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Abstract. The working paper investigates the potential of artificial intelligence
technologies (AI), namely the Generative Adversarial Imitation Learning (GAIL)
implemented in a process of digital robotic fabrication prospectively to be used in
craftsmanship. The method introduced is based on a preliminary demonstration
provided digitally in an abstract toolpath generated by a human-driven movement
in a hand gesture translated into a digital space in a real-time process. The inves-
tigation presented in this paper focuses on a preliminary computational digital
framework which may serve as a base for further investigation. At this stage of the
report, the framework encompasses human hand recognition creating a toolpath
for a robot, which learns its principles and tries to interpret the process in a digital
space. This learned toolpath resulted in a digital brain being applied again in a
different shape of the human-created toolpath or gesture movement. The paper
also presents the computational system of the real-time navigation of the robot
based on a human gesture in a virtual space. The learned knowledge by a robot is
observed in a digital environment before any physical applications.

Keywords: Intelligent design-to-production · Deep learning in craftsmanship ·
AI-driven craft · Gesture-driven manufacturing · GAIL

1 Introduction

At present, the architecture, engineering, construction and operation sector (AECO)
addresses a variety of challenges related to its continuous digitization, low production-
efficiency in construction, sustainability, circularity, eliminating carbon emissions, and
mass-customization also through the lens of Artificial Intelligence (AI) as a part of
revolutionizing Industry 4.0.

Besides numerically controlled digital fabrication (NC), Building InformationMod-
elling (BIM), design for manufacture, assembly and disassembly method of production
(DfMA), and standardization of building components to create architectural scenarios
(Kit-of-Parts), the AI field is starting to be prevalent to augment and extend human capa-
bilities to deal with complex and high dimensional problems and requirements within the
AECO sector too. The current advancements in these technologies place higher demands
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on the skills of human designers, production technologists, and construction experts to
solve specific problems inmutual human-machine collaborations (Duan et al. 2017). The
digitally unskilled workers, although not familiar with the latest advancements in digital
fabrication, are usually highly skilled craftsmen (e.g. carpenters in timber construction
production) capable of delivering unique and customized products, while preserving
the traditional notion of crafts with specific human-made qualities. Thus, the craftsmen
bring a qualitative value into the production pipelines, meeting the high standards as
well as many qualitative criteria in hand-made processes (aesthetic qualities, detailing,
smartness, and complexity of the chosen solution made by a human, hand-made quality,
individually recognized authorship, specific artistic and artisanal qualities) (Pu 2020).
But how to recognize those qualities in the era of technological and machine intelligence
advancements?

Fig. 1. Diagram of the human-in-the-loop process engaging with AI technology

2 Artificial Intelligence in the Scope of a Craftsmanship

This paper theoretically envisions that through human and artificial intelligence-driven
processes of digital fabrication and production of artifacts where the craft skills are
recognized, learned, trained, and implemented in the human-in-the-loop co-creative
production workflow such as in the one-shot imitation learning (Finn et al. 2017),
the technology will be capable to develop and strengthen its “wisdom” in a similar
way how humans improve their skills, experience, and wisdom in time and thus, make
autonomous decisions in the production process. Can a machine be capable of conceptu-
alizing learned knowledge to yield novel artifacts through hybridized/synthesizedmodes
of human-machine interactions utilizing Neural Networks (NN) and deep reinforced
learning (DRL)?
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There is a hypothesis suggesting that unique knowledge demonstrated by craftsmen
can be translated into forms of demonstrations, digital models, additional data sources
(such as images, videos, and sequences), and digital processes (generation of tool paths
for specific digital robotic fabrication execution, unique assembly modes).

The paper further proposes that by linking human intelligence (knowledge, experi-
ences, craft skills, capacity tomake relevant decisions) andmachine intelligence (respon-
sive robotics based on multisensorial setup (Felbrich et al. 2022), XR devices and dig-
ital operations) in one coherent hybridized production loop, there will be created a
novel communication and interaction platform between human and a machine via phys-
ical interventions and demonstrations leading to machine capabilities improvements to
execute the production task.

At this stage, the paper introduces a computational connection between a human
agent and an AI agent in a digital process to create an abstract toolpath, while theoret-
ically envisaging a novel searching and generation method for design and production
space based on a human-in-the-loop cooperative learning process (Fig. 1). In this report,
the human and machine agents consider human-driven toolpath generation in a form
of an intuitive gesture, while human logic, preferences, memory, cognition, and past
experiences will be investigated in the next phase of the research. These aspects are
tested to be transferable to a machine in a continuous training and learning process
driven by a human. Consequently, the machine will constantly improve its capability
based on human agents’ inputs and become more autonomous in the decision-making
and generation of design and production space. Such a framework aims to imitate in
a re-interpreted event a human gesture, e. g. for drawing or painting intervention in a
digital space.

