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Abstract. Non-structural or out-of-grade timber framingmaterial contains a large
proportion of visual and natural defects. A common strategy to recover usable
material from these timbers is the marking and removing of defects, with the gen-
erated intermediate lengths of clear wood then joined into a single piece of full-
length structural timber. This paper presents a novel workflow that uses machine
learning based image recognition and a computational decision-making algorithm
to enhance the automation and efficiency of current defect identification and re-
joining processes. The proposed workflow allows the knowledge of worker to
be translated into a classifier that automatically recognizes and removes areas of
defects based on image capture. In addition, a real-time optimization algorithm in
decision making is developed to assign a joining sequence of fragmented timber
from a dynamic inventory, creating a single piece of targeted length with a sig-
nificant reduction in material waste. In addition to an industrial application, this
workflow also allows for future inventory-constrained customizable fabrication,
for example in production of non-standard architectural components or adaptive
reuse or defect-avoidance in out-of-grade timber construction.

Keywords: Out-of-grade timber ·Machine learning · Decision tree ·
Optimization · Simulation ·Manufacture

1 Introduction

Timber is a renewable construction material with a low carbon footprint. It holds signif-
icance in being both a sustainable modern-day building material, as well as a traditional
material that intertwines with cultures all over the world. Though there are a range
of positive environmental and engineering properties associated with timber, as nat-
ural material, it contains a high level of variation in material properties as the result
of uneven natural growth and non-uniform environmental conditions. Defects such as
knots, checks, splits, and wane are common [1], but their presence can only usually be
identified and assessed after the fabrication of the sawn board. In Australia, sawmill
reports by Harding have found up to 57.5% of sawn board can fail structural grading
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requirements [2]. As compared to structural timber, out-of-grade timber is far less desir-
able for most construction or manufacturing operations, and consequently it has a low
market demand and is often woodchipped and/or sold at a loss [3].

A common method in the timber industry for value-recovery in out-of-grade timbers
is through the cutting out of defective parts, and the subsequent joining of the non-
defective (clear wood) segments into a full-length structural board (Fig. 1). Joining is
normally achieved with finger joints, as they have adequate strength for typical structural
timber applications, such as wood trusses and laminated beams [4]. Though the pipeline
ismostly automated, it still often requires humans to visually identify the defect andmark
them out for removal. This removal process is largely dependent upon the experience
of the worker and is also the time-limiting operation in the material-recovery process.
The segment jointing method itself is also is a source of leftover clear wood material,
as pieces are jointed to a length based on sequential segments, and trimmed down to a
pre-determined final length.

Fig. 1. Typical sawmilling process: a) The tree is harvested and docked into transportable lengths
(approx. 6 m) with varying branch distribution according to: silvicultural practice, climate, soil,
planting density etc.; b) each log is sawn into usable framingmembers and is subject to the naturally
occurring structural defects; c) sawn members are sorted into those with and without defects; d)
members free from defects are certified for use in structural applications; e) members with defects
are used in non-structural application or woodchipped; f) defects are removed, resulting in short
lengths, which provide: g) an inventory of short, unique lengths [3].

This research investigates the possibility of enhancing this process with machine
learning based image recognition and decision-making algorithms. Image recognition
is widely adapted within different industries, such as the classification of packages for
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delivery [5]. The advantage of using image recognition and machine vision is that it can
be achieved with minimum hardware investment cost, often simply by adding a camera
to an existing adaptive industrial pipeline [5]. The images of timber collected from a
machine vision manufacturing process can also feed back into the image recognition and
defect detection system, allowing its accuracy improve over time with expanded training
datasets, and allowing the system to self-improve and or evolve with changing timber
stock. Additionally, introducing a machine vision system allows a live data record to be
collected for each clear wood segment generated. Such information provides a potential
to introduce a decision-making algorithm that can optimize the joining process to reduce
left over material, or for customization of components with different target lengths.

2 Defect Recognition and Removal

2.1 Pre-process the Image for Segmentation

The images of timber used in this research study are collected from an inline Machine
Stress Rating (MSR) system model 720 HCLT. For any testing timber board, it collects
a series of images and also directly measures the board apparent Modulus of Elasticity
(E), with the two datasets then used to assign a final board grade. For the visualiza-
tion requirements of the present project, the collected image required prepossessing by
decreasing the noise, removing distortion, and removing the background:

• Image de-noise: Spikes of light noise at the border of the timber is widely seen in the
scan images, owing to the rapid-rolling scanner used in the industrial setting. This
noise can be significantly reduced by reading the horizontal proximity of each pixel to
evaluate if it’s a ‘spike region’, which is characterized by a small area of foreground
(board) pixel, bordered on both sides by background pixel (Fig. 2a–b).

Fig. 2. (a).Raw image collected fromMSR; (b). Image after denoise; (c). Image after un-distortion
and background removal
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• Un-distortion and background removal: the central axis of the scanned timbermember
is often slightly un-even or non-linear. A pixel column line-scan process aligns the
foreground pixels in the denoised image to a linear axis, and removes any background
noise. The final image is a consistent and formatted visualization of board material
and defects (Fig. 2c).

Currently, this pre-processing workflow is developed based on image collected from
scans from the machine grading system. When compared to images collected from the
7200 HCLT, images collected from typical camera hardware would contain far more
noise, an uneven background, and uneven lighting quality. When connecting with an
industrial manufacture environment, though following similar principles, the system can
be further calibrated based on the image collected by the camera feed, accommodating
the local lighting and environmental conditions.

2.2 Preparation of the Classifier

Based on the collected image, a classifier is developed to identify the location of defects.
This classifier is trained to assign a discrete categorized label for each pixel in the timber
scan image, to identify if the pixel belongs to the following three classes: defective
timber, non-defective timber, or background (non-timber). In addition, the classifier also
outputs a probability map that describes the probability of each of the three classes at
each pixel.

The collected image is interactively labelled by defining the region of “Background”,
“Defective Timber”, and “Non-Defective Timber” in the Fuji distribution of Weka. The
training of the classifier took place using the API of the Trainable Weka Segmentation
[6]. The classifier is trained based on a FastRandomForest model, which is an enhanced
multi-tread version of the ensemble learning method for classification, regression, etc.,
developed by Fran Supek [7]. The model has a batch size of 100, 8 thread, 200 trees. The
training feature includes Gaussian Blur, Sobel Filter, Hessian, Difference of Gaussians,
and Membrane Projections. The features are extracted, converted and formatted to a set
of vectors for the Weka classifier. The features are calculated with 8 threads after the
labelling of training data in Weka.

2.3 Preparation of the Classifier

After the training of the classifier in the intuitive Trainable Weka Segmentation GUI,
the classifier is applied in the backend of a simulation interface. It takes in an image
of the timber piece to generate classification and probability maps for the image. The
classification map returns the classification of each individual pixel in one of three
classes: “Background”, “Defective Timber”, and “Non-Defective Timber” (Fig. 3c–e).
The classification map set includes a probability map for each of the classes, where each
pixel is assigned a 0–1 value that describes the probability of the selected pixel being in
given class (Fig. 3a–b). In this research, the raw probability value is used to determine
the defectiveness of each section of the timber. The classifiers can further be trained to
increase accuracy, by collecting additional labelled images in the process.
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Fig. 3. (a) Raw image collected fromMSR; (b) Binary classification map; (c) Probability map for
non-defective timber; (d) Probabilitymap for defective timber; (e) Probabilitymap for background.

With the probability map for defective timber, the image is further processed to
simulate the removal of timber defects. There are two parameters used to define the
threshold of identifying a timber defect, giving a user the option to calibrate the range
and sensitivity threshold for defect removal. The first parameter defines the threshold
of probability for pixels to be considered as defective, which is currently set at 75%;
the second parameter is the percentage of defect pixel in a 1 pixel-wide column slice,
which is currently set at 5%. Exceeding which, the corresponding slice of timber will
be considered as defective area.

The defect removal processwill scan through the processed timber image and remove
any defect areas composed of more than 5 consecutive defective slices, which translates
into a defect with horizontal dimension of 3 cm or greater. For the remaining material,
graded timber segments that are 20 cm or longer are stored in a dynamic stock of clear
wood timber segments (Fig. 4).

Fig. 4. (a) Raw image collected from MSR; (b) Probability map for defective timber; (c) Non-
defect timber segments; (d). Jointed piece of standard length.

3 Decision Making for Joining Timber Segments

Each iteration of inputting a new piece of timber will add an indefinite number of
segments of non-uniform lengths into a ‘dynamic stockpile’ of segments, ready for
jointing. Owing to manufacturing standardisation, there is a uniform set target length for
a final jointed timber piece, taken as the common industry length of 4800mm for present
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study. However, into jointing up to the target length, a new challenge is encountered in
the selection of timber segments from the dynamic stock pile: how to select segments
to exceed the target length, but with a minimum of overrun so as to minimise the waste
generated from final trimming.

A new system is proposed to resolve this challenge. The system criteria for decid-
ing which pieces of timber segments should be joined together follows premises as
summarised below:

• Generate different length combinations from a selection of a set of timber pieces that
provide the user’s target length (4800 mm) and a small overrun allowance (target total
length +200 mm).

• Of all combinations, thosewith the closest proximity to the target length are prioritized
for joining.

• On receiving a new input of segments, the newsegmentswill join the left over segments
int the dynamic stock pile waiting to be jointed. The dynamic stock is re-scanned to
update the possible combinations and joining priority that meets the previous two
criteria.

• Monitor the amount of wastage that comes from the difference between the user’s
target length and the actual total length of the selected combination. This wastage
may be the result of the total length being longer than the user’s target length.

The most extensive algorithm to explore the subspace of potential combination of
segments is the Exhaustive recursion method, where all possible solutions are explored
and compared. However, the computational cost for suchmethod explodes exponentially
as the pieces in the stockpile increase, causing an infeasibly-long processing time.

Given the restriction in computational power and processing time, this study instead
implements a backtracking logic to select the appropriate combination of timber seg-
ments, which is far less computationally demanding, but similarly effective to the
exhausted recursion method. Figure 5 provides a breakdown of the jointed outcome,
from receiving the first 10 randomly selected out-of-grade timber piece as input to the
system sequentially.

The pseudocode below represents the backtracking selection logic behind the scene:
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Fig. 5. Stock condition with 10 under graded timber pieces as input sequentially.

ArrayList<Timber> connectedTimber
ArrayList<Timber>  segmentStock
Boolean combineTimberPiece (Timber timberSegment){

If (no more segments available) { //base case
Return connectedTimber;

} 

For (all timber in segmentStock){
Try one choice of timberSegment c:
//try to see if timber segment c could contribute to

a optimized combination.
If (combineTimberPiece (c)) {

add segmetnt to connectedTimber; 
return true;

} 
Unmake choice c

} 
return false; 
//tried all timber segments, none of the combination meets the criteria.

} 

After processing a randomly selected 20 pieces of defective timber, the system man-
ufactures 14 pieces of 4,800mm long full length structurally finger joined timberwithout
defect, with a total length of 67,200mm.At same time, this system generates only 58mm
of total waste leaves 6 pieces in the dynamic stock pile, 4,308 mm in total length. This
proves the efficiency of the proposed system in salvaging non-defective timber, with a
utilisation rate of over 99.96%. The track of inventory change is as below in Fig. 6:
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Fig. 6. (a). Change in dynamic stoke pile; b). Changes in the accumulated waste; c) Changes in
the number of completed pieces.

4 User Interface

In this project, a platform is developed to simulate the backend process of image recog-
nition and decision-making to evaluate the feasibility of the proposal and its efficiency.
By calling to get next piece of timber, the system will pop in the scan image of the
next timber from the database to simulate the collected data from camera in a timber
mill. This image is been processed with 4 steps to recognize and remove defective area.
Each of the 4 steps including image denoise, background removal with un-distortion,
probability calculation, and defect removal is visualized sequentially in the left column
for the user to understand and evaluate the system.

The segmentswithout defect are stored in a dynamic stock. The next column provides
the visualization of the longest 5 segments in the dynamic stock, waiting to be jointed.
At each input of new segments, the decision-making algorithm evaluates the dynamic
stock of segments, and picks the appropriate segments to joint into a full piece with
target length. The latest 5 completed pieces are displayed at the right column, along with
access to the folder keeping the entire stock of completed jointed timber pieces (Fig. 7).

In the interface backend, the program tracks the percentage of wasted timber, sal-
vaged timber, and the distribution of segments for the completed timber. Thus, efficiency
of the system is tracked throughout the process. Also, the target length can be changed
at any time to test the robustness of the system.

The pre-training of the image classifier is performed within the interface of Fuji
distribution of ImageJ. It enables the interactive tracing for different classes of elements
that can be performed byworkerwithout any computational background, thus offering an
intuitive interface to translate the experience and judgement of worker into the classifier
that provides a similar process as a visual grading process.
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Fig. 7. Graphic interface of the system

5 Discussion and Future Development

The system developed in this research provided the simulation of the manufacturing of
structural finger jointed. This simulation system is a reflection on an established industrial
manufacture system, and a further investigation the potential of applying machine learn-
ing and decision-making algorithm to improve its efficiency in terms of increased pro-
cessing speed and reducedmaterial waste. Such development can be potentially achieved
with very low-cost hardware investment, by simply adding an additional camera into an
processing line, for capture of material properties in real-time.

The effectiveness of the system arises fromvisually-identifying the variation inmate-
rial property and making intelligent, algorithm-driven decisions for material processing
based on the property of individual material. The current training data is based on a
manual labelling process similar to the industry. Reflecting on the workflow, there is
potential to further improve the accuracy and efficiency of the system by using the MOE
data currently collected from machine stress grading processes.

Compared to the traditional manual process of labelling and categorizing, the pro-
posed system is able to systematize the decision-making process, quantify its output, and
provide a consistent evaluable structure for the workflow. By embracing a digitized pro-
cess for machine learning based defect detection, accuracy could improve overtime with
the increasing real time collection of datasets, contributing to more accurate removal
of defects. With future development, this feature of real-time updating would pave the
way for a self-evolving dynamic classifier. A defect detection classifier can adaptively
transfer between different scenarios, while the manual labelling process relies on the
non-transferrable experience of individual. With the digital data for each piece collected
during the manufacture process, a live inventory-based optimization for the dynamic
stock becomes possible. This increases the theoretical material efficiency to as much
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as 99.9%, and provides possible avenues for future adaption of the system to provide
customizable parts of different targeted lengths.

6 Conclusion

This research discussed the possibility of using machine vision and decision-making
algorithm to optimize a standard industrial workflow in salvaging defective timbers.
Such system work with the real-time processing of material data in a pipeline, instead of
a static database. It allows for a versatile adaption into the existing industrial workflow
with minimum cost.

By introducing this digital and intelligent workflow, the system gains additional
potential to increase in material efficient and environmental friendliness by significantly
reducing the material wasted during the manufacture process. Also, embracing the intel-
ligence in the system, it pave the way for future upgrade of the production system for
optimized mass customization of non-uniform members.
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7. Levatić, J., Džeroski, S., Supek, F., Smuc, T.: Semi-supervised learning for quantitative
structure-activity modeling. Informatica 37, 173–179 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://imagej.net/Trainable_Weka_Segmentation
http://creativecommons.org/licenses/by/4.0/

	Real-Time Defect Recognition and Optimized Decision Making for Structural Timber Jointing
	1 Introduction
	2 Defect Recognition and Removal
	2.1 Pre-process the Image for Segmentation
	2.2 Preparation of the Classifier
	2.3 Preparation of the Classifier

	3 Decision Making for Joining Timber Segments
	4 User Interface
	5 Discussion and Future Development
	6 Conclusion
	References




