Skip to main content
Log in

Structure Changes in Relation to Digestibility and IgE-Binding of Glycinin Induced by pH-Shifting Combined with Microbial Transglutaminase-Mediated Modification

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the effects of pH-shifting treatment combined with microbial transglutaminase (MTG)-mediated modification on the structure, digestibility, and IgE-binding of glycinin. Glycinin was incubated in acidic (pH 1.0) or alkaline (pH 13.0) solutions to induce protein structure to unfolding followed by refolding for 1 h at pH 7.0. Afterwards, glycinin was incubated with MTG under appropriate conditions. Sodium dodecyl sulfate polyacrylamide gel electropheresis(SDS-PAGE), circular dichroism, UV absorption spectra, and surface hydrophobicity were considered to measure the changes in the structure of glycinin. The digestibility and IgE-binding of glycinin were determined by Tricine-SDS-PAGE and ELISA, respectively. The results showed that pH 1.0 shifting caused the unfolding of the spatial structure of glycinin and the formation of some polymers via disulfide bond. After glycinin was incubated with MTG, the protein preferentially underwent embedding and folding. The acidic compound-modified glycinin was stable for digestion. Under pH 13.0 shifting treatment, glycinin was partially hydrolyzed, and the MTG-modified alkaline-treated glycinin was slightly affected with a good digestibility. Compound modification could reduce the IgE-binding of glycinin, especially under alkaline conditions. Our findings suggested that alkaline pH shifting combined with MTG cross-linking can be an efficient approach to reduce the IgE-binding of glycinin with a labile digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.Y. Kim, K.B. Hong, H.J. Suh, H.S. Choi, Food Funct. 6(11), 3512–3521 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. S. Hu, H. Liu, S. Qiao, P. He, X. Ma, W. Lu, J Agric Food Chem 61(18), 4406–4410 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. B. Liu, D. Teng, Y.L. Yang, X.M. Wang, J.H. Wang, Process Biochem. 47(2), 280–287 (2012)

    Article  CAS  Google Scholar 

  4. E. Penas, G. Prestamo, F. Polo, R. Gomez, Food Chem. 99(3), 569–573 (2006)

    Article  CAS  Google Scholar 

  5. Y. Katz, P. Gutierrez-Castrellon, M.G. Gonzalez, R. Rivas, B.W. Lee, P. Alarcon, Clin Rev Allergy Immunol 46(3), 272–281 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. H. Yang, A.S. Yang, J.Y. Gao, H.B. Chen, J. Food Sci. 79(11), C2157–C2163 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. J. Chen, J. Wang, P. Song, X. Ma, Food Chem. 162, 27–33 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. T. Wang, G.X. Qin, Z.W. Sun, Y. Zhao, Crit. Rev. Food Sci. Nutr. 54(7), 850–862 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. K. Prak, B. Mikami, T. Itoh, T. Fukuda, N. Maruyama, S. Utsumi, Acta Crystallogr Sect F 69(8), 937–941 (2013)

    Article  CAS  Google Scholar 

  10. B. Yuan, J. Ren, M. Zhao, D. Luo, L. Gu, LWT Food Sci Technol 46(2), 453–459 (2012)

    Article  CAS  Google Scholar 

  11. L. Tuppo, R. Spadaccini, C. Alessandri, A. Mari, R. Boelens, Biopolymers 102(5), 416–425 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. W. Chen, J.Y. Gao, H.B. Chen, Food Sci. 23, 391–394 (2010)

    Google Scholar 

  13. Z. Li, Y. Luo, M. Jiang, J. Aquat, Food Product Technol. 25(3), 350–357 (2015)

    Article  CAS  Google Scholar 

  14. O.E. Makinen, E. Zannini, P. Koehler, E.K. Arendt, Food Chem. 196, 17–24 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. D. Sung, K.M. Ahn, S.Y. Lim, S. Oh, J Sci Food Agric 94(12), 2482–2487 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. X. Ma, D. Lozano, H. Ojalvo, R. Chen, E. Lopez Fandiño, I. Molina, Food Sci. Emerg. 29, 143–150 (2015)

    Article  CAS  Google Scholar 

  17. L. Monaci, S.L. Bavaro, E. De Angelis, L. Monaci, Food Funct. (2017)

  18. G.X. Qin, Z.W. Sun, Y. Zhao, Food Agric. Immunol. 21(3), 23–263 (2010)

    Google Scholar 

  19. Y. Li, L.Z, Jiang, Y. Yang, R. Wang, F.F. Han, Biomed. Res. Int. (2016)

  20. J. Jiang, J. Chen, Y.L. Xiong, J Agric Food Chem 57(16), 7576–7583 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Liang, H.G. Kristinsson, Food Res. Int. 40(6), 668–678 (2007)

    Article  CAS  Google Scholar 

  22. G. Rabbani, E. Ahmad, N. Zaidi, S. Fatima, R.H. Khan, Cell Biochem. Biophys. 62(3), 487–499 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. R. Roychaudhuri, G. Sarath, M. Zeece, J. Markwell, Biochem. Biophys. Acta 1699(1–2), 207–212 (2004)

