configuration :

The camera-in-hand configuration refers to the case when the camera is attached to a moving robotic system (e.g., held by the robot end-effector).

Camera-to-Hand Configuration :

The camera-to-hand configuration refers to the case when the camera is stationary and observing moving targets (e.g., a fixed camera observing a moving robot end-effector).

Euclidean Reconstruction :

Euclidean reconstruction is the act of reconstructing the Euclidean coordinates of feature points based on the two-dimensional image information obtained from a visual sensor.

Extrinsic Calibration Parameters :

The extrinsic calibration parameters are defined as the relative position and orientation of the camera reference frame to the world reference frame (e.g., the frame affixed to the robot base). The parameters are represented by a rotation matrix and a translation vector.

Feature Point :

Different computer vision algorithms have been developed to search images for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Almansa A, Desolneux A, Vamech S (2003) Vanishing point detection without any a priori information. IEEE Trans Pattern Anal Machine Intell 25:502–507

    Article  Google Scholar 

  • Astolfi A, Hsu L, Netto M, Ortega R (2002) Two solutions to the adaptive visual servoing problem. IEEE Trans Robot Autom 18:387–392

    Article  Google Scholar 

  • Bishop B, Spong MW (1997) Adaptive calibration and control of 2D monocular visual servo system. Proc IFAC Symp Robot Contr:525–530

    Google Scholar 

  • Boufama B, Mohr R (1995) Epipole and fundamental matrix estimation using virtual parallax. In: Proceedings of the IEEE international conference on computer vision, pp 1030–1036

    Google Scholar 

  • Chaumette F (1998) Potential problems of stability and convergence in image-based and position-based visual servoing. In: Kriegman D, Hager G, Morse A (eds) The confluence of vision and control LNCIS series, vol 237. Springer, Berlin, pp 66–78

    Chapter  Google Scholar 

  • Chaumette F, Hutchinson S (2006) Visual servo control part I: basic approaches. IEEE Robot Autom Mag 13:82–90

    Article  Google Scholar 

  • Chaumette F, Malis E (2000) 2 1/2D visual servoing: a possible solution to improve image-based and position-based visual servoings. In: Proceedings of the IEEE international conference on robotics and automation, pp 630–635

    Google Scholar 

  • Chen J, Behal A, Dawson DM, Dixon WE (2003) Adaptive visual servoing in the presence of intrinsic calibration uncertainty. Proc IEEE Conf Decision Contr:5396–5401

    Google Scholar 

  • Chen J, Dawson DM, Dixon WE, Behal A (2005) Adaptive homography-based visual servo tracking for a fixed camera configuration with a camera-in-hand extension. IEEE Trans Control Syst Technol 13:814–825

    Article  Google Scholar 

  • Chen J, Dixon WE, Dawson DM, McIntyre M (2006) Homography-based visual servo tracking control of a wheeled mobile robot. IEEE Trans Robot 22:406–415

    Article  Google Scholar 

  • Clarke TA, Fryer JG (1998) The development of camera calibration methods and models. Photogramm Rec 16:51–66

    Article  Google Scholar 

  • Conticelli F, Allota B (2001) Discrete-time robot visual feedback in 3-D positioning tasks with depth adaptation. IEEE/ASME Trans Mechatron 6:356–363

    Article  Google Scholar 

  • Conticelli F, Allotta B (2001) Nonlinear controllability and stability analysis of adaptive image-based systems. IEEE Trans Robot Autom 17:208–214

    Article  Google Scholar 

  • Corke P, Hutchinson S (2001) A new partitioned approach to image-based visual servo control. IEEE Trans Robot Autom 17:507–515

    Article  Google Scholar 

  • Daucher N, Dhome M, Lapresté J, Rives G (1997) Speed command of a robotic system by monocular pose estimate. In: Proceedings of the international conference on intelligent robots and systems, pp 55–62

    Google Scholar 

  • Deguchi K (1998) Optimal motion control for image-based visual servoing by decoupling translation and rotation. In: Proceedings of the international conference on intelligent robots and systems, pp 705–711

    Google Scholar 

  • DeMenthon D, Davis L (1995) Model-based object pose in 25 lines of code. Int J Comput Vis 15:123–141

    Article  Google Scholar 

  • Dixon WE, Dawson DM, Zergeroglu E, Behal A (2001) Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system. IEEE Trans Syst Man Cybern Part B: Cybern 31:341–352

    Article  Google Scholar 

  • Dixon WE, Behal A, Dawson DM, Nagarkatti S (2003) Nonlinear control of engineering systems: a Lyapunov-based approach. Birkhäuser, Boston

    Book  Google Scholar 

  • Espiau B (1993) Effect of camera calibration errors on visual servoing in robotics. In: 3rd International symposium on experimental Robotics, pp 182–192