Instead of replication and recreation of the crafting process in a numerically con-
trolledway of digital fabrication (NC), the intention is to discover away how themachine
can express itself in a novel and augmented craft language and its formal expression in
artefacts as similar as a human does, but unconventionally, beyond human imaginative
solution craft space. The paper provides a preliminary conceptual digital experiment
using the digital twin of the desktop robotic arm equipped with a virtual multisensorial
setup. The machine learns a simple human-driven toolpath, considering gentle human
movements of the hand physically provided by the demonstrator, translated into the
digital space.

2.1 Current Learning Experiments in the Processes of AI in the AECO
and the Use of GAIL

AI deep learning implementations in the processes of robotic digital fabrication for the
potential use in the AECO sector have been tested in a variety of tasks, such as the
assembly of a lap joint (Apolinarska et al. 2021) or pick and place scenarios for compo-
nent assemblies (Felbrich et al. 2022). Other studies focus on co-designing strategies for
autonomous constructionmethods (Menges andWortmann 2022), exploring the integra-
tion of deep reinforcement learning for the intelligent behaviour of construction robots
as builders.

The question of how to involve human agency in the AI-driven processes to achieve
coherent results for the potential use of AI in the AECO applications on a larger scale
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or in human-made operations is still broadly unexplored. Imitation learning, especially
Generative Adversarial Imitation Learning—GAIL (Ho and Ermon 2016) as a method
to teach a robot to do a task has a solid potential to be integrated into the design-to-
production processes if we consider smaller scale in the early stage of production, such
as drawing or cutting tooplath. At present, pick-and-place scenarios of simple objects
using the visual demonstration and data collected from a human agent are successfully
deployed (Finn et al. 2017) as a combination of the imitation and meta-learning strate-
gies, however, the movements of the robot are still very technical and pre-programmed,
although delivering the simple task successfully. TheUnity andMLAgents tool to train a
robot have been previously introduced by Pinochet as Smart CollaborativeAgents (2020)
and Hahm (2020), when the robot follows the pre-defined targets, not using imitation
learning approach, and based on configurable joints or Unity articulation body.

The notion of human craftsmanship with a unique look is a very complex task to
imitate or deliver, as it requires a complexity of information and data to be collected and
processed. This research explores how to engage the human agent with a robot, aiming to
find a method for a process to either participate together in a real-time sequence scenario
or the human can act as an expert and demonstrator to teach the robot a task to execute.

3 Implementing the Computational Framework

3.1 Real-Time Gesture-Driven Navigation of the Robot

There are two computational implementations described in this paper, integrating the
real-time robotic navigation by a human gesture: Unity and Rhino|Grasshopper environ-
ments, which serve as an initial input for the gesture-driven toolpath generation. Both
are described in detail in the following sections (Figs. 2 and 3).

The real-time navigation of a robot may have a variety of possible uses in the field of
digital fabrication andmanufacturing for architecture. The proposed framework can also
serve as a designer’s environment to be tested and explored before any manufacturing
and crafting process. The data captured from a human can be stored and implemented in
a custom scenario. Even though the implementation at this stage is not fully practical due
to specific constraints related to noisy interference of the data exchange, the real-time
interaction is engaging and can serve for further investigation in connection with the real
robot. The computational models for both strategies are available from Buš (2023) and
GitHub (2023).1

3.2 Unity and Rhino/GH Implementation—Hand Tracking

Both implementations encompass theUser DatagramProtocol library (UDP) for the data
transfer between the actual gesture and the digital environment and the robotic twin. For
this implementation, the Universal Robot UR1 digital twin and a standard web camera
have been used for human hand capturing.

1 Buš, P. Repositories [Internet][Shenzhen], Github; 2023 [updated 2023May 4, cited 2023May
5]. Available from https://github.com/peterbus?tab=repositories.

https://github.com/peterbus?tab=repositories
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The computational approach of the hand recognition and the data exchange platform
in Unity implement the Unity UDP receiver script, provided by the CV Zone platform
as an open data resource (Murtaza 2022). The Unity and Rhino|Grasshopper environ-
ments were customized and adapted for the robotic movement. Both strategies utilize
the CVZone Hand Tracking module with the Hand detector implemented in Python to
recognize the hand of a human (Murtaza 2022). Hand recognition contains 21 points
which are interconnected with lines, representing the virtual skeleton of the human hand.

