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Abstract. In response to the increasing demand for collaboration and knowledge
exchange within Postfordist network society, both virtual and physical spaces are
becomingmore andmore complex. Therefore the orientation within these increas-
ingly complex and information-rich scenes becomes a problem that architectural
design must address. The goal of this research is to upgrade architectural design
competency in this respect by setting up a workflow for evaluating and optimizing
the legibility of complex scenes. This paper introduces a novel research approach
focused on the recognizability of salient interaction offerings within complex spa-
tial settings, by usingmachine learning. A systematic workflow is being developed
for simulations that appraise and rank design proposals with respect to the trade-
off between scene complexity and legibility. The authors explore the research
through a series of simulation experiments concerned with semantic segmenta-
tion, i.e. with distinguishing and classifying relevant features in a large complex
visual field. The paper first describes the method of setting up the measurement
of complexity and ease of recognition, and then illustrates how a trained neu-
ral network can be used to evaluate and rank a series of design proposals (with
systematically varied degree of complexity) on the basis of their recognizability.
While the paper found that the hypothesis of a statistical inverse correlation or
trade-off between complexity and recognizability holds, for each degree of com-
plexity there are several design options with different degrees of recognizability.
Therefore this approach allows to optimize the design of complex scenes in terms
of the crucial criterion of legibility.
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1 Introduction

In response to the increasing demand for collaboration and knowledge exchange within
Post Fordist network society, spaces are becoming more and more complex. Therefore
the orientation within these increasingly complex and information-rich scenes becomes
a problem that architectural design must address. This poses a serious challenge to
human spatial perception. Research in spatial cognition, based on observation, involves
a variety of behavioural measures. Beyond mere observation and performance mea-
surement spatial cognition theory puts forward hypotheses about how people construct
internal representations of space. [5, 12, 13]. The construction of internal representations
becomes increasingly challenging as scene complexity increases.
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As Friedman et al. [6] have argued, it is important to consider the legibility of
an environment as a potentially important criterion when evaluating a post-occupancy
environment. Many studies have shown that the complexity of a building plan is one of
the most important factors affecting orientation in space [18, 15, 19]. However, people’s
spatial perceptions sometimes do not match the results from the analysis of the 2D
plan. Prior research, e.g. Weisman [18] and Passini [16], had limited the study of the
relationship between ‘plan configuration’ and navigation to corridor-type spaces. Their
approach is difficult to implement in a more three-dimensional space, such as a complex
atrium space. This paper extends the study of the relationship between legibility and
architectural plan for atrium spaces. Our investigation of legibility is based on the first
person perspective of situated human perception.

Spatial understanding can be partitioned into discrete components instead of being
integrated into a singlemap [11, 2] One of the components is to locate and orient yourself
in a space, which requires recognition of specific spatial features. In recent years, Deep
Learning-based Convolutional Neural Networks have shown that trainedmodels are able
to recognize objects with human-level accuracy and speed [9, 10]. Recent research in
deep-learning based semantic segmentation systems has focused on autonomous driving,
industrial inspection, andmedical imaging analysis [14, 7]. Architectural design has also
drawn considerable attention to deep-learning-based semantic segmentation methods.
For example, classifying furniture pictures based on design features [8], and comparing
the visual similarity of interior design elements [4]. However, research in this area
has focused on demonstrating the capability of successfully recognizing designs in the
interior design field. And this study shows the potential of utilizing this technique to
recognize salient interaction offerings within complex spatial settings.

The authors explore the research through a series of simulation experiments. We
start with a method for measuring complexity. Then we present a method to appraise
ease of orientation, and illustrate how a trained neural network can be used to do this,
and thereby allowing us to evaluate and rank a series of design proposals.

2 Methodology

The goal of this research is to upgrade architectural design competency by setting up
a workflow for evaluating and optimizing the legibility of complex scenes. First the
authors set up the formula for calculating the variety value which represents the diversity
(complexity) of the destination in space. Then, using a deep-learning-based approach,
the authors set up the evaluation model for ease of orientation, which appraises the level
of legibility of a given space. The orientation evaluation includes three sub-measurement
values: visibility, learnability, and recognizability.

