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Abstract. A significant portion of the cycling experience is influenced by the
streetscape, and this impact varies throughout the year. The temporal dynamic of
streetscape has been neglected in most previous studies, including urban public
mobility route choices. This paper examines the correlation between dockless
bike sharing and streetscape as well as spatial elements in different seasons using
a large amount of GPS bike trajectory data collected by LIME. The study shows
that: (1) DBS volume is significantly influenced by seasonal streetscape factors
such as roads, cars, sidewalks, tree, and vegetation color; (2) How significantly
these seasonal factors affect DBS volume differs in summer and autumn; (3) In
both summer and autumn models, non-seasonal factors like mixed land use score,
street network connectivity, etc., are significant. Some non-seasonal factors only
impact the DBS volume in one season; (4) When adding subjective perception to
models of both seasons, model explanatory does get improved very slightly.

Keywords: Seasonal variation · Dockless bike sharing · Street view image ·
Computer vision · Built environment

1 Introduction

Bikeshare promotes sustainable travel, health benefits, and economic growth (Qiu and
Chang 2021). Dockless bikeshare (DBS), compared to the docked bikeshare system, is
getting more popular in the last decade due to benefits like accessibility and convenience
(Gu et al. 2019).

There are observed research gaps in DBS seasonal study: (1) the development of
mobile applications and cashless mobile payment have make bike sharing usage even
more prevalent (Guo et al. 2022). However, as a new mode of transportation, DBS
has received less attention than docked bike sharing (Guo et al. 2022). (2) A majority
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of precedent studies of DBS focus mostly on where a trip starts and ends, rather than
the cycling experience itself. (3) limited examination of how seasonal streetscape affects
cycling.Although a small number of studies consider temporal scale, yearly comparisons
(Li 2021) offer limited help in comparing seasons, and studies addressing the association
between seasonal climate and bike sharing didn’t examine other seasonal environmental
characteristics(Li and Kamargianni 2017).

The study (1) provides a quantitative study of DBS focusing on perceived environ-
mental elements along the journey, (2) integrates SVI and CV to estimate how season-
ality of street built environment impacts DBS usage at a fine spatial scale. (3) considers
previously ignored seasonal environmental features like vegetation color.

2 Data and Methodology

2.1 Study Area and Methodology

Our study area includes the Town of Ithaca and a few nearby neighborhoods (Fig. 1).

Fig. 1. Study area

Figure 2 illustrates the framework of this study: (1) Using GPS bike trajectory data
from LIME, a DBS system in Ithaca USA, we computed Seasonal Weighted Rides
(SWR) to capture the cycling volumes of road segments in summer and autumn. (2)
We collected SVIs in summer and autumn with Google SVI API. (3) We used PSPNet
to compute the view ratio indices of streetscape elements, and used Mask R-CNN to
count the number of streetscape objects. We also computed CV indicators (color devi-
ation, L, A, B values in CIELAB color space) to present the seasonal color change of
these three variables: tree, plant, and grass. (4) We quantified four subjective perception
scores (accessibility, ecology, enclosure, scale) of street environment in summer and
autumn with ML. (5) We collected and computed non-seasonal variables (typical POI,
landmark POI, infrastructure, road type, land use mixed score, street network connec-
tivity, terrain). (6) With OLS regression models, the seasonal environment attributes are
comprehensively analyzed with their impacts on DBS volumes in summer and autumn.
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Fig. 2. Research framework

2.2 Data and Processing

2.2.1 Dependent Variable: DBS Data and Seasonal Weighted Rides (SWR)

LIME provided us with the DBS trips data for this study, accessible through an API.
LIME’s app was used to collect the data. After the users agreed to LIME’s terms and
conditions for using the services, LIME recorded and analyzed their journeys. Thedataset
does not include identifiable individual information. To clean the data, trips that started
or ended outside the Greater Ithaca area (Qiu and Chang 2021), trips with distances
shorter than 0.05 miles or 264 feet (Qiu and Chang 2021), and trips with durations less
than 3 min or more than 120 min were removed. The validated dataset has 102,178 trip
records.

To make cyclists’ choice and preference of routes comparable across different sea-
sons, we have to capture the popularity of road segments in each season with Seasonal
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Weighted Rides (SWR). This conversion can be found in Eq. (1).

SWRj = SRj/(

n∑

j=1

rj) (1)

For segment j, SRj represents the volume of rides on it in this particular season, n repre-
sents the number of segments with rides on them in this particular season, and

∑n
j=1 rj

represents the total number of rides on all segments in Ithaca during this particular sea-
son. The SWRj that is aggregated to the sampling points i is the dependent variable of this
study, and has the precision of street segments, so sampling points on the same segment
would have the same value for one season.