    Google Scholar 

  • Espiau B, Chaumette F, Rives P (1992) A new approach to visual servoing in robotics. IEEE Trans Robot Autom 8:313–326

    Article  Google Scholar 

  • Fang Y, Behal A, Dixon WE, Dawson DM (2002a) Adaptive 2.5D visual servoing of kinematically redundant robot manipulators. In: Proceedings of the IEEE conference decision control, pp 2860–2865

    Google Scholar 

  • Fang Y, Dawson DM, Dixon WE, de Queiroz MS (2002b) 2.5D visual servoing of wheeled mobile robots. In: Proceedings of the IEEE conference decision control, pp 2866–2871

    Google Scholar 

  • Fang Y, Dixon WE, Dawson DM, Chen J (2003) An exponential class of model-free visual servoing controllers in the presence of uncertain camera calibration. Proc IEEE Conf Decision Contr:5390–5395

    Google Scholar 

  • Fang Y, Dixon WE, Dawson DM, Chawda P (2005) Homography-based visual servoing of wheeled mobile robots. IEEE Trans Syst Man Cybern Part B: Cybern 35:1041–1050

    Article  Google Scholar 

  • Faugeras O (1993) Three-dimensional computer vision: a geometric viewpoint. MIT Press, Cambridge

    Google Scholar 

  • Faugeras O, Lustman F (1988) Motion and structure from motion in a piecewise planar environment. Int J Pattern Recognit Artif Intell 2:485–508

    Article  Google Scholar 

  • Feddema J, Mitchell O (1989) Vision-guided servoing with feature-based trajectory generation. IEEE Trans Robot Autom 5:691–700

    Article  Google Scholar 

  • Gans N, Hutchinson S (2007) Stable visual servoing through hybrid switched-system control. IEEE Trans Robot 23:530–540

    Article  Google Scholar 

  • Hartley R, Zisserman A (2000) Multiple view geometry in computer vision. Cambridge University Press, New York

    MATH  Google Scholar 

  • Hashimoto K (2003) A review on vision-based control of robot manipulators. Adv Robot 17:969–991

    Article  Google Scholar 

  • Hashimoto K, Kimoto T, Ebine T, Kimura H (1991) Manipulator control with image-based visual servo. Proc IEEE Int Conf Robot Autom pp 2267–2272

    Google Scholar 

  • Heikkila J, Silven O (1997) A four-step camera calibration procedure with implicit image correction. Proc IEEE Conf Comput Vis Pattern Recogn:1106–1112

    Google Scholar 

  • Hosoda K, Asada M (1994) Versatile visual servoing without knowledge of true jacobian. Proc IEEE/RSJ Int Conf Intell Robot Syst:186–193

    Google Scholar 

  • Hsu L, Aquino PLS (1999) Adaptive visual tracking with uncertain manipulator dynamics and uncalibrated camera. In: Proceedings of the IEEE conference decision control, pp 1248–1253

    Google Scholar 

  • Hu G, Gupta S, Fitz-coy N, Dixon WE (2006a) Lyapunov-based visual servo tracking control via a quaternion formulation. In: Proceedings IEEE conference decision and control, pp 3861–3866

    Google Scholar 

  • Hu G, Dixon WE, Gupta S, Fitz-coy N (2006b) A quaternion formulation for homography-based visual servo control. In: Proceedings of the IEEE international conference on robotics and automation, pp 2391–2396

    Google Scholar 

  • Hu G, Gans N, Dixon WE (2007) Quaternion-based visual servo control in the presence of camera calibration error. In: Proceedings of the IEEE Multi-Conference on Systems and Control, pp 1492–1497

    Google Scholar 

  • Hutchinson S, Hager G, Corke P (1996) A tutorial on visual servo control. IEEE Trans Robot Autom 12:651–670

    Article  Google Scholar 

  • Jagersand M, Fuentes O, Nelson R (1997) Experimental evaluation of uncalibrated visual servoing for precision manipulation. In: Proceedings of the international conference on robotics and automation, pp 2874–2880

    Google Scholar 

  • Kelly R (1996) Robust asymptotically stable visual servoing of planar manipulator. IEEE Trans Robot Autom 12:759–766

    Article  Google Scholar 

  • Liu Y, Wang H, Lam K (2005) Dynamic visual servoing of robots in uncalibrated environments. Proc IEEE Int Conf Robot Autom, pp 3142–3148

    Google Scholar 

  • Liu Y, Wang H, Wang C, Lam K (2006a) Uncalibrated visual servoing of robots using a depth-independent interaction matrix. IEEE Trans Robot 22:804–817