2.1 The Quantitative Definition of Variety

Various research studies have demonstrated that the complexity of the floor plan influ-
ences the ease with which users can navigate within a building [15, 18, 16].This paper
interprets complexity as diversity of spatial situations. In retail space, variety means
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many different kinds of units instead of mere repetition. Based on the K-means cluster-
ing algorithm, the measurement algorithm extracts four geometric attributes from the
unit floor plan as input data: area, perimeter, shape proxy “width”, shape proxy “length”.
Afterwards, these 4 numbers are combined to create clusters. The algorithm outputs how
many types of the units can be clustered. Lastly, it will normalize the number of types
as a value between 0 and 1. For instance, a floor plan with 10 units where all units are
the same will result in 1 unit type, and variety value 0, i.e. this space is very simple. And
when clustered into ten types, its variety value will increase to 1, which indicates a very
complex space. Based on this we measure the degree of complexity of a space.

2.2 The Evaluation of Ease of Orientation

Our comparative appraisal of legibility or ease of orientation includes three aspects,
namely visibility (a mere geometric precondition), learnability, and recognizability.

2.2.1 Visibility

For defining the visibility value, the authors utilize the Unity Perception package and
the Unity Dataset Insights package. The workflow is as follows: First, we systematically
build up an array of complex scenes. We then test/compare the scenes as follows: Step
1, place random targets. Targets represent attractions in the space, such as shops, kiosks,
etc. Step 2: Place the camera viewpoints randomly within the space at eye level, so that
all possible human perceptions can be sampled. Step 3: Assign a color code to all the
target objects. As the simulation runs, each frame generates one view image and one
labeled image. The data includes labeling information, color coding, and pixel numbers.
Second, load the data and run the script. It calculates the total pixels of all the targets
automatically using a Python script. So the higher the total pixel count of the targets,
the more targets will appear in people’s cone of vision, which means here the higher the
space’s visibility value. Third, normalize the data to yield a value between 0 and 1 that
represents the comparative level of visibility. This is a simple, objective measure.

2.2.2 Learnability

As mentioned above, deep learning as part of machine learning algorithms has made
significant progress in recent years in improving the accuracy of image semantic segmen-
tation. In this research, the authors developed a new estimation method by constructing
and training a deep learning network for semantic segmentation of architectural interior
images. The authors use this first to derive a learnability value that simulates how fast a
human can recognize the features of a new environment.

The measurement process includes two main parts. First, training data set gener-
ation. A collection of images and a collection of pixel-labeled images are required to
train a semantic segmentation network. Instead of manually segmenting each image,
we developed a custom script that uses the Unity Perception Package to automate the
process. After labeling and attaching specific color coding to the main architectural ele-
ments in the 3D scene: the escalator in magenta color, the balustrade in cyan, the glazing
in dark blue, etc., we can start running the simulation. In the simulation, viewpoints
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are generated randomly in the scene to generate different view images and semantic
segmentation images associated with the view. Second, training the network. This step
involves loading the view images and semantic segmentations from the previous step to
the learning machine, and the goal is to find out how much time the machine needs to
learn to achieve a certain accuracy in its recognition/classification of features (Figs. 1
and 2).

Fig. 1. View image and Semantic Segmentation image of the view.

Fig. 2. Semantic segmentation image output for different views

2.2.3 Recognizability

Here, in contrast to comparing how fast a machine can learn and improve to discriminate
the architectural elements in different designed spaces, recognizability appraises how
well a computer can recognize the architectural elements after it has completed its
learning cycle. As previously stated, deep convolutional neural networks are the most
powerful method for training a neural network model to extract relevant parts of an
image’s features. However, how to combine techniques with specific domain knowledge
and how to collect data has become a critical issue. To compare how well a trained
machine system can recognize specified features in different designed interior spaces,
the commonly used deep learning algorithm YOLO (You Only Look Once) was used
because of its fast speed and accuracy [17].

In this research, we focus on the escalators as themost significant elements of interior
atrium spaces. In our approach, we trained the YOLO model to detect a new custom
object (the escalator) based on the trained COCOdataset (CommonObjects in Context is
a dataset provided by the Microsoft team that can be used for image recognition) instead
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of starting from scratch. Prior to deep learning training, data annotation is required. By
using the unity perception package, the authors can automatically crop the region and
label each image to generate a large amount of training data quickly, rather thanmanually
labeling each image in a common way. There are 600 images prepared, 80% of the total
collected data is used for training, and 20% is used for validation.

