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Abstract: Fiber optic sensors have a set of properties that make them very attractive in biomechanics. 
However, they remain unknown to many who work in the field. Some possible causes are scarce 
information, few research groups using them in a routine basis, and even fewer companies offering 
turnkey and affordable solutions. Nevertheless, as optical fibers revolutionize the way of carrying 
data in telecommunications, a similar trend is detectable in the world of sensing. The present review 
aims to describe the most relevant contributions of fiber sensing in biomechanics since their 
introduction, from 1960s to the present, focusing on intensity-based configurations. An effort has 
been made to identify key researchers, research and development (R&D) groups and main 
applications. 
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1. Introduction 

Biomechanics is the mechanics applied to living 

bodies with special emphasis given to the human 

body. It is a field of a confluence of several 

disciplines from engineering, medicine and sports, 

such as mechanics, anatomy, physiology, 

orthopaedics, rehabilitation, ergonomics, kinesiology, 

motor control and many others. 

A major topic is movement analysis. It helps to 

assess the body’s kinematics and dynamics, either to 

optimize an athlete’s skill and his performance, 

either to assess gait patterns and postures of injured 

subjects. Some good examples of the optical 

technology applied to this topic are: (1) 3D motion 

capture systems using the advanced digital optical 

technology [1–4]; (2) pedobarographs or optical 

pressure platforms [5–8]; (3) fiber optic goniometers 

[9, 10]. 

Clinical biomechanics is also an important topic. 

Among a wide variety of applications, it includes the 
design of orthopaedic devices, such as prosthesis 
and implants. Thus, the issues of materials 

biocompatibility, their physical and mechanical 
properties, along with finite element analysis and 
mechanical tests to optimize the design and predict 

the devices performance, their durability and 
efficacy, are frequently reported. Consequently, 
in-vitro, ex-vivo and in-vivo studies are regular in 

biomechanics. More recently, interesting topics 
including tissue, cell and molecular biomechanics 
have been introduced. A good example of the optical 

technology applied to this topic is near infrared 
(NIR) spectroscopy (NIRS), allowing to assess the 
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optical properties of cartilage and evaluate 
low-grade lesions [11–14]. The clinical 
biomechanics also poses interesting challenges in 
developing sensors for minimally invasive 

procedures, capable of not disturbing the natural 
biomechanics of body structures, mainly if in-vivo 
applications are pursued. That is why optical fibers 

sensors hold enormous potential for the use in the 
biomechanics. Due to the biocompatibility of the 
high-purity fused silica glass (SiO2), an optical fiber 

has the potential to neither adversely affect the 
physiological environment, nor be adversely 
affected by it [15]. Other important attributes that 

will be discussed in this paper include small size, 
light weight, geometrical flexibility, chemical 
inertness, electric and thermal insulation, and 

immunity to electromagnetic interference [16–19]. 

An optical fiber guides light making possible to 

illuminate and capture images from the inside of the 

body. Indeed, the initial optical fiber based systems 

were proposed for endoscopic procedures, still 

before the 1960s [20]. It was, however, the 

possibility of using an optical fiber to carry 

information that revolutionized the world of 

communication. Furthermore, an optical fiber allows 

to relate a change in radiation properties (intensity, 

optical frequency, phase and polarization) with a 

change in a physical quantity (e.g., strain and 

pressure), and this possibility is also introducing 

substantial changes in the world of sensing. 

The initial fiber optic sensors were proposed 

during the 1960s, based on intensity-modulated 

configurations. Since that time, a myriad of 

solutions have been presented covering many 

configurations and applications. However, the vast 

majority have been used for research and 

investigational purposes. With some exceptions, few 

have presented turnkey solutions, and fewer have 

reached commercialization. Table 1 is a list of 

companies offering fiber optic sensing solutions for 

the biomechanics and other related applications. 

Nevertheless, these companies and fiber optic 

sensors remain unknown to many engineers, 

biomechanists, clinicians and researchers. Most 

likely, this is related to the fact that their education 

and practice are focused on conventional sensors 

and non-optical technologies. 

Table 1 Companies in the market offering fiber optic sensors suitable for biomechanics applications. 