To reduce the bias caused by data sparsity, we removed segments with a total annual
volume of less than 500 riders (approximately 1.5 riders a day) from the aggregated data.
Then we sampled points every 25 m in segments with lengths more than 50 m (which is
too short). Therefore, 671 out of 10508 road segments were selected, and 2,082 sampling
points were obtained from them.

2.2.2 Independent Variable: Street View Measuring

Google Street View (GSV) is only available in summer (Jun, July, Aug) and fall (Sept,
Oct, Nov) in our study area, and out of 2,082 sampling points, there are only 1,170 points
having GSV in both seasons. With GSV panorama ID and Street View Download 360
software (Street View Download 360, n.d.) we download the panorama in both summer
and fall of each point. To extract the count of elements in a panorama SVI, we use
a Mask-RCNN pre-trained on COCO dataset with ResNet-50 backbone. Then we use
Pyramid Scene Parsing Network (PspNet) with pre-trained model psp_resnet101_ade to
conduct image segmentation.

Undesired segmentation distortions might occur near the top and button of a
panorama image, so we unwarp the panorama into images in 6 directions (Forward,
Back, Left, Right, Up, and Down) with py360convert package and extracted the four
directions at eye-level: forward(F), back(B), left(L), and right(R) (Fig. 3).

From percentage that the pixels of the specific visual element take-up of the total
pixels of an SVI we calculated the visual ratio of an element in the image. Not all
objective view indices will be input to the regression model after the Variance Inflation
Factor (VIF) test, only 20 out of 28 visual ratio are kept, including: tree, road, grass,
car, streetlight, wall, building, sidewalk, earth, water, plant, awning, van, person, bridge,
railing, bicycle, minibike, ceiling, chair.

To study color and change of street greenness from urban cyclists’ perspective, we
used the CIELAB colorspace and extracted PSPNet pixels for three types of greenness.
Converted from RGB to CIELAB using the Python-colormath library, we calculated
average A and B values for each pixel and the standard deviation from actual values.
To eliminate potential interference, we eliminated the L value (brightness) as SVIs are
taken in different conditions.

We evaluate street perceptions using a 300-point pre-labeled dataset and an ML
framework developed by related research (Qiu et al. 2023; Su et al. 2023) to evalu-
ate the subjective perceptions score of the streetscape: Accessibility (accessibility to
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Fig. 3. Panorama object detection with Mask_RCNN, unwarping(in 4 directions: F, R, B, L), and
semantic segmentation with PSPNet. Left: Summer SVI. Right: Autumn SVI

activities, attractions, and amenities), Ecology (detecting living organisms, animals,
plants, humans, and their physical environment), Enclosure (the degree to which build-
ings, walls, trees, and other vertical elements define streets and public spaces visually),
and Scale (human-sized and proportional elements). The dataset was collected from a
crowdsourced visual survey of an expert panel and includes SVI input variables and
4 perceptual scores as output labels. 75% (225) of the dataset is used for training and
25% (75) for testing. Multiple ML algorithms are used, including K-Nearest Neighbors
(KNN), Support Vector Machine (SVM), Random Forest (RF), Gaussian Process (GP),
Gradient Boosting Regression (GB), ADA boost, and Bagging Regression. GP is chosen
as the optimal model for predicting the target perceptions (Table 1).

2.2.3 Independent Variable: Non-seasonal Variables

We use Open Street Map (OSM) to get typical POI, infrastructure (transit facility), road
types, and landmarks POI. The buffer zone radius is 500m for typical POIs, 100 m for
infrastructure, and 1000 m (typical 5 min bike rides) and 3000 m (typical 15 min bike
rides) for landmark POIs.

We use land use data collected from Tompkins County Open Data Portal (Land Use
and Land Cover 2015; Tompkins County Open Data Portal, n.d.), and use a method
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Table 1. Performance of GaussianProcessRegressor (GP) predictions

Perceptions score R2 RMSE MAE

Accessibility 0.4 0.18 0.15

Ecology 0.43 0.17 0.13

Enclosure 0.53 0.16 0.13

Scale 0.39 0.18 0.15

originally developed to calculate the evenness of distribution of the area of different use
types (Frank et al. 2005). The calculation is shown in Eq. (2).

LanduseMix = (−1) ∗
(

n∑

i=1

piln(pi)

)
/ln(n) (2)

With pi, the proportion of land use i within the 500m buffer is divided by the total
area within the 500 m buffer, while n represents the number of exclusive land use types
within the 500 m buffer. This formula would calculate the mixed land use level within
range 0–1, a higher value means a higher level of mixed land use.

We use Depthmap X to run the space syntax calculation. However, we finally choose
Connectivity and Angular Integration (with segment length weighted, or SLW) after
removing space syntax score with high multicollinearity (VIF > 10). Angular Integra-
tion (SLW) has two metric radius parameters: 250 and 1000 m. For a particular segment,
Connectivity describes quantity of other segments it connects with, and Angular Integra-
tion (SLW) captures accessibility and how close(integration level) of this segment is to all
others in terms of the sum of angular change(Angular Integration Space Syntax—Online
Training Platform, n.d.).