    CAS  PubMed  Google Scholar 

  24. Y.H. Chang, S.Y. Shiau, F.B. Chen, F.R. Lin, LWT Food Sci Technol 44(4), 1107–1112 (2011)

    Article  CAS  Google Scholar 

  25. R. Porta, C.V.L. Giosafatto, P. di Pierro, A. Sorrentino, L. Mariniello, Amino Acids 44(1), 285–292 (2013)

    Article  CAS  PubMed  Google Scholar 

  26. C. Xia, L. Wang, Y. Dong, S. Zhang, S.Q. Shi, L. Cai, J. Li, RSC Adv. 5(101), 82765–82771 (2015)

    Article  CAS  Google Scholar 

  27. E.F.E. Babiker, M.A.S. han, N. Matsudomi, A. Kato, Food Res. Int. 29(7), 627–634 (1996)

    Article  CAS  Google Scholar 

  28. L.J. Kang, Y. Matsumura, K. Ikura, J Agric Food Chem 42(1), 159–165 (1994)

    Article  CAS  Google Scholar 

  29. Y. Chanyongvorakul, Y. Matsumura, M. Nonaka, M. Motoki, T. Mori, J. Food Sci. 60(493), 483–488 (1995)

    Article  CAS  Google Scholar 

  30. C.H. Tang, H. Wu, Z. Chen, Food Res. Int. 39(1), 87–97 (2006)

    Article  CAS  Google Scholar 

  31. M.Y. Han, H.Z. Zu, X.L. Xu, G.H. Zhou, J Food Process Preserv 39(3), 309–317 (2015)

    Article  CAS  Google Scholar 

  32. A.S. Yang, J.H. Xia, Y.Q. Gong, H.B. Chen, Modern Food Sci. Technol. 33(2), 55–60 (2017)

    Google Scholar 

  33. D.A. Clare, G. Gharst, S.J. Maleki, T.H. Sanders, J Agric Food Chem 56(22), 10913–10921 (2008)

    Article  CAS  PubMed  Google Scholar 

  34. Y. Zhou, J.S. Wang, X.J. Yang, D.H. Lin, Y.F. Gao, Y.J. Su, S. Yang, Y.J. Zhang, J.J. Zheng, Int. J. Food Sci. 2013, 1–8 (2013)

    Article  CAS  Google Scholar 

  35. M.B. Villas-Boas, M.A. Fernandes, R. de Lima Zollner, F.M. Netto, Int. Dairy J. 25(2), 123–131 (2012)

    Article  CAS  Google Scholar 

  36. E. Dekking, P. Van Veelen, A. De Ru, E. Kooy Winkelaar, T. Groneveld, W. Nieuwenhuizen, F. Koning, J. Cereal Sci. 47(2), 339–346 (2008)

    Article  CAS  Google Scholar 

  37. D.H.J. Hou, S.K.C. Chang, J Agric Food Chem 52(12), 3792–3800 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. G.L. Ellman, Arch. Biochem. Biophys. 82(1), 70–77 (1959)

    Article  CAS  Google Scholar 

  39. P. Eyer, D. Kiderlen, F. Worek, Anal. Biochem. 312(2), 224–227 (2003)

    Article  CAS  PubMed  Google Scholar 

  40. N. Sreerama, R.W. Woody, Anal. Biochem. 287(2), 252–260 (2000)

    Article  CAS  PubMed  Google Scholar 

  41. M. Amigo Benavent, A. Clemente, P. Ferranti, S. Caira, M.D. del Castillo, Food Chem. 129(4), 1598–1605 (2011)

    Article  CAS  Google Scholar 

  42. A.S. Yang, C.Y. Long, J.H. Xia, P. Tong, Y.F. Cheng, Y. Wang, H.B. Chen, J Sci Food Agric 97(1), 199–206 (2016)

    Article  CAS  PubMed  Google Scholar 

  43. J. Xiao, C. Shi, L. Zhang, Y. Li, J. Qi, Y. Wang, Q. Huang, Food Res. Int. 89(1), 540–548 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. J. Jiang, Y.L. Xiong, M.C. Newman, G.K. Rentfrow, Food Chem. 132(4), 1944–1950 (2012)

    Article  CAS  Google Scholar 

  45. C.Y. Zhao, H.F. Liu, M. Fu, X.H. Zhao, CyTA - J Food 14(1), 138–144 (2015)

    Article  CAS  Google Scholar 

  46. A.L. Gaspar, S.P. de Goes Favoni, Food Chem. 171, 315–322 (2015)

    Article  CAS  PubMed  Google Scholar 

  47. P. Zhang, T. Hu, S. Feng, Q. Xu, T. Zheng, M. Zhou, X. Chu, X. Huang, X. Lu, S. Pan, E.C. Li-Chan, H. Hu, Ultrason. Sonochem. 29, 380–387 (2016)

    Article  CAS  PubMed  Google Scholar 

  48. X. Rui, Y. Fu, Q. Zhang, W. Li, F. Zare, X. Chen, M. Jiang, M. Dong, LWT Food Sci Technol 71, 234–242 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support of National Natural Science Foundation of China (No. 31460439, 31760453), National High Technology Research and Development Program of China (863 Program, No. 2013AA102205), Young Scientist Training Program of Jiangxi Province (No. 20122BCB23006), International Science & Technology Cooperation Program of Jiangxi Province (No. 20142BDH80002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anshu Yang or Hongbing Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

Flow chart of the pH-shifting combined with MTG-mediated modification of glycinin (DOCX 2694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, A., Bai, J., Xia, J. et al. Structure Changes in Relation to Digestibility and IgE-Binding of Glycinin Induced by pH-Shifting Combined with Microbial Transglutaminase-Mediated Modification. Food Biophysics 14, 269–277 (2019). https://doi.org/10.1007/s11483-019-09580-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09580-4

Keywords

Navigation