Company Local, country Website 

5DT Inc. Irvine, CA, USA www.5dt.com  

ADInstruments, Inc. Colorado Springs, CO, USA www.adinstruments.com  

Arrow International, Inc (Teleflex Medical) Research Triangle Park, NC, USA www.arrowintl.com 

BioTechPlex Escondido, CA, USA www.biotechplex.com 

Camino Laboratories (Integra LifeSciences) Plainsboro, NJ, USA www.integralife.com 

Delsys Inc. Boston, MA, USA www.delsys.com  

Endosense, SA Geneva, Switzerland www.endosense.com 

FISO Technologies Québec, Canada www.fiso.com 

InnerSpace Medical, Inc. Tustin, CA, USA www.innerspacemedical.com 

InvivoSense Trondheim, Norway; www.invivosense.co.uk 

LumaSense Technologies Santa Clara, CA, USA www.lumasenseinc.com 

Luna Innovations Blacksburg, VA, USA www.lunainnovations.com 

MAQUET Getinge Group Rastatt, Germany http://ca.maquet.com 

Measurand Inc. New Brunswick, Canada www.measurand.com  

Neoptix Inc. Québec, Canada www.neoptix.com 

Opsens Québec, Canada www.opsens.com 

Radi Medical Systems (St. Jude Medical Systems AB) Uppsala, Sweden www.radi.se 

RJC Enterprises, LLC Bothell, WA, USA www.rjcenterprises.net 

Samba Sensors Västra Frölunda, Sweden www.sambasensors.com 
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The present review aims to identify the most 

relevant contributions in biomechanics oriented fiber 

optic sensing, pointing out applications, researchers 

and research and development (R&D) groups that 

have been working in the field and related areas. 

2. Sensor classification 

Fiber optic sensors can be classified accordingly 

to their working principles into some major 

categories. One of them relies on the modulation by 

the measurand of the light intensity, identified as 

intensity-modulated configurations, the first to be 

reported in the literature. Nowadays, they stand for a 

mature solution in many applications and are 

relatively simple to interrogate [19]. Sensing devices 

based on fiber Bragg gratings and Fabry-Pérot 

structures are also of great interests and have already 

been applied in the biomechanics. Compared to 

intensity-modulated schemes, they stand for higher 

sensitivity and resolution, but at the expense of 

relatively complex interrogation/detection 

techniques [21]. Our approach has been focused on 

intensity-modulated configurations, but all of them 

should be addressed if the full spectrum of 

biomechanics applications has to be known. 

Most common configurations of intensity-modulated 

sensors applied in biomechanics are: 

(1) An optical fiber with its tip placed in front of 

a movable reflecting membrane/mirror. The optical 

fiber guides the light of the source to the fiber tip, 

and under the influence of the measurand, the 

original membrane distance to the fiber tip changes, 

as well as the intensity of the reflected light that is 

coupled by the same fiber or another fiber parallel to 

the first one (Fig. 1). As it will be seen, first studies 

made use of similar configurations. However, 

instead of a single optical fiber, bundles of optical 

fibers have been used as waveguides. 

(2) An optical fiber submitted to bending or 

curvature. These actions will result in light loss into 

the cladding and lead to a decrease in the light 

intensity (Fig. 2). 

 
Light reflected 
by the mirror 

Mirror

Light at fiber end

Optical fiber

d 

 
Fig. 1 An optical fiber placed in front of a movable reflecting 

membrane/mirror: the back-reflected intensity decreases when 

the distance, d, increases. 

Light in

Light outOptical fiber

 
Fig. 2 Light losses due to microbending. 

3. Earlier intensity-modulated configurations 

The initial papers reporting fiber optic sensors 

were published in the early 1960s. They were based 

on intensity-modulated schemes and initially 

proposed for the intravascular and cardiac 

applications. In 1960, Michael Polanyi (American 

Optical Company, Southbridge, MA) and Robert 

Hehir (St. Vicent Hospital, Worcester, MA) 

presented an optical system for measurement of the 

in-vivo oxygen saturation and dye concentration in 

the blood [22] (Fig. 3). 

Light  in

Light out

Catheter 

Glass fiber bundle 
sensing tip  

Fig. 3 Schematic drawing of the Polanyi sensor (adapted 

from[ 23]). 