We use high resolution(1 m) Digital Elevation Model (DEM) from United States
Geological Survey (USGS) collected in May 2020. The medium value of slope within
5 m of sampling point along the road is chosen as the slope value.

2.3 Model Architecture

We start with a simple OLS model Eq. (3).

Yi = α +
∑

m

X(i,m)βm + εi (3)

Yi is the dependent variables of the sampling point. X is the independent variables
that explains SWR. β is the coefficient of variable m that reveals how and to what extent
variable m is related to SWR. Constant term α refers to the average SWR when all other
variables are zero. Error term εi captures elements that influence the Y but are not
included in X .

A baseline model (M1_Summer, M1_Autumn) with significant variables was con-
structed using all variables except subjective perception. VIFwas calculated in thewhole
process and only variables with VIF less than 10 are kept. Then all 4 perception scores
are added (M2_Summer and M2_Autumn) (Table 2).
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Table 2. Dependent variable, independent variable, and method of different models

Identifier Y (dependent variable) X (Independent variables) Method

M1_Summer ln(SWR) All variables except subjective
perception

OLS

M1_Autumn ln(SWR) All variables except subjective
perception

OLS

M2_Summer ln(SWR) With subjective perception OLS

M2_Autumn ln(SWR) With subjective perception OLS

3 Result and Discussion

3.1 Models Performance and Diagnosis Results

Because DBS volume is not statistically significant with all variables, we remove unre-
lated variables frommodels. The remaining significant variables are used to buildmodels
after removing variables with high correlations and multicollinearity with a VIF test.
The Regression diagnosis results show that: (1) All Autumn models have higher R2
than Summer models. (2) M1 model and M2 model have very close R2 with or without
subjective perception. (3) There is high correlation and multicollinearity between the
new perception scores and other segmentation results.

M1_summer andM1_autumn results show consistent significance for some variables
in both seasons, such as visual ratios for roads, cars, sidewalks, grass color deviation, land
usemix scores, and road network angular integration. Some variables are only significant
in summer, like building and wall ratios and number of education POIs, while others like
color deviation and lab_A values of tree, lab_A and lab_B values of grass only show
significance in autumn. For variables significant in both seasons, the positive or negative
effects are consistent across seasons (Table 3).

3.2 The Seasonal Variations of the Streetscape

Cycling volume is positively impacted by the presence of roads and sidewalks, with
dedicated bike lanes potentially available on a larger network. Studies of the built envi-
ronment often examine both walking and cycling behaviors together (Mertens et al.
2016), so sidewalks play an important role as well. A pedestrian-friendly neighborhood
promotes sustainable mobility and slows down traffic. Trees positively impact cycling
in both seasons. Street greenery offers ecological benefits to neighborhoods, including
providing shade for microclimate control, and creating an enjoyable environment for
cyclists (Li et al. 2018). Waterfront areas provide a desirable setting for cycling, which
aligns with previous research findings (Ding 2016; Lee et al. 2021; Song et al. 2021).

3.3 Other Non-seasonal Variables

Land use mix score is positively related to DBS volume in both season, aligning with
prior evidence that the mix ratio of land use affects travel behavior (Van Dyck et al.
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2012; Kerr et al. 2016). Angular integration at 1000 m radius positively contributes
to DBS volume in both seasons, in line with previous research suggesting that road
network accessibility influences cycling behavior (Saghapour et al. 2017; Tucker and
Manaugh 2018). However, angular integration at 250 m radius and connectivity are only
significant in summer, which may be because autumn rides are more commuter-related.
More research is needed to understand how space syntax impacts DBS at various scales
and times. The number of points of interest (POI) is found to have a positive impact on
DBS volume in both seasons. However, only educational POI has a significant positive
impact in summer. This difference would need further research with more POI data.

4 Conclusion

UsingGPS trajectory data, this study examines the correlation betweenDBS, streetscape,
and spatial elements in different seasons. The study finds that: (1) seasonal streetscape
factors such as roads, cars, sidewalks, tree, and vegetation color significantly influence
DBS volume; (2) the significance varies in summer and autumn; (3) non-seasonal factors
likemixed landuse score, street network connectivity, etc., are significant in both seasons,
some only show significance in one season; (4) adding subjective perception to both
seasons improves explanatory slightly.

There are several limitations in this study that can be improved in future studies.
Firstly, due to the data source limitation, only summer and autumn SVIs are collected
in Ithaca. Finer temporal resolution can also be taken into consideration when SVI
from more seasons or even months is available. Secondly, more advanced spatial model
can be introduced to examine the spatial effect. Thirdly, microclimate-related data like
temperature would better explain the seasonal variation.
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