Instead of using training time data as in the learnability simulation, the detection
model solves for identifying (recognizing) the escalators in the view image and in addi-
tion outputs a confidence value for each identified element as to how confident the
network is in classifying the element as an escalator. The average of all the confidence
values generated in a scene feeds into the overall performance measure for this scene,
indicating the scene’s recognisability (Fig. 3).

Fig. 3. Example results from detection model, in image 1 the machine detected two escalators
with confidence value of 0.86 and 0.89, the accuracy value for this view image 1 is 0.875.

3 Prototype Development and Trade-Off Graph

3.1 Atrium Generator Prototype Setup

The retail atrium was chosen as spatial type capable of exemplifying the problem to be
investigated, namely to maintain legibility in the face of complexity. We developed a
parametric atriumgenerator to create a set of systematically differentiated sample spaces.
The atrium designs vary the void shape and the depth of the slabs up to the glazing line.
The atria are radially divided into 12 segments. In the simplest case these 12 segments
are equal. In the most complex case they are all unique.

The value of variety increases with the total number of different segment types. At
first the atria operated across two floors above ground, later three floors. A sequence of
different design iterationswas generated. This sequencemeasured variety values ranging
from 0 to 0.91. In principle, there are unlimited numbers of ways to generate designs
with the same variety value. The authors selected three design iterations for each variety
value. In total there are 34 design iterations with 12 different variety values (for variety
= 0, there is only one design iteration as all the units are the same). For example, in
Fig. 4, the variety value increases from left to right, which means the space is becoming
more complex in terms of the diversity criteria.
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Fig. 4. Plan diagram spectrum for one floor showing the how the variety value increases while
the spatial scene becomes more complex.

3.2 Trade-Off Graph

The authors hypothesized that increasing the complexity will reduce the legibility of the
space. Indeed, we observed this inverse relationship between complexity and legibility.
We see this as a trade-off, since both complexity (delivering diversity of destinations)
and legibility (affording ease of orientation) are desirable.

After generating the design iterations with a wide spectrum of variety values, we
conducted our learnability and recognizability tests for each of the designs. By mapping
all the values for variety first against the obtained learnability and recognizability scores,
we get the maps in Fig. 6. Based on statistical theory, when the R2 value is bigger than
0.6, this means the two parameters have a strong correlation. We also can see from the
mappings that for each of the variety values, despite the overall correlation holding, there
are several designs with different legibility (learnability/recognizability) scores, i.e. for
each visibility value there are relatively better performing designs we might select, i.e.
a design with both high complexity and relatively high legibility.

3.2.1 Learnability Trade-off Graph

With the same 34 design iterations spread over 12 design variation values, we executed
the learnability experiment to measure how long it takes for the machine to achieve 95%
accuracy. For instance, when the variety value = 0. It only took 45s for the machine to
learn to recognize the architectural elements and reach an accuracy of 0.95. In compar-
ison, a design with high variety (variety = 0.91), requires 134s of learning to reach the
accuracy of 0.95. After training for all the design iterations, we obtained the graph in
Fig. 5a which also shows that there is a strong correlation between variety(X axis) and
learnability (Y axix). The R2 value is 0.7461, i.e. significantly above 0.6.

3.2.2 Recognizability Trade-off Graph

Instead of comparing the time taken to reach a certain accuracy between different design
iterations, the recognition experiment uses the same trained neural network to test the
recognition accuracy with different design iterations. For the same series of designs, 50
images were chosen from each of the 12 design variety brackets. In total, there were 600
images constituting the training dataset. After training, the neural network can achieve
an accuracy above 0.8 for the validation set.
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After building the neural network, the next step was to test the recognition perfor-
mance of the neural network for the different design options with different degrees of
variety. To test the different designs, 10 new perspectival view images for each design
have been fed to the neural network. We then obtained the average accuracy figure for
each design,which for us represents the recognizability value of this design. For instance,
when the design variety equals 0.00, the average accuracy is 0.84 for the 10 images, and
when the design variety equals 0.91, the average accuracy dropped to 0.66. After we
run the recognition test for all the options, we get the graph shown in Fig. 5b. We can
see from the output figures that the distribution of accuracy correlates with the variety
value. This indicates that the recognizability value has a strong correlation with design
complexity.

(a)     (b)            

Fig. 5. Variety-Learnability (a), Variety-Recognizability (b) trade-off graphs

Both learnability and recognizability were explored via neural networks trained to
semantically segment images of a complex scene and classify features like escalators.
According to these experiments, there is a strong inverse correlation between variety
and legibility, appraised in its aspects of learnability and recognizability. Since for each
variety measure we can generate and test multiple designs, we can use this process to
optimize the trade-off between variety and legibility.

