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Abstract. In the second digital turn, the architecture driven by big data logic is
gradually shifting from a traditional static entity to an intellective living organism.
This paper explores a space planning algorithm that applies reinforcement learning
to the multi-agent system to achieve condition adaptability. This algorithm con-
tains an inclusive environment and programmable agents that represent indepen-
dent spaces. Through reinforcement learning, personalized space needs are quan-
tified as the agent’s Space Schema, which can provide adaptive behavior strate-
gies to adjust volumetric room boundaries. The spatial organization emerges in
multi-agent competition, guided by theNegotiation Schema, realizing the dynamic
equilibrium of spatial relations and the stable maximization of collective interests.
Through real-time interaction and distributed decision-making, this bottom-up
method defines a new architectural paradigm that continuously changes based on
demands with its high degree of variability, adaptability and evolvability.
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1 Introduction

We live in an era with excess data, characterized by dynamism and complexity. Our
environment is no longer seen as fixed, or shaped by forces beyond our control, but
as in constant and noticeable change [2]. On the one hand, the changes in natural and
social environments lead to unstable site conditions. On the other hand, the trends of
diversification and customization in spatial needs result in various design requirements.
However, architects always regard the environment and users as constant factors and
acquiesce to the static nature of spaces. To cope with this stereotype, we need to consider
the real-time adaptability of architectural design. While realizing automatic generation,
architecture also needs to interact with designers, users, and environments to achieve a
state of autonomy.

It is possible to realize the above goals in the second digital turn, especially by
applying generative design methods and artificial intelligence in architecture. Under this
influence, the architecture system can form intelligence to cope with changes in external
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conditions, realizing the transition from small data logic based on deterministic formulas
to big data logic according to mass computation.

This research is part of the frontier study on autonomous architecture systems to
cope with the ever-changing environment and complex design requirements. It aims to
combine multi-agent system generation methods and machine learning technology to
endow the digital architecture systemwith autonomy, establishing the Distributed Adap-
tive Space Planning Algorithm (DASP) that can respond to changes in diverse design
problems in real-time and adaptively reconfigure space conditions and organizations.
As an intelligent architectural framework, this bottom-up responsive design generation
method includes the needs and wishes of users, the coordination and integration of
AI, and the thoughts and notions of designers, forming a hybrid Intelligence (Fig. 1).
Through distributed decision-making, it can maximize group goals while meeting indi-
vidual needs, defining a new paradigm of architecture that adapts to human willingness
continuously.

Fig. 1. The space planning process based on the DASP method

2 Literature Review

Space planning is a main task of architectural design: organizing space elements appro-
priately to meet a set of standards or achieve certain purposes, whose automation is what
computational design hopes to achieve initially. However, the non-determinism of space
planning is one of its main contradictions with computational methods, mainly mani-
fested in (1) Design elements are discrete, unstable, and unstructured; (2) Incomplete
design constraints prevent a single solution; (3) Conflicting design goals indicate there
is no perfect solution; (4) Design evaluations are influenced by subjective styles and
preferences.

The multi-agent system is an appropriate computational model to deal with inde-
terministic space planning problems. Its application can be divided into two types:
the physical system in which agents represent space units, and the living system in
which agents occupy space voxels. Guo [1] adopted three shapes of agents to repre-
sent spaces with different functions, whose positions are organized by attraction and
repulsion forces, guiding the multi-story building generation. Meyboom [4] controlled
the agents to occupy or release voxels through the principle of stigmergy. The agents
interact indirectly with pheromone to arrange the position and shape of each space and
form the building’s spatial layout. For these two algorithm models, the former has a
simple framework and better controllability, but its insufficient organizational accuracy
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leads to the low information capacity and distributed decision-making ability. In con-
trast, the advantage of the latter model lies in the interactivity and extensibility of its
framework, which can add diverse spatial and environmental requirements. But due to
the weak controllability of its agent behaviors, the planning results are difficult to echo
with traditional spatial forms. Thus, this research tends to explore more operating rules
and organizational forms of agents based on the latter model, focusing on agents’ control
strategies for diverse spatial requirements.

Faced with the intractable problems of indeterministic algorithms, the implanta-
tion of reinforcement learning is effective. As one of the three basic machine learning
paradigms, reinforcement learning is a process of training the agent to continuously
adjust its own strategy to take the optimal action to maximize the accumulated reward
through interactions with the environment. The current application of reinforcement
learning in CAAD focuses on topics of intelligent control [3, 5] and machine feedback
[8], which also shows great potential in space planning research. NoMAS [6], a project
in UCL, trained a library of space modules as agents which can be reconfigured accord-
ing to user needs, developing an algorithm model to generate the residential complex.
Pedro Veloso [7] trained a set of spatial agents to autonomously complete custom spatial
configurations and interact with designers in real-time to generate floor plans. In the
above work, reinforcement learning endows the agent with specific behavior patterns
when dealing with the design target. This study also implants it into the multi-agent
system to enhance their control, training agents to coordinate different spatial demands
and respond in real-time.

3 Methodology

Distributed Adaptive Space Planning (DASP) takes the multi-agent system as a frame-
work, adopting various methods including reinforcement learning and stigmergy prin-
ciple, comprehensively combining bottom-up local agents with top-down global con-
straints. It connects users and the environment to accommodate dynamic activity needs,
diverse design specifications, and critical site conditions, becoming an interactive, adapt-
able, and expandable space planning method (Fig. 2). The process can be divided into
four steps: (1) the construction of the planning environment; (2) the representation of
the space agent; (3) the implantation of the Space Schema; (4) the implementation of
the Negotiation Schema.

3.1 Planning Environment

DASP uses a 3D grid formed by discrete spatial voxels as an inclusive planning environ-
ment. Each node’s size is determined by the spatial scale of the agent and the resolution
required for planning. In this experiment, 0.3 m is selected as the side length of the
basic unit to respond to the ergonomic scale and acquire the refined planning results.
Each vectorized point in this matrix has two basic information of position and color,
where the initial color is (r = 0, g = 0, b = 0), which can be dyed by the agent and its
pheromone. In addition, each node can also be assigned multi-level environmental infor-
mation, imported in the form of formulas or bitmaps, and superimposed on each voxel.
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Fig. 2. The basic framework of DASP: integration of local agents and global constraints

This preliminary pheromone that guides the activities of agents can be transformed into
a data set of [0, 1] in proportion as the top-down global constraints.

Different global constraints are divided into two categories in DASP, including
masking-stack and mapping-stack (Fig. 3). The data in the masking-stack demarcates
the areas that do not participate in the planning, including terrains and obstacles, etc. The
mapping-stack contains physical environment maps (sunlight maps, wind maps, noise
maps) and social environment maps. The conversion ratio (TE) of different types of data
(E) can be set according to empirical research or local requirements and unified into the
demand degree of the same measurement (ED = E × TE). These global constraints can
be used as a manifestation of group consciousness, setting the collective goals of the
multi-agent system and preventing its autonomous behavior from falling into chaos.

Fig. 3. Global constraints, left: detail parameters of two stacks, right: some examples
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3.2 Space Agents

An agent representing a user space is embodied as a point cloud collection of nodes with
a particular shape in the environment. In the beginning, the agent will be initialized as
a cell at a specified position, following preset rules to occupy or release voxels in the
environment and gradually forming a closed geometry, that is, the expected space.When
the algorithm runs, the agent will emit pheromone and receive pheromone from adjacent
agents and the environment to perceive the surrounding state anddetermine the expansion
behaviors. In addition, two agents cannot occupy the same node simultaneously but can
negotiate and reconfigure the occupied area. In this framework, if the design requirements
and specifications are properly translated into the operating rules of the agent, it is
possible to simulate any spatial state and its combination in real-time (Fig. 4).

Fig. 4. Planning process of the agents

Each agent in DASP has the following basic parameters.

1. The color (R, G, B) is defined as a user hue, which can link the user characteristics.
These parameters are obtained from questionnaires, which can provide personalized
information and help organize the agent relationships.

2. The pheromone carries color information, starting from the center of the occupied
shape, picking up the three-dimensional Von Neumann Neighborhood iteratively,
and diffusing outwards to realize the gradual contagion of the nodes.

3. The capacity represents the upper limit of the node number that the agent can accom-
modate, corresponding to the space volume. For example, a standard room of 6 m
× 3 m × 3 m contains 2000 voxels with a side length of 0.3 m. When the occupied
nodes reach capacity, the calculation will continue, and the agent can update the
occupied area by releasing internal voxels and occupying new ones.

4. The expansion rules guide the agent to select suitable occupation voxels, controlling
the growth mode and the generation result. Each adjacent node (PN) of the occupied
area P is substituted into the customizable function Ft (x, y, z), and the node (PNi)
with the smallest or largest result (Ft (PNi) = Ft (PN)min/max) is chosen as the next
occupied one. Based on the different design objectives, various calculation methods
can be set to promote diverse growth behaviors.

3.3 Space Schema

Each agent is assigned local identities to develop a real-time adaptive connection between
abstract agent behaviors and specific user needs. The concept of Schema is introduced
into DASP as an agent attribute, which reflects its instinctive behaviors in response to
condition changes or external disturbances.
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The significance of the Space Schema (Fig. 5) is to enable the agent to generate a
specified space according to personalized requirements. It employs three control ele-
ments of volume, proportion, and form. The volume determines the spatial scale, the
proportion indicates the aspect ratio, and the form describes the particular shape. The
setting of the Space Schema realizes a comprehensive description of a space and ensures
that the user’s demand can be transformed into a combination of several parameters to
direct the agents’ planning behaviors.

Fig. 5. Space schema, left: detail parameters, right: principle and example

This study innovatively introduces reinforcement learning as a decision-making
mechanism to embed the Space Schema into the agent (Fig. 6). In the experiment,
the randomness of V, P, and F is limited to preliminarily verify the method’s feasibility.
The space volume is set to 2–4 (× 103) voxels, the rate(y/x) and rate(z/x) choose 5 values
from 1.2–1 to 1.2, and the form takes 8 geometries of different themes, generating a total
of 600 parameter combinations. Before each episode starts, the system will initialize a
target schema in the planning environment according to a random parameter set.

Fig. 6. Left: the principle of reinforcement learning, right: the computational model

In the training framework, the discrete actions were set to 7 to separately increase or
decrease the values in the policy (x, y, z) to decide the agent’s expansion function and
adjust its growth direction and intensity in steps.

The observation contains the information for planning goals and current status. In
this experiment, it consists of these parameters: (1) the index of Space Schema as the
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target status. (2) the agent current state, including its centroid position, the last occupied
point position, and the expansion rules (x, y, z). (3) the current planning state, including
all the points in the occupied area.

There are three types of rewards in the experiment: (1) real-time rewards, each time
the expansion points are inside the target schema, a reward will be added. (2) Periodic
rewards, when the number of points that meet the requirements in the agent-occupied
area accounts for a certain value (30%, 60%) of the agent capacity (this value is called
space willingness), real-time rewards will increase. (3) Target rewards, when the agent
reaches capacity and the space willingness exceeds 90%, the planning is completed, and
the maximum reward is obtained. We also set up rewards based on structural stability
and spatial practicality analyses.

After 6 × 106 times of training, the training curve is stable at the maximum value
of 36. In this case, the agent can substantially adapt to the changes in the Space Schema
in real-time and complete the corresponding space planning tasks (Fig. 7).

Fig. 7. Left: The behaviors of the agents after training, right: graphs (pink one success) with the
cumulative reward and the episode length of the agents (y-axis) over the episode (x-axis)

3.4 Negotiation Schema

Negotiation Schema is another local identity of agents, representing the tendencies in
the space organization. It is mainly responsible for regulating the agent’s relationships
with its neighbors and environment to endow the whole system with adaptability. The
setting of the Negotiation Schema (Fig. 8) aims to realize the agent’s response to the
user’s organizational willingness, completing the collective space arrangements through
deformation or displacement.

InDASP, theNegotiation Schema consists of three sets of parameters, which describe
the organizational relationship at different scales. Among them, the interaction tendency
represents the adjacency willingness of the agent with surrounding agents. According
to the propensity ranking of “away–reject–none–accept–adjacency”, the set of weights
KI contains a set of numbers {ki1, ki2, ki3…} in the range [−2, 2] for each surrounding
agent. In the algorithm, this relationship is encoded in a group of attractors, which
generate attractive or repulsive forces according to the positive or negative values of KI.
These forces make agents away from or close to each other and weaken as the distance
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Fig. 8. Negotiation Schema, left: detail parameters, right: principle and example

increases. Each agent will experience a combined force from neighbors to adjust its
morphology and steer it toward a suitable social position.

Cluster tendency is more inclined to describe the grouping willingness based on the
agent’s color. The user can set the tendency weight KC to similar color groups in the
range of [−1, 1], which is multiplied by the pheromone value in the planning area and
directly acts on the expansion rule of the agent, to lead the agent to gradually move
toward or away from the group in a specified color.

Environment tendency quantifies the agent’s willingness for environmental
resources. The set KE, which is influenced by space function and user preferences,
includes multiple weights between [−1, 1] corresponding to indexes in global con-
straints. In this way, the agent’s comprehensive environmental satisfaction degree for a
certain node can be obtained quantitatively through a weighted average method. There-
fore, the environmental resources of the whole system can be reasonably allocated to
maximize the utilization rate.

The Negotiation Schema coordinates the agents’ relational network and further opti-
mizes the spatial form generated by agents, which greatly expands the adaptability of
DASP when dealing with complex demands.

4 Experiment and Application

Wevalidated the space planning potential of DASPwhen dealingwith complex real-time
demands in practice through several sets of experiments. First, the simulated daily sched-
ule of an occupant guides the Space Schema for parameter modification. Figure 9 shows
the different spatial forms generated by the agent in this continuous planning. When the
Space Schema is changed in this experiment, the DASP algorithm can autonomously
remove the unnecessary nodes and perform the space planning according to the adjusted
parameters. However, for some shapes with acute angles, such as the space at 19:30, the
error is still relatively large, related to the precision setting of the agent’s expansion rule.

The second experiment was carried out in a range of 12 m× 12 m× 6 m. By placing
five agents in this area, the possible negotiation activities of two users in this system
were simulated to generate a space group. By adjusting the interaction tendency, we
simulated the gradual process of the organizational relationship between two users from
no tendency to mutual resistance and mutual acceptance. The parameter changes of the
Negotiation Schema trigger agents’ various behaviors such as deformation, attraction,
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Fig. 9. Experiment 1, left: simulated timetable, right: the space sequence and its parameters

and repulsion. Thus, the space occupancy is negotiated, and different space forms emerge
(Fig. 10). Obviously, the growth of the five agents in the first stage does not affect each
other, tends to be far away in the second stage, and begins to approach in the third stage.

Fig. 10. Experiment 2, the planning process of three stages and their planning results

Finally, this algorithm is applied to developing the adaptive living complex,TESSER-
ACT (Fig. 11). This project uses DASP as the core space design and generation tool,
cooperating with several well-designed subsystems like the interactive platform and
robotic material. Relying on the DASP’s adaptability, interactivity, and expandability,
TESSERACT defines a new paradigm of living architecture that adapts to the human
will and changes continuously.
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Fig. 11. Project TESSERACT generation, visualization and rendering

5 Conclusion and Future Work

This research proposes an interactive algorithm DASP with demand adaptability, using
reinforcement learning to establish a spatial solution that can respond to changes in
user needs and environmental conditions in real-time. DASP implants Space Schema,
Negotiation Schema, and global constraints to the multi-agent system as linkages to
users, communities, and environments, forming a distributed decision-making method.
The experiments show that trained agents can respond well to the parameter adjust-
ment and perform adaptive behaviors, revealing the potential of DASP in autonomous
space planning. The future work will focus on the limitations of DASP. First, the spa-
tial organization purely based on social relations and user regulation may lead to space
configuration problems. Other architectural constraints like topological relations should
be considered. Second, the adaptability now totally depends on input prototypes. It is
necessary to continuously modify preset prototypes based on user interaction, and guide
the transfer of agent’s behavioral patterns, realizing the evolution of the Space Schema.
Also, using it as a design or analysis tool for architects is a new direction.
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