CORRECTION

Correction to: The enhanced element enrichment in the supercritical states of granite-pegmatite systems

Rainer Thomas¹ · Paul Davidson² · Karen Appel³

Published online: 16 March 2019 © Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Correction to: Acta Geochim

https://doi.org/10.1007/s11631-019-00319-z

In the original publication, there are some missing data in Table 1 and incorrect data in Table 2.

The correct data in Table 1 for Striegau/Strzegom, Poland, and the correct data in Table 2 for fitting parameter B2 in Granites, validated are provided in this correction article. In the second paragraph in subsection 2.2 in the sixth line starting with "Ehrenfriedersdorf pegmatite system...", the text inside brackets should be read as see Fig. 7 (not as see Fig. 6a, b); also, in the fourth paragraph in the same section, the first line starting with "The formation of inclusions such as shown in ..." should be read as Fig. 7 not as 7a, b.

The original article can be found online at https://doi.org/10.1007/s11631-019-00319-z.

Paul Davidson Paul.Davidson@utas.edu.au

- ¹ Section 3.6. Chemistry and Physics of Earth Materials, Helmholtz-Centre Potsdam, German Research Centre for Geoscience – GFZ, Telegrafenberg, 14473 Potsdam, Germany
- ² CODES, Centre for Ore Deposit and Earth Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
- ³ High Energy Density scientific instrument, European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany

 Table 1
 Experimental base: solvus data for pegmatites and granites, obtained from melt inclusions in quartz (and topaz) using the rapid quench cold-seal pressure vessel technique

Pegmatites/granites	T _{crit} (°C)	H ₂ O _{crit} (%)	T-range (°C)	Run pressure	Number of experiments
Pegmatites					
Amis Complex, Namibia	700	29.2	550-700	1–3	6
Capoeira, Borborema, Brazil	682	25.8	620-700	3	7
Ehrenfriedersdorf, E-Germany	718	23.6	500-750	1–3	16
Elba, Italy	718	30.9	525-725	1–3	5
Hilbersdorf, E-Germany	705	28.5	650-750	1–3	5
Malkhan pegmatite field, Russia	721	27.6	600-750	1–3	14
Rito del Medio Pluton, N-New Mexico (USA)	710	26.6	650-710	3	4
Striegau/Strzegom, Poland	699	26.4	600-700	1–3	4
Tanco, Canada	762	27.5	600-750	1–3	8
Volyn, Ukraine	732	27.4	650-750	3	4
Granites					
Eldzhurtinsk, Caucasus, Russia	750	31.7	600-750	1–3	5
Hub Stock, topaz-albite-granite, Tschechien	841	27.4	$550 - 850^{a}$	1–7.5	15
Kirchberg Massif, E-Germany	750	24.0	$500-750^{a}$	2-7.5	25
Königshain Massif, E-Germany	750	26.4	650-750	1–3	6
Zinnwald, topaz-albite-granite, E-Germany	705	27.3	600-850 ^b	1–3	8

^aIncluding high-pressure quenching experiments using a double-stage gas (He) chamber

^bHydrothermal rapid-quench homogenization experiments at 850 °C

Table 2 Fitting parameter forthe solvus curves in normalizedcoordinates

Equation: $Y = A + B1 * X + B2 * X^{2} + B3 * X^{3}$									
A	B1	B2	B3	R	SD				
Granites									
0.84486	0.232	-0.04202	-0.0404	0.81	0.02587				
Granites, valid	dated								
0.8328	0.33082	- 0.16507	2.055×10^{-5}	0.9333	0.0141				
Topaz-albite g	granite F3								
0.50291	0.16782	1.48986	- 1.16455	0.9978	0.00597				
Pegmatites									
0.76463	0.52904	- 0.35804	0.05694	0.9390	0.02176				

 $Y = (t + 273.15)/(t_{crit} + 273.15), t \text{ in } ^{\circ}C$

X = H_2O/H_2O_{crit} , H_2O in [%(g/g)], R—correlation coefficient, SD—standard deviation