Fig. 2. Hand tracking implementation in Unity connected to the UR robot. The robot follows the
finger in real-time process while properly rotating based on configurable joints

3.3 Unity Basic Setup

The 21 recognized points are transferred utilizing the UDP data protocol into the Unity
environment using the local host. The data are constantly received by the receiver and
the points are embedded as Game Objects creating the foundation for the skeleton.

The specific point can be selected as a spawner of the checkpoints for the robotic
toolpath. Based on human movement, the hand spawns the targets for the robot, specif-
ically rotated according to the hand movement. Custom C# scripts were written to link
the hand with the digital model of the UR robot, which is based on configurable joints
for each of its axes. As such, it was possible to create a Target for the robot, which
follows it. In that way, the robot is navigated by the hand point on the selected finger in
real time, considering the physics engine in Unity and rotating and moving based on the
customized configurable joints.

3.4 Rhino|Grasshopper Setup

Similarly, the recognized hand points were transferred via the UDP protocol into the
Rhino|Grasshopper environment and points were reconnected. This was done as an
independent platform. For the UDP communication transfer, the GHowl addon has been
used (Alomar et al. 2011), considering the position of the points as well as the distance
information between the hand and the web camera.
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Using this information, it was possible to implement the third dimension to navigate
a virtual end effector of the robot in all three dimensions. For the robotic real-time
simulation of the moving robot, the Robot addon was utilized. The GH definition can
serve as a starting point and a test bed for further implementations and testing purposes.
The working version of the GH definition is available2 (Buš 2023; GitHub 2023).

Fig. 3. Testing the robot and gesture movements in real-time. The hand spawns the targets for
the robotic toolpath, according to the direction of the hand movements. The framework was
implemented in Unity and Rhino Grasshopper utilizing UDP, Ghowl and Robots addons

3.5 GAIL and Behavioral Cloning Test in Unity and Observation

The Unity environment was further tested to teach the robot to recognize the human
gesture and interpret it afterward it was captured. Several custom scripts were developed
to do so as well as the standard toolpath following a system based on numerically
controlled positions. Thesewere captured from the spawned checkpoints from the human
gesture to create a linear toolpath. However, the implementation of the deep learning
method, in this case, imitation learning utilizing the ML-Agents tool in Unity with
the GAIL learning method combined with behavioral cloning was tested and observed
(Juliani et al. 2018).

The GAIL (Ho and Ermon 2016) considers the policy from the expert demonstration
to perform a task based on ‘how to act by directly learning a policy’ from the data
provided. The ML-Agents tool contains an imitation learning approach utilizing the
GAIL and the behavioral cloning method, which aims to capture the pre-defined process
of a demonstration of how the robot should perform the task according to the expert
demonstration. It follows the sequence of targets in a toolpath, previously generated by
human in real time. In this experiment, the data captured from the gesture served as

2 Buš, P.Hand-Tracking-to-navigate-a-robot-Rhino-Grasshopper-framework.[Internet][Shenzhen],
Github; 2023 [updated 2023 May 4, cited 2023 May 5]. Available from https://github.com/pet
erbus/Hand-Tracking-to-navigate-a-robot--Rhino-Grasshopper-framework.

https://github.com/peterbus/Hand-Tracking-to-navigate-a-robot--Rhino-Grasshopper-framework
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an input for the demonstration recording, containing the transform position information
(transform position, rotation, scale) of spawned targets from the gesture.

The positions were translated into the toolpath, and a virtual ML agent run through
them several times (see Fig. 4). The agent can serve later as an input for the robotic end
effector target, mentioned above. The heuristics training simulation contains the digital
demonstration, captured as a demo for the GAIL and behavioral cloning training.

The training algorithm included the default one based on the Proximal policy opti-
mization hyperparameters (PPO) for the ML agent, tested with different setups for the
GAIL strength or behavioral cloning. The virtual agent looks randomly for the check-
point positions in space and learns from them how to interact with them in each of the
episodes. The task for the agent was to recognize starting position and end position as
well as checkpoints to perform the toolpath in the right order and direction. In addition,
each of the iterations slightly randomly moves the positions of the path checkpoints
to encourage the agent to learn from these novel positions. This might serve for the
potential future gestures that will be each time different.