The innovative contribution of the system was 

its sensing probe, made of two glass fibers bundles 

located within a catheter (about 150 fibers with 

about 50 m in diameter each) [22–24]. These two 

bundles have been used as waveguides, one to guide 

the filtered light from a tungsten lamp source to the 
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tip of the catheter, the other to guide the 

back-scattered and diffusely reflected light, modified 

in its spectral distribution due to blood interaction, 

into a photocell. The pulses of the source were 

located at 805 m and 660 m, to measure the 

oxygen saturation, and at 900 m and 805 m, to 

measure the dye concentration [23]. The reflected 

light has been analyzed spectrophotometrically, on 

the basis of the linear relationship between the 

measurand and the ratio of the intensities of the two 

reflected wavelengths [25]. The following years 

have been particularly prolific using this or similar 

techniques in the laboratory and clinical 

environments [26–35]. 

It was also in the 1960s that fiber optic sensors 

became interesting for pressure measurement 

[36–39]. They intended to solve the drawbacks of 

standard fluid-filled catheters [40], such as 

hydrostatic artifacts caused by body movements and 

the necessity of flushing them to maintain accuracy 

[41]. The working principle of these new sensors 

also is based on the variation of the light intensity. 

To sense pressure, the light from the source is 

guided to a movable membrane which, under 

pressure, reflects the light back to a photodetector 

[36, 37]. Several US patents were presented at that 

time [42–44]. Among all contributions, the work of 

Lekholm and Lindström at the Research Laboratory 

of Electronics of the Chalmers University of 

Technology (Gothenburg, Sweden) deserves to be 

highlighted. Authors have presented a sensor for 

in-vivo blood pressure measurement [37, 39] (Fig. 

4). 

 Light guide
bundle 

Protective dome

Reflective membrane 

Catheter 

 
Fig. 4 Schematic drawing of the Lekholm and Lindströn 

sensor (adapted from [39]). 

The above sensor was extensively described, 

covering the theoretical topics of fiber optics 

properties, membrane reflection, operation modes, 

number of fibers and their distribution, membrane 

mechanics, volume displacement, frequency 

dependence and limitations [39]. Error sources, 

sensitivity and miniaturization, failure and 

redundancy were also addressed [39]. 

One of the innovative features of the sensor was 

its miniaturization, evidencing sensor heads of only 

0.85-mm (unshielded) and 1.5-m diameters. These 

heads consisted of air-filled chambers covered by a 

6-m pressure sensitive membrane of 

beryllium-copper. As in previous works, the guiding 

system was made of two independent optical fiber 

bundles, one to guide the light, from a 

gallium-arsenide light emitting diode (LED) source 

to the sensor head [later versions included a 

microminiature glow lamp powered by the direct 

current (DC)], the other to guide the reflected light 

into a photodetector. Near the reflective membrane, 

the optical fibers were randomly distributed 

allowing for higher miniaturization of the sensor 

head [39]. Another interesting feature of the sensor 

was its insensitivity to mechanical vibrations, shocks, 

and movements due to a light and stiff membrane. 

The cross sensitivity to temperature has been 

observed. Nevertheless, under temperature 

variations from 20 ℃ to 37 ℃, zero drift was 

reported after about 40 s [39]. The initial fabricated 

probes had a flat frequency response from static 

pressure to 200 Hz [37], increasing to 15 kHz in the 

following experiments [39]. After successful tests on 

one dog and one man [37], clinical tests have 

followed [39]. 

Similar intensity-modulated sensors with their 

membranes located at the tip of the sensor have 

since been reported for intravascular and 

intracardiac pressure measurement [45, 46]. 