    Article  Google Scholar 

  • Liu Y, Wang H, Zhou D (2006b) Dynamic tracking of manipulators using visual feedback from an uncalibrated fixed camera. In: Proceedings of the IEEE international conference on robotics and automation, pp 4124–4129

    Google Scholar 

  • Malis E, Chaumette F (2000) 2 1/2D visual servoing with respect to unknown objects through a new estimation scheme of camera displacement. Int J Comput Vis 37:79–97

    Article  Google Scholar 

  • Malis E, Chaumette F (2002) Theoretical improvements in the stability analysis of a new class of model-free visual servoing methods. IEEE Trans Robot Autom 18:176–186

    Article  Google Scholar 

  • Malis E, Chaumette F, Bodet S (1999) 2 1/2D visual servoing. IEEE Trans Robot Autom 15:238–250

    Article  Google Scholar 

  • Martinet P, Gallice J, Khadraoui D (1996) Vision based control law using 3D visual features. In: Proceedings of the world automation congress, pp 497–502

    Google Scholar 

  • Piepmeier JA, Lipkin H (2003) Uncalibrated eye-in-hand visual servoing. Int J Robot Res 22:805–819

    Article  Google Scholar 

  • Piepmeier JA, McMurray GV, Lipkin H (2004) Uncalibrated dynamic visual servoing. IEEE Trans Robot Autom 24:143–147

    Article  Google Scholar 

  • Quan L, Lan Z-D (1999) Linear n-point camera pose determination. IEEE Trans Pattern Anal Machine Intell 21:774–780

    Article  Google Scholar 

  • Robert L (1996) Camera calibration without feature extraction. Comput Vis Image Underst 63:314–325

    Article  Google Scholar 

  • Ruf A, Tonko M, Horaud R, Nagel H-H (1997) Visual tracking of an end-effector by adaptive kinematic prediction. Proc IEEE/RSJ Int Conf Intell Robot Syst:893–898

    Google Scholar 

  • Shahamiri M, Jagersand M (2005) Uncalibrated visual servoing using a biased newton method for on-line singularity detection and avoidance. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 3953–3958

    Google Scholar 

  • Shi J, Tomasi C (1994) Good features to track. Proc IEEE Conf Comput Vis Pattern Recogn:593–600

    Google Scholar 

  • Shuster M (1993) A survey of attitude representations. J Astronaut Sci 41:439–518

    MathSciNet  Google Scholar 

  • Slotine JJ, Li W (1991) Applied nonlinear control. Prentice Hall, Inc., Englewood Cliff

    MATH  Google Scholar 

  • Sturm PF, Maybank SJ (1999) On plane-based camera calibration: A general algorithm, singularities, applications. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern recognition Conf Comput Vis Pattern Recogn, pp 432–437

    Google Scholar 

  • Taylor CJ, Ostrowski JP (2000) Robust vision-based pose control. In: Proceedings of the IEEE international conference on robotics and automation, pp 2734–2740

    Google Scholar 

  • Tomasi C, Kanade T (1991) Detection and tracking of point features. Technical report, Carnegie Mellon University, Pittsburgh

    Google Scholar 

  • Tsai RY (1987) A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J Robot Autom 3:323–344

    Article  Google Scholar 

  • Tsai RY (1989) Synopsis of recent progress on camera calibration for 3D machine vision. MIT Press, Cambridge

    Google Scholar 

  • Weiss LE, Sanderson AC, Neuman CP (1987) Dynamic sensor-based control of robots with visual feedback. IEEE J Robot Autom RA-3:404–417

    Article  Google Scholar 

  • Wilson WJ, Hulls CW, Bell GS (1996) Relative end-effector control using cartesian position based visual servoing. IEEE Trans Robot Autom 12:684–696

    Article  Google Scholar 

  • Zachi A, Hsu L, Ortega R, Lizarralde F (2006) Dynamic control of uncertain manipulators through immersion and invariance adaptive visual servoing. Int J Robot Res 25:1149–1159

    Article  Google Scholar 

  • Zergeroglu E, Dawson DM, de Queiroz M, Behal A (2001) Vision-based nonlinear tracking controllers in the presence of parametric uncertainty. IEEE/ASME Trans Mechatron 6:322–337

    Article  Google Scholar 

  • Zhang Z (1999) Flexible camera calibration by viewing a plane from unknown orientations. Proc IEEE Int Conf Comput Vis 666–673

    Google Scholar 

  • Zhang Z, Hanson AR (1995) Scaled euclidean 3D reconstruction based on externally uncalibrated cameras. In: IEEE symposium on computer vision, pp 37–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren E. Dixon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hu, G., Gans, N., Dixon, W.E. (2021). Adaptive Visual Servo Control. In: Meyers, R.A. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_3-8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_3-8

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics