Skip to main content

Algebraic Models and Granular Computing

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science
  • 12 Accesses

Glossary

Syntax:

Syntax, or syntactical concepts refer to simple relations among symbols and formulas of formal, symbolic languages. The formal languages, even if created with a specific meaning in mind, do not carry themselves any meaning. The meaning is being assigned to them by establishing a proper semantics.

Semantics:

Semantics for a given symbolic language assigns a specific interpretation in some domain to all symbols and expressions of the language. It also involves related ideas such as truth and model. They are called semantical concepts to distinguish them from the syntactical ones.

Algebraic Model:

The word model is used in many situations and has many meanings but they all reflect some parts, if not all, of its following intuitive definition. A structure M is a model for a set ℱ of formulas of a formal language ℒ if and only if every formula A ∈ ℱ it true in M. When the notion of truthfulness is established in terms a certain abstract algebra M is called an algebraic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Abbot JC (1967) Semi-Boolean algebras. Mat Vesn 4:177–198

    MathSciNet  Google Scholar 

  • Banerjee M (1992) A categorical approach to the algebra and logic of the indiscernible. PhD dissertation, Mathematics Department, University of Calcutta

    Google Scholar 

  • Banerjee M, Chakraborty MK (1993) Rough consequence and rough algebra. In: Ziarko WP (ed) Rough sets, fuzzy sets and knowledge discovery, of the international workshop on proceedings of Rough Sets and Knowledge Discovery, (RSKD’93), Banf, Alberta, Canada. Springer, London, 1994, pp 196–207

    Google Scholar 

  • Beth EW (1951) A topological proof of the theorem of Löwenheim-Skolem-Gödel. In: Koninklijke Nederlandse Akademie van Wetenschappen, Amstedam, Proceedings, Series A, vol 54, no. 5 and Indagationes mathematicae, vol 13, no. 5, pp 436–444

    Google Scholar 

  • Beth EW (1956) Semantic construction of intuitionistic logic. In: Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Letterkunde, n.s. vol 19, no. 11, pp 357–388

    Google Scholar 

  • Beth EW (1959) The foundations of mathematics. North Holland Publishing Co., Amsterdam

    MATH  Google Scholar 

  • Białynicki-Birula A, Rasiowa H (1957) On the representation of quasi-Boolean algebras. Bull Ac Pol Sci Cl III 5:259–261

    MathSciNet  MATH  Google Scholar 

  • Bronikowski Z (1994) Algebraic structures of rough sets. In: Ziarko W (ed) Rough sets, fuzzy sets and knowledge discovery, workshops in computing, Springer, pp 242–247

    Google Scholar 

  • Diego A (1965) Sobre algebras de Hilbert. Notas de Logica Matematica, Instituto de Matematica, Universidad Nacional del Sur, Bahia Bianca, p 12

    Google Scholar 

  • Dubois D, Prade H (1987) Twofold fuzzy sets and, rough, sets. Fuzzy Sets Syst 23:3–18

    Article  MATH  Google Scholar 

  • Dyson VH, Kreisel G (1961) Analysis of Beth’s semantic construction of intuitionistic logic. Applied Mathematics and Statistics Laboratories, Stanford University, Technical Report no.3, 27 Jan, pp 39–65

    Google Scholar 

  • Goguen JA (1967) L-fuzzy sets. J Math Anal Appl 18:145–174

    Article  MathSciNet  MATH  Google Scholar 

  • Hadjimichael M, Wasilewska A (1993) Interactive inductive learning. Int J Man-Mach Stud 38:147–167

    Article  MATH  Google Scholar 

  • Halmos PR (1962) Algebraic logic. Chelsea, New York

    MATH  Google Scholar 

  • Henkin N (1950) An algebraic characterization of quantifiers. Fundam Math 37:63–74

    Article  MathSciNet  MATH  Google Scholar 

  • Henkin I (1955a) The representation theorem for cylindric algebras. Studies in Logic and Foundations of Mathematics, Amsterdam, pp 85–97

    Google Scholar 

  • Henkin I (1955b) Remarks on Henkin’s paper: Boolean representation through propositional calculus. Fundam Math 41:89–96

    Article  MathSciNet  Google Scholar 

  • Henkin L (1963) A class of non-normal models for classical sentential logic. J Symb Log 28:300

    MathSciNet  Google Scholar 

  • Henkin I, Tarski A (1961) Cylindric algebras. In: Proceedings of Symposia in Pure Mathematics II, pp 83–113

    Google Scholar 

  • Hilbert D, Bernays P (1934) Grundlagen der Mathematic, vol 1. Berlin (Reprinted Ann Arbor, 1944)

    Google Scholar 

  • Horn A (1962) The separation theorem of intuitionist propositional calculus. J Symb Log 27:391–399

    Article  MathSciNet  MATH  Google Scholar 

  • Kripke S (1965) Semantics analysis of intuitionistic logic. In: Crossley JN, Dummet MNE (eds) Proceedings of the eight logic colloqium, 1963, North Holland Publishing Co., Oxford, pp 92–130

    Google Scholar 

  • Łoś J (1951) An algebraic proof of completeness for the two-valued propositional calculus. Colloq Math 2:236–240

    Article  MathSciNet  MATH  Google Scholar 

  • Łoś J (1954) On the categoricity in power of elementary deductive systems and some related problems. Colloq Math 3:58–62

    Article  MathSciNet  MATH  Google Scholar 

  • Łoś J (1957) Remarks on Henkin’s paper: Boolean representation through propositional calculus. Fundam Math 44:82–83

    Article  MathSciNet  MATH  Google Scholar 

  • Łukasiewicz J (1920) O logice trójwartościowej. Ruch Filozoficzny 5:169–170

    Google Scholar 

  • Łukasiewicz J (1929) Elementy Logiki Matematycznej. Warszawa (Reprinted Warszawa 1958)

    Google Scholar 

  • Markov AA (1950) Konstriktivnaja logika. Usp Mat Nauk 5:187–188

    Google Scholar 

  • McKinsey JCC (1941) A solution of the decision problem for the Lewis systems S.2 and S.f with an application to topology. J Symb Log 6:117–188

    Article  MathSciNet  MATH  Google Scholar 

  • McKinsey JCC, Tarski A (1948) Some theorems about the sentential calculi of Lewis and Heyting. J Symb Log 13:1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Michalski RS, Larson JB (1978) Selection of most representative training examples and incremental generation of VL1 hypothesis: the underlying methodology and the description of programs ESEL and AQ11. Report No. 867, Department of Computer Science, University of Illinois, Urbana

    Google Scholar 

  • Moisil GC (1935) Recherches sur l’algebre de la logique. Annales Sc de l’Univerite de Jassy 22:1–117

    Google Scholar 

  • Mostowski A (1948) Proofs of non-deducibility in intuitionistic functional calculus. J Symb Log 13:204–207

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson D (1949) Constructible falsity. J Symb Log 14:16–26

    Article  MathSciNet  MATH  Google Scholar 

  • Nöbeling G (1954) Grundlagen der analitishen Topologie, Berlin/Göttingen/Heidelberg

    Google Scholar 

  • Novotny N, Pawlak Z (1985) On rough equalities. Bull Pol Acad Sci (Math) 33:99–104

    MathSciNet  MATH  Google Scholar 

  • Orłowska E (1983) Semantics of vague concepts. In: Dorn G, Weingartner P (eds) Foundations of logic and linguistics, selected contributions to the 7th International Congress of Logic, Methodology and Philosophy of Science. Plenum Press, Saltzburg, pp 465–482

    Google Scholar 

  • Pagliani P (1994) A pure logic-algebraic analysis of rough top and rough bottom equalities. In: Rough sets, fuzzy sets and knowledge discovery, workshops in computing, Springer, pp 227–236

    Google Scholar 

  • Pawlak Z (1982) Rough sets. Int J Inf Comput Sci 11:344–356

    Article  MATH  Google Scholar 

  • Pawlak Z (1985a) On learning – a rough set approach. Lecture notes in computer science, 28. Springer, Berlin, pp 197–227

    Google Scholar 

  • Pawlak Z (1985b) Rough sets and fuzzy sets. Fuzzy Sets Syst 17:99–102

    Article  MathSciNet  MATH  Google Scholar 

  • Pawlak Z (1991) Rough sets. Theory and decision library. Kluwer, Dordrecht

    Google Scholar 

  • Post EL (1921) Introduction to a general theory of elementary propositions. Am J Math 43:165–185

    Article  MathSciNet  MATH  Google Scholar 

  • Quinlan JR (1983) Learning efficient classification procedures and, their application to chess end games. In: Michalski RS, Carbonell JG, Mitchell TM (eds) Machine learning, an artificial intelligence approach. Tioga Publishing Company, Palo Alto

    Google Scholar 

  • Ras Z, Zemankova M (1986) On learning. A possibility approach. In: Proceedings of the 1986 ‘CISS, Princeton, pp 844–847

    Google Scholar 

  • Rasiowa H (1951) Algebraic treatement of the functional calculi of Heyting and Lewis. Fundam Math 38:99–126

    Article  MATH  Google Scholar 

  • Rasiowa H (1974) An algebraic approach to non-classical logics. Studies in logic and the fundations of mathematics, vol 78. North-Holland Publishing Company/London – PWN, Amsterdam/Warsaw

    Google Scholar 

  • Rasiowa H, Cat Ho N (1992) LT-fuzzy sets. In: Zadeh LA, Kacprzyk J (eds) Fuzzy logics for management of uncertainty. Wiley, New York, pp 122–139

    MATH  Google Scholar 

  • Rasiowa H, Sikorski R (1950) A proof of completeness theorem of Gódel. Fundam Math 37:193–200

    Article  MATH  Google Scholar 

  • Rasiowa H, Sikorski R (1953) Algebraic treatement of the notion of satisfability. Fundam Math 40:62–95

    Article  MATH  Google Scholar 

  • Rasiowa H, Sikorski R (1963) The mathematics of metamathematics. PWN, Warszawa

    MATH  Google Scholar 

  • Rasiowa H, Skowron A (1985) Approximation logic. In: Proceedings of mathematical methods of specification and synthesis of software systems conference. Academie Verlag, Berlin, 31, pp 123–139

    Google Scholar 

  • Reichbach J (1955) On the completeness of the functional calculus of the first order. Stud Logica 2:245–250

    Article  MathSciNet  MATH  Google Scholar 

  • Rieger L (1951) On countable generalized σ-algebras, with, a new proof of Gödel completeness theorem. Czechoslov Math J 1(76):29–40

    Google Scholar 

  • Scott DS (1954) Prime ideal theorems for rings, lattices and, Boolean algebras. Bull Am Math Soc 60:390

    Google Scholar 

  • Sholander M (1951) Postulates for distributive lattices. Can J Math 3:28–30

    Article  MathSciNet  MATH  Google Scholar 

  • Sikorski R (1958) Some applications of interior mappings. Fundam Math 45:200–212

    Article  MathSciNet  MATH  Google Scholar 

  • Stone MH (1934) Boolean algebras and, their relation to topology. Proc Natl Acad Sci 20:197–202

    Article  ADS  MATH  Google Scholar 

  • Stone MH (1937) Topological representation of distributive lattices and, Brouwerian logics. Čas Mat Fys 67:1–25

    MATH  Google Scholar 

  • Tarski A (1935) Grundzüge des Syntemenkalküls. Ester Teil. Fundam Math 25:503–526

    Article  Google Scholar 

  • Tarski A (1938) Der Aussagenkalkül und die Topologie. Fundam Math 31:103–134

    Article  MATH  Google Scholar 

  • Tarski A (1954) Prime ideal theorem for Boolean, algebras and, the axiom of choice. Bull Am Math Soc 60:390–391

    Google Scholar 

  • Tarski A, Thompson FB (1952) Some general properties of cylindric algebras. Bull Am Math Soc 58:65

    Google Scholar 

  • Thomason RH (1969) A semantical study of constructible falsity. Z Math Logik Grundl Math 15:247–257

    Article  MathSciNet  MATH  Google Scholar 

  • Vigneron L, Wasilewska A (1996) Rough and modal algebras. In: Proceedings of CESA’96 IMACS multiconference: computational engineering in system applications, vol I, pp 123–130

    Google Scholar 

  • Vorobiev NN (1952) Konstructivnoje iscislenie vyskasivanij s silnym otrizaniem. Dokl Akad Nauk SSSR 85:456–468

    Google Scholar 

  • Wasilewska A (1989) Syntactic decision procedures in information systems. Int J Man-Mach Stud 30:273–285

    Article  MATH  Google Scholar 

  • Wasilewska A (1996) On rough and LT-fuzzy sets. In: Proceedings of 1996 Asian fuzzy systems symposium – soft computing and information processing, Kenting, 11–14 Dec, pp 13–18

    Google Scholar 

  • Wasilewska A (1997) Topological rough algebras, Chapter 21. In: Lin TY (ed) Rough sets and database mining. Kluwer, Boston, pp 411–425

    Chapter  MATH  Google Scholar 

  • Wasilewska A, Banerjee M (1995) Rough, sets and, topological quasi-Boolean, algebras. In: ACM CSC’95 23rd annual workshop on rough sets and database mining, conference proceedings, San Jose State University, San Jose, pp 61–67

    Google Scholar 

  • Wasilewska A, Vigneron L (1995) Rough, equality algebras. In: Annual joint conference on information sciences, conference proceedings, Wrightsville Beach, Oct, pp 26–30

    Google Scholar 

  • Wasilewska A, Vigneron L (1997) On generalized rough sets. In: Third joint conference on information sciences, intelligent systems, scientific foundations and spectrum of applications, Research Triangle Park, 2–5 Mar, pp 185–188

    Google Scholar 

  • Wasilewska A, Vigneron L (1998) Rough algebras and automated deduction, Chapter 14. In: Skowron A (ed) Rough set theory and its applications in various fields, in series Soft computing, Physica Verlag (division of Springer Verlag), pp 261–276

    Google Scholar 

  • Wiweger A (1988) On topological rough sets. Bull Pol Acad Sci Math 37:51–62

    MathSciNet  Google Scholar 

  • Wong SKM, Ziarko W (1987) Comparison of the probabilistic approximate classification and the fuzzy set model. Fuzzy Sets Syst 21:357–362

    Article  MathSciNet  MATH  Google Scholar 

  • Wong SKM, Ziarko W, Ye RL (1986) On learning and evaluation of decision rules in context of rough sets. In: Proceedings of the first ACM SIGART international symposium on methodologies for intelligent systems, Knoxville, pp 308–324

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 6:338–353

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Wasilewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wasilewska, A. (2020). Algebraic Models and Granular Computing. In: Meyers, R.A. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_720-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_720-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics