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Abstract. This paper focuses on the application of visual Event-Related Poten-
tials (ERP) in better generalisations for design and architectural modelling. It
makes use of previously built techniques and trained models on EEG signals of a
singular individual and observes the robustness of advanced classification mod-
els to initiate the development of presentation and classification techniques for
enriched visual environments by developing an iterative and generative design
process of growing shapes. The pursued interest is to observe if visual ERP as
correlates of visual discrimination can hold in structurally similar, but semanti-
cally different, experiments and support the discrimination of meaningful design
solutions. Following bayesian terms, we will coin this endeavour a Design Belief
and elaborate a method to explore and exploit such features decoded from human
visual cognition.
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1 Introduction

Well known Event-Related Potentials (ERP) from neuropsychology [1] are widely stud-
ied and documented for reproducibility, and can serve the role of evaluating acquisition,
pre-processing and classification methods. New applications seeking to involve known
paradigmsmean that new experiments need to be designedwith these precedents inmind
in order to compare meaningful results. In order to dissociate the question of acquiring,
preprocessing and successfully decoding neural correlates of cognitive processes from
their applications for CAADpurposes, one should refer to current EEG signal challenges
and transferability of learned patterns across modalities [2].

Aims. While state-of-the-art research in cognitive science is actively dealing with that
matter [3, 4], the present research focuses on the application of such potentials for bet-
ter generalisations in future technologies for design and architecture. It engages with
adapting known and generalised methods of acquisition, preprocessing, presentation,
classification and exploitation from a P300 Visual Speller [5], for visual environments
of increasing richness in information as commonly found inCAADmodelling interfaces.
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It is known that, based on informational Bayesian models [6, 7], visual discrimination
may occur in complex visual environments and their relevance for decision making rely
on the degree of visual experience an individual may hold to construct prior beliefs
upon which to infer [8, 9]. We will make use of previously built generalised techniques
and trained models on a singular individual EEG signals and observe the robustness of
advanced classification models to initiate the development of presentation and classifi-
cation techniques for enriched visual environments by developing an iterative and gen-
erative design process of growing shapes. What is of interest is to observe if visual ERP
as correlates of visual discrimination can hold in structurally similar, but semantically
different, experiments and support the discrimination of meaningful design solutions.
Following bayesian terms, we will coin this endeavour a Design Belief and elaborate a
method to explore and exploit such features decoded from human visual cognition.

Significance. This research focuses on a generalisation and application of predefined
Rapid Serial Visual Presentation of an Oddball Task (RSVP-OP) techniques and pre-
trained classifiers to assess visual ERP as neural correlates of what we previously defined
as design beliefs. Its goal is to advance research methods on related CAAD modelling
applications.

2 Methods

The hereafter described methods are divided into sections concerning the necessary
design of data flows from the generation of visual stimuli to the acquisition of EEG
signals and their analysis to finally contribute in a generative process of shapes. While
using the RSVP-OP as a basis, we will develop further on the generalisation of visual
stimuli and their tokenisation, presentation for human visual cognition, and to which
will be correlated acquired and processed aggregated EEG signals from a single person.

Tokenisation. The adapted visual stimuli use 3D metaballs rendered by a marching
cubes algorithm [10, 11] in order to provide a generic and smooth visual flow in the
continuous variation and presentation of generated shapes by the rendering of implicit
functions of isosurface. Each flashing epoch, previously showing a row or a column in
the reference case of the visual speller, is replaced by the uniform random position of a
new metaball instance in spherical coordinates (Fig. 1).

The center of the spherical coordinates being either the origin of the rendered scene,
or the center of one of the generated metaballs, if at least two already exist. In the case
of none existing yet, a first instance will be placed at the origin for a second one to be
generated from. Once the scene contains at least two instances of a metaball, the center
point to generate a new one will be selected in a similar random fashion and produce
the previously described relative coordinates for the new instance to be added for the
rendering of the isosurface (Fig. 2).

As a result, each new metaball instance P is parametrised with its coordi-
nates xyz, and two parameters of field strength St and substract Su related to the
isosurface calculations. Ideally, the radius R of the sphere to be rendered as a
metaball is R = (St/Su)0.5, such that an instance of P can be parametrised as



70 P. Cutellic

Fig. 1. Random uniform spherical distribution of solutions for new possible coordinates of a
metaball instance being later presented as a new stimulus. From a given center point O (grey) of
a sphere of radius p (green), one generates the new coordinates x, y, z, of a point P (pink) and
relative to O.

Fig. 2. Sequence for updating the rendered isosurface. From Left to Right: a first instance is
placed at the Origin of the scene: First State A. New coordinates (i.e. B1, B2, B3, …, as examples
of possible generations) are generated, given the center of A and its radius: Random Coordinates
B. From B2, a new instance B is added to the scene: New State AB. Similalrly, new coordinates are
generated (i.e. C1, C2, C3, C4, …, as examples) from a randomly selected preexisting instance A
or B: Random Coordinates C.

P : (Px,Py,Pz,Pst,Psu) and for an entire token T constituted of nP such that
T : [

(P0x,P0y,P0z,P0st,P0su), . . . , (Pn−1x,Pn−1y,Pn−1z,Pn−1st,Pn−1su)
]
. Even-

tually the final distance added to the coordinates of a new instance from the center of a
previous one is equal to the radius of the later and the new resulting radius R. Each token
can possibly have different distances between connected metaballs and each metaball
can possibly have different radii (Fig. 3). One will consider these two configurations as
two distinct classes C1 (same distances and radii) and C2 (random distances and radii).

Fig. 3. Left: classC1 samples with same radii and distances. Right: classC2 samples with random
radii and distances.
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In addition, three main kind of shaders are applied to each tokens: S1 - a plain
white shader with no depth or shadow, S2 - a Phong material shader with specularity
and reflectance, S3 - a black and white dot-patterned shader with no depth or shadow
but applied on the uv coordinates of the shape (Fig. 4). These three shaders allow for
three different kinds of visual distinction of the complex geometry, depth, silhouette and
curvature being rendered. They all relate to a certain kind of basic information sent to
the visual system for early processing and known as information of shape from texture
and motion [12, 13]. The three applied shaders will be considered as three unrelated
categoriesQ1,Q2,Q3 for comparison of results, as providing different degrees of shape
information.

Fig. 4. Rendering of the three distinct shaders as visual categories. A black background is used
during the recording sessions.

Visual Presentation. From the previous study of visual spelling with an ERP-BCI
[5], the Rapid Serial Visual Presentation of the Oddball Paradigm Task (RSVP-OP)
is preserved with a similar time and tokenisation structure. Each presentation contains a
sequence of 12 tokens shuffled and shown 15 times so that each token would be viewed
15 times in a random order of appearance. An initial period, to ease-in the user’s attention
into the visual scene and show how the tokenisation will be presented, is set to 2.5 s.
Similarly, a minimum of 2.5 s of a break period is set between presentation periods to
avoid rapid fatigue and disengagement. Since the temporal method used for classifica-
tion is offline learning and the next presentation period is dependent to the processing
and the returned discriminated token by a pre-trained classifier (i.e. a new tokenisation
can happen only if there is a new state returned), the break period is also extended until
a value is returned (i.e. the index of one of the presented tokens or none in case of no
discrimination found). Each token is presented on screen for a duration of 100 ms and
followed by a blank screen for a duration of 75 ms while the standard refresh rate of
the visual presentation is approximately 60 Hz. Each recording session has been kept
under a maximum time of 18 s (excluding the break periods) and 6 discriminated tokens
forming the overall shape. The main adaptation from the generalised RSVP-OP consists
in augmenting its temporal structure (Fig. 5).

While the RSVP-OP occurs, data is acquired accordingly. And while the data is
being processed during break periods, the current state of the shape is kept visible until
a new value is returned and the new state of the shape is shown for a second before
starting the new RSVP-OP and in order to generate the new tokens. Additionally, and
since the complexity of visual scenes presented is more important than in the case of a
word speller, the RSVP is adapted at every token flashed so that its silhouette appearing
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Fig. 5. Adaptation of the typical RSVP-OP task. Between stimulus presentation, another presen-
tation period is introduced to show the new state of the overall shape formed by discriminated
tokens and from which new tokens will be generated for stimulus presentation. This new period
also plays the role of helping to reduce prolonged cognitive workload and await for discrimination
and generation of new stimulus for the next RSVP-OP.

on screen is maximised. This effect is achieved by measuring the angle between: a - the
line formed by the centroid of the shape and and the center of the presented token; b -
the X-axis of the scene always horizontal and parallel to the camera X-axis. A rotation
is then applied to the shape as in Fig. 6.

Fig. 6. Rotation applied to the shape around its X-axis during each token presentation of the
RSVP-OP period in order to increase each presented token’s visibility. Cs is the centroid of the
shape in its current state and Ct is the centroid of the token being presented as a stimuli. Both
are forming a line a from which is measured its angle ∂ab formed with a vector parallel to the
camera’s Y-axis and passing by Cs, noted b. The rotation is applied on the whole shape (including
the token) around the vector parallel to the camera’s X-axis and passing by Cs, so that ∂ab = 0°.

This method provides a new view angle of the shape at each RSVP and allows
for novel information of the overall shape from motion and texture [12, 13], while the
visibility of the token is emphasised to ease the discrimination. Additionally, a random
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rotation is constantly applied during break periods to show more information of the
overall shape after and before RSVP. A re-centering and re-scaling of the camera occurs
before every new RSVP to ensure that the centroid of the shape remains at the center of
the scene and the whole shape is being contained and visible on the screen.

Signal Acquisition and Processing. The EEG data is acquired through a Lab Stream-
ing Layer protocol [14], synchronised, and by a 16 channels OpenBCI [15] (i.e. Daisy
+ Cyton configuration) at a sampling frequency of 125 Hz with electrodes placement at
FC5, FC6, C3, Cz, C4, CP1, CP2, P3, Pz, P4, PO3, POz, PO4, O1, O2 and Oz posi-
tions of the Modified Combinatorial Nomenclature (MCN) of the International 1020
placement [16]. Signals are digitised at their device’s sampling frequency and then fil-
tered with an eight-order bandpass filter with low and high cut- off frequencies of 0.1 and
20 Hz, to finally build epochs−0.100 to 0.700ms onset visual stimulus and downsample
each signal to the high pass limit since most ERP components can be found below 20 Hz
[17]. No particular artifact rejection method is applied except for amplitudes superior
at 75 µv to reject outliers from muscular movements. This allows for a minimisation of
data points to process within the range of ERP detection.

For similar reasons explained in previous experiments [5] concerning challenging
EEG signals features for stable classification (mainly signal-to-noise ratio and non-
stationarity), the capacity for a given classifier to learn across different modes (different
sessions, experiments and users) without calibration is a question of research on Trans-
fer Learning itself [2] and can be approached by either Information Geometry [3] or
Deep Learning [4] methods. Given the low amount of data and the user-based approach
of the experiment, information geometry classifiers have been chosen and trained for a
single person on multiple recording sessions of a P300 word speller, so that the assumed
learning across-modalities would concern only the cross-experiments mode (i.e. From
spelling words to growing shapes). The pre-trained classifier is a riemannian classifi-
cation pipeline constituted of ERP covariance matrices and projection on the tangent
space [18–20] with an AUC accuracy of 97.5% after 12 training sessions. Given previ-
ously mentioned EEG features and an increasing variance in the data when applying new
experiments, the robustness of such method is evaluated by observing the difference of
averaged discriminated samples recorded during the new experiment (Fig. 7). Though
observed on less data amounts than for training, one can see that despite changes in
the morphologies of signals and presence of noise, the classification accuracy across
experiments for a single user can be maintained to a certain degree, although it may not
provide for a continuous and fully robust adaptive classification across all mentioned
modalities.

Shape Generation. During the developed RSVP-OP sessions and parameters, two
types of data are recorded into a user’s database: a - aggregated and processed time
series used as input for the classifying pipeline, segmented by presentation period (i.e.
one for each discriminated token). b - generated shapes directories, containing theirQ-C
shape labels (see section: Tokenisation), the mesh file and its associatedmaterial (Fig. 8.)
computed by the programmed shaders (in *.obj and *.mtl formats), and a *.json data
file containing all parameters used to procedurally generate the given shape (Table 1.).
The later is used for further understanding on the extent of the produced solution space
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Fig. 7. ERP binary conditions of discriminated data with the shape generation experiment. Red
plots show positive Target. Blue plots show negative ones. A difference waveform is plotted in
dark blue.

and its features. Eventually, a similar method can be used to proceed from an inverse
modelling fashion to generate such shapes given an adequate artificial generator.

3 Results

From all data files of Q-C shapes generated, a dimensionality reduction is applied from
the initial 36 shape dimensions (6 instances X 6 params) to a 2d mapping using T-
SNE [21] and UMAP [22] to evaluate the topology of the aggregated data and account
for possible manifolds. In order to observe a differentiation between possibly random
shape generations and otherwise meaningful ones, they are compared with randomly
generated data using similar procedural methods and parameters for both C1 and C2
classes (Fig. 9).

Both T-SNE and UMAP methods show similar clusters and suggest that discrim-
inated data correlate only in part with random data points. As some clusters appear
outside the random ones in more compact topologies, they suggest a meaningful con-
vergence for some generated shapes. Since visual ERP is clearly correlated with visual
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Fig. 8. Grid of all the generated shapes by Q-C order. Original shaders have been replaced here
by colors for better overall visualisation. Bottom to top, Left to Right:Q2 (pink) with 50C1 shapes
and 50 C2 shapes; similarly followed by Q3 (black) and Q1 (grey).

Table 1. A sample *.json file containing parameters Px, Py, Pz, Pst and Psu for each instance (0
to 5) necessary to procedurally generate its associated shape.

attention [1], another index of engagement is added to help in visualising the relation of
engagement with discriminated shapes (Fig. 10.). The index used for this is a commonly
used Beta to (Alpha + Theta) index [23], where the mean relative band power of Theta
(4–8 Hz), Alpha (8–12 Hz) and Beta (12–30 Hz) frequency bands are computed for each
aggregated time series of a shape. Since the index E is computed on pre-processed EEG
data which has been filtered and resampled to a maximum of 20 Hz, the Beta band is
being cut by approx. 55%, a naive factor k is applied on the mean value of the Beta band
such that k = 0.55 and: index = (β + kβ)/(α + θ).
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Fig. 9. T-SNEandUMAP2Ddimension reduction of the generated data. Both are runwith several
perplexity/proximity parameters (euclidean, 15 to 45 with step of 10) to observe the persistence of
clusters topology across global/local structures. The map contains 20000 random data points and
300 discriminated ones. A gradient plot in the background shows the proximity of discriminated
data points in clusters. Label Q0 is a random generation with C1 and C2 parameters found in
Q1, Q2 and Q3. Sample 1–2: T-SNE (Left) and UMAP (Right) clusters with perplexity/proximity
parameters 35. Similar results are found across all parameter sets.

Fig. 10. Mapping of the Engagement index for each discriminated data points already projected
on the 2-dimensional plane with T-SNE with perplexity parameter of 15, 25, 35 and 45. From Left
to Right: sample plot with perplexity parameter of 15 and 35.

4 Conclusion

The mapping of engagement index on clustered discriminated data shows peaks of
engagement both in specific clusters and random ones. It also shows that very few low
peaks are present on the specific clusters. One can interpret such topology by summing
that some meaningful clusters are formed but some data points outside of them might
also be of interest and that such index would be helpful to adjust their meaningfulness.
The robustness of generalising the acquisition and classification methods across exper-
iments for a single user can be maintained to some extent and would greatly benefit
from further adaptive research in stimulus presentation and transfer learning. We have
engaged intomodifying typical RSVPmethods to the end of easing the rendering of com-
plexified stimulus presentations towards design and architectural modelling purposes.
Through the accumulation of generated shapes, we have shown that some meaningful
clusters emerge to form what we can now call a Design Belief in the way they aggregate
around regions in the latent space for certain design solutions and parameter ranges
over time and based on typical informational bayesian prior beliefs. In addition, engage-
ment indices of visual attention such as the one used in the present experiment can be
purposed to value and ponder both formed design beliefs and episodic discrimination
outside such regions but with high engagement index in order to notice other possible
regions of interest. This should allow to further devise for a method to generate design
solutions based on the discrimination of such design belief together with an exploita-
tion/exploration ratio of the design space, in order to maintain variance over time in the
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generation of design solutions. Further experiments will develop this combined discrim-
inative/generative method together with a better granularity of ERP classifications and
stimulus presentations moving from the generation of shapes to the spatial articulation
of parts for architectural modelling implementations.
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