Nevertheless, sensors with membranes located at the 

tip of the probe could lead to erroneous intravascular 

readings due to tip collisions with the blood vessels 

or the ventricular walls (the so-called wall or piston 
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effect) and promote clot formation for long periods 

of monitoring [47, 48]. These drawbacks could be 

reduced by changing the location of the sensing 

membranes to the sides of the probe. Taylor et al. in 

1972 [47] and Matsumoto et al. [48] in 1978, 

implemented this feature in fiber optic sensors, 

intended to monitor multiple physiologic changes, 

such as the cardiac output, oxygen saturation, dye 

clearance, intravascular pressure, and heart rhythm 

(Fig. 5). Nevertheless, tip and side-hole 

configurations have been adopted up to today. In 

fact, the most important achievement in the 

following years was miniaturization of sensor 

probes using microfabrication techniques [49–53]. 

for pressure Mirror/cantilever

Metallic tip 

Optical fiber bundle 

Side membrane

Catheter 

Optical fiber tip for 
oxygen saturation  

Fig. 5 Schematic drawing of the Matsumoto sensor, intended 

for pressure and oxygen saturation measurement, adapted from 

[48] (a side membrane has been used for pressure measurement 

and a tip configuration for oxygen saturation). 

Besides intravascular pressure measurement, 

similar intensity-modulated configurations to the 

one proposed by Lekholm and Lindström [37, 39] 

have been explored to measure pressure in other 

sites of the human body. For example, in the 1970s, 

Epstein et al. [54] and Wald et al. [55, 56], both 

from the Department of Neurosurgery and 

Neurology of the New York University Medical 

Center, were the first to apply optical fibers to 

measure the intracranial pressure (ICP). Vidyasagar 

et al. [57, 58] adapted the technique for 

non-invasive purposes through the measurement of 

the anterior fontanel pressure in newborns. Authors 

stated the advantage of electric insulation provided 

by optical fibers to eliminate the risk of electric 

shocks. The system they have used was probably the 

first to be commercially available (Ladd Intracranial 

pressure monitoring device, Model 1700, Ladd 

Research, Williston, VT). However, while a 

significant correlation between the anterior fontanel 

pressure and ICP was reported, the same was not 

observed by others [59]. It seems the extradurally 

technique has the disadvantage of signal damping 

and a tendency to read higher than the true ICP [60]. 

4. Earlier commercial solutions 

The configuration proposed by Lekholm and 

Lindström [37, 39] was also the basis for the 

development of Camino pressure sensors, probably 

the most widespread dual-beam referencing 

intensity-modulated based sensors (Camino 

Laboratories, San Diego, CA, USA; acquired by 

Integra LifeSciences; Plainsboro, NJ, USA) [61]. In 

1996, Keck reported the company had been 

producing around 60 000 devices/year [62]. This 

transducer-tipped catheter consisted of a tip enclosed 

in a saline-filled sheath with side holes (Fig. 6). A 

pressure sensitive diaphragm varied its distance to 

the optical fibers changing the intensity of the 

reflected light. 

Light  in

Light out

Saline-filled sheat 
with side holes 

Reflective diaphragm

 
Fig. 6 Schematic drawing of earlier Camino sensors  

(adapted from [63]). 

Following the above original contributions, 

Camino sensors became popular in the 1980s, and 

since that time they have been extensively used for 

pressure measurement in different sites of the body, 

as in the brain, muscles and joints. 

In the late 1980s, Crenshaw et al. [63], from the 

Division of Orthopaedics and Rehabilitation of the 

University of California (San Diego, CA, USA) and 

the NASA-Ames Research Center (Moffett Field, 

California, USA), were the first to apply Camino 

sensors (model 110-D) to measure intramuscular 
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pressure (IMP), either in animals or in human 

volunteers. These sensors proved to be insensitive to 

hydrostatic artifacts caused by body movements and 

capable of long-term measurement (2.5 h) without 

flushing them to maintain accuracy [63]. Conversely, 

long-term measurement was also associated with 

patient discomfort, probably due to the size and 

rigidity of the polyethylene sheath enclosing the 

sensor. Even so, these IMP sensors were used in 

many biomechanics applications, such as during 

isometric and concentric exercises [64]; to 

demonstrate that IMP varied with the muscle depth 

[65]; to study compartment syndrome following 

prolonged pelvic surgery [66]; and to analyze 

muscles contribution during gait [67]. 

Pedowitz et al. [68], also from the Division of 

Orthopaedics and Rehabilitation of the University of 

California, applied Camino sensors to measure 

intraarticular pressure (IAP), namely during 

continuous passive motion of the knee joint, a 

common post-surgery therapeutic procedure. In the 

following years, IAP was also monitored in 

cadaveric glenohumeral joints to study its relation 

with the range of movement of the shoulder joint 

[69]; during typing tasks to measure cubital tunnel 

pressures [70]; and in patients suffering from cubital 

tunnel syndrome [71, 72]. 

It was, however, for ICP measurement that 

Camino sensors became popular, namely the model 

110-4B. They were considered to be accurate and 

reliable for ICP monitoring, evidencing high-quality 

readings under laboratory and clinical conditions, a 

good correlation with strain gauge sensors and 

fluid-filled systems, insensitivity to hydrostatic 

artifacts and no flushing or infusion requirements 

[73–78]. On the other hand, they also underwent 

extensive scrutiny leading to identification of 

several drawbacks and questioning their routine use, 

particularly in clinical practice. Reported drawbacks 

included sensor failure (e.g., breakage, cable kinking, 

probe dislocation, abnormal readings), 

contamination, infection, hemorrhage, drift, and 

magnetic resonance imaging (MRI) incompatibility 

due to the presence of ferromagnetic components 

[74, 76–88]. 

Alternative sensors were proposed, particularly 

using Fabry-Pérot configurations [41, 89, 90], but 

their description is away from the scope of the 

present review. 

Meanwhile, a good example of novel 

applications of light intensity-modulated sensors 

supported by reflective membranes is the 

radiofrequency (RF) ablation catheter with force 

feedback, presented by Polygerinos et al. [91, 92], 

from the Department of Mechanical Engineering of 

King’s College of London. Three plastic optical 

fibers were aligned inside a plastic catheter in a 

circular pattern to provide a three axes force sensing 

system (Fig. 7). The sensor was tested in an artificial 

blood artery showing a working range of 0 to 1.1 N, 

a resolution of 0.04 N and good dynamic response. 

Optical fibers
Deflective material

Saline holes

Mirrors

 
Fig. 7 Schematic drawing of the Polygerinos sensor (adapted 

from [91, 92]). 

5. Intensity-modulated sensors based on 
bending 

Intensity-modulated schemes based on macro- or 

micro-bending were proposed for biomechanical 

applications. As for almost intensity-based sensors, 

they were easy to fabricate and require simple 

interrogations techniques if fine precision was not 

required [93–95]. One of the first applications in 

biomechanics was in dentistry. In 1995, Kopola et al. 

[96], from the University of Oulu (Finland), 

proposed a device to measure human biting forces 

consisting of a mouthpiece, made of two stainless 

steel plates, and a microbending fiber optic sensor 
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placed between them. The sensor was able to 

measure forces ranging from 0 to 1000 N with a 

resolution of 10 N [96]. 

Also in the 1990s, another group from Finland, 

led by Paavo Komi, at the Biology of Physical 

Activity Department of the University of Jyväskylä, 

in collaboration with researchers from the 

Laboratoire de Physiologie, GIP Exercise (Lyon, 

France), made important contributions in the study 

of tendons and ligaments biomechanics. They 

explored fiber optic sensors as an attempt to reduce 

the errors introduced by large conventional buckle 

transducers and minimize the subject’s complaints 

[97]. In their first study, a needle was used to guide a 

500-m-diameter optical fiber into the rabbit 

common calcaneal tendon [97]. The fiber had a 

polymethol metachrylate core and a fluorinated 

polymer cladding. After removal of the needle, the 

tensile loads applied to the tendon were able to bend 

the optical fiber leading to changes in light intensity. 

The fiber was illuminated by an infrared LED, with 

the central wavelength at 820 nm, and the detector 

was an integrated circuit photodiode. To assess 

tendon forces, the system was calibrated using static 

equilibrium conditions. Hysteresis was negligible, 

and despite a slight time delay for the optical sensor 

response, a good agreement with a reference strain 

gauge transducer was obtained [97]. In-vivo studies 

followed their first ex-vivo experiment. The majority 

of them resulted from cooperation between the 

University of Jyväskylä and other institutions, such 

as the Institute for Biomechanics of the German 

Sport University of Cologne (Cologne, Germany) 

[98–100]. These studies reported the Achilles tendon 

force contribution during locomotion [101, 102]; 

individual muscle contributions to the Achilles 

tendon force [98]