4 Further Design Iterations

4.1 Learnability Experiment

It has already been mentioned that there are an infinite number of ways to generate a
design for a particular variety value. Our goal is to evaluate and optimize in order to
find the most legible solution. The authors compared three design options with similar
plan configurations and the same variety value of 0.62, but with changing the slab edge
curvature. Option A has a large curvature on the slab edge, Option B has a faceted slab
edge, andOptionChas a gentle curve on the slab edge.According to the learnability tests,
option C exhibits a high learnability value. This is in line with our intuitive expectation
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that the smooth versionwill performbetter than the faceted version (because its generates
less visual noise).

Fig. 6. Three design iterations’ legibility comparison. In option C, the visibility value is 0.745,
while the other two are 0.713 and 0.736, and in option C, the training time is 3:45 while Option
B’s training time is much longer as it is 5:23, and Option A is fairly close as it is 3:54.

4.2 Recognizability Experiments

In addition to the prototype experiments, the authors also examined the methods on a
real design project. It is a 5-floor atrium space in a mixed-use (retail and cultural) com-
plex. Using two design iterations as examples, we applied our recognisability appraisal
method. When all the necessary functional program plan layouts have been met, it is
typically depending on the architect’s intuitive qualitative appraisal to choose a number
of design option that meet the programme criteria. In contrast to this subjective choice,
our method allows for reproducible selection based on a quantitative process that can be
critiqued and improved upon.

The evaluation and optimization process was applied as follows: first, we randomly
selected 10 viewpoints to get 10 view images from each of the designs. Then we input
these images to the neural network (trained on the proto-types) to get the escalator
recognition performance with accuracy values for each image. Then we averaged all the
accuracy values to get an overall recognizability value for the design option in question.
Any mistaken detection is taken into account with its confidence value as negative value.
Due to mistaken identifications both options’ recognizability values were rather low, but
this measured difference is significant. For option 1 it was 0.277 and for option 2 it was
0.023 (see Fig. 7). It was interesting that the network was performing at all in a space
that was quite different from the training set. In any event, absolute values matter little.
The purpose of our method is to get a ranking that guides selection. The result suggests
option 1 is better in terms of recognizability. From our intuitive point of view, option 1
also looks more legible. This illustrates how a neural network can be used to evaluate
and rank a series of design proposals based on their recognizability.

The evaluation process is quite efficient and easy to operate. You can upload either
a screenshot or a rendering of the design space. As a result, a value of recognisability
will be output for this space. Many questions and problems remain to be addressed. For
instance, when feeding new images that substantially deviate from the original training
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Fig. 7. in image 03 of option 1, the confidence value outputs are 0.76, 0.77, 0.91, but it missed
some escalators, so the accuracy value is 0.407 (= (0.76+ 0.77+ 0.91+ 0+ 0+ 0)/6). And for
option 2, it missed out on all the escalators, and also incorrectly “recognized” some balconies as
escalators, so the accuracy value for this view image of option2 is –0.246 (= (–0.61–0.62 + 0 +
0 + 0)/5).

set, overall accuracy is not high. Hence, it will be necessary to expand the database with
more interior images of atriums in the future in order to enhance the accuracy of the
data. Second, the current neural network is only trained to recognize the escalator as a
key element of the atrium. However, it is possible to extend it to incorporate other key
architectural elements as well (Fig. 8).

Fig. 8. Example outputs from detection model tested on the photorealistic renderings.

5 Conclusion and Future Work

The objective of this research is to provide a methodical way of posing the issue of
legibility. Our work so far only maps out an initial sketch schematic for the operational-
isation of the legibility criterion in its relation to complex scenes. The atrium typology
is just one scenario among many. This method setup can be abstracted and generalized,
and then tailored to support all urban, architectural and interior design processes. Both
complexity (spatial diversity) and legibility (ease of orientation) are considered posi-
tive characteristics. While the hypothesis of an inverse correlation or trade-off between
complexity and legibility holds, there are several design options with different degrees
of legibility for each level of complexity. The methodology can thus help find the sweet
spot in the trade-off between these two requirements, or else we can take a certain level
of complexity as given, and then identify design options that maximise legibility without
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compromising complexity. In this way, the design of complex scenes can be optimized
according to the crucial criterion of legibility.
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