Fig. 4. The virtual end effector follows the agent, while running through the checkpoints on the
toolpath

The learning process contained 3–5 million iterations (steps) with a positive or neg-
ative reward structure for the agent, each time it collides with the correct or wrong
checkpoint. The process generated the virtual brain for future testing scenarios. As it
was qualitatively observed from the preliminary tests in the learned positions of the agent
in the final inference training, the results with the current setups do not precisely imitate
the original demonstration, although the agent reaches the targets in the right directions
and with the right orientation in a sequential way. The quantitative results are provided
in the following scalars, captured from the Tensorboard platform (TensorFlow 2023),
showing relevant reward processes and GAIL policies. While the cumulative reward is
decreasing (in case the model was trained without extrinsic rewards), the GAIL Loss
and Pretraining Loss showed somemodels adopted well according to the demonstration,
as the curve slightly decreases in time, assuming the agent learns the policy. The GAIL
reward increased after a certain number of iterations and the agent obtained relevant
rewards while learning the policy. There was a big decrease observed at the beginning
of the training process—it depends on a variety of combinations of hyperparameters set
in the configuration file. The training delivers a variety of brains with less or accept-
able training results. During the training, each scenario had a moment of decreasing the
reward value, which later became more stabilized. In addition, the agent continuously
improves the imitation of the demonstration during the training duration (Fig. 5).
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Fig. 5. Preliminary GAIL training results of the agent in several running scenarios. Its scalars
show the reward and episode length increase, although there is a big drop in the first part of the
training process. The Policy loss is not convincing at the preliminary stage for some cases-it should
rather decrease. Additional set of observations related to GAIL policies

4 Discussion and Further Potential

Although the preliminary training of the agent to follow the toolpath is not satisfactory
enough, the Unity-based computational framework might serve as a base for further
testing and observations. So far only one type of algorithm has been tested, namely the
Proximal Policy Optimization (PPO), which uses a neural network to approximate the
ideal function that maps an agent’s observations to the best action an agent can take in
a given state (Juliani et al. 2018).

The other algorithms and different hyperparameters can be tested and evaluated
according to the specific needs of the designer, such as testing different strengths of
GAIL or behavioral cloning and their combinations. The potential of the human hand,
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movements, and gesture recognition lies in the prospective implementation in themaking
and crafting processes when the hand and movements of the craftsman can be captured
and recognized to inform the learning policy in a form of an expert demonstration.

At this stage of the investigation, the robot movement is not straightforward, as
it contains a certain noise, which prevents the robot from moving smoothly as in the
demonstration. This can be addressed by a higher number of training episodes during
the default training (this also requires longer training time), and a higher number of
steps in the demonstration data. The robot itself can be set up through an updated
articulation body tool in Unity, benefiting from Unity physics instead of the current
setup of configurable joints. This will improve the motion of the robot. Even though the
gesture is not precisely cloned by AI, the resulting digital process partially follows the
human inputs because of a pre-trained process. In the next phase of the research, such
an approach can be used to train the AI in the assembly of spatial scenarios based on
components deployed as kit-of-parts to create a spatial configuration. In the context of
the AECO, this might contribute to the space created in unconstrained construction site
conditions, while considering the human aspect in creating a unique space.

The future research will concentrate also on the demonstrations provided by the
craftsmen, utilizing more advanced recognition-based sensorial setups, such as motion
capture methods and tactile sensors to obtain more precise data. These will be integrated
with the Unity framework. From the preliminary results, the author observed that the
GAIL combined with behavioral cloning (the strength ratio implemented was 0.5 for
both reward signals-GAIL and behavioral cloning) has the potential in digital fabrication
and production processes, however, more tasks andmore robust processes must be tested
first, such as the creation of an assembly based on kit-of-parts system.

5 Conclusion

Thisworking paper introduced preliminary computational frameworks for further testing
and observations, potentially to be deployed in handcrafting or assembly processes,
utilizing digital tools, such as collaborative robots.

The environments such as Unity and Rhinoceros can serve as platforms to integrate
more gentile operations in making, based on handcrafting, followed and learned by AI.
Even though this hypothesis has not been fully proved yet as the computational models
need further development and testing, itmay be argued that hands-on operations followed
by AI-driven technologies will shift the way how the crafting processes can be executed
in the future and will bring novel understanding where the human agent is still an expert
and an important production agency in the human-in-the-loop processes.

Preliminary observations of the virtual hand proved satisfactory real-time navigation
of the robot (without a specific sensorial framework), however, further testing with the
physical robot is necessary to fully prove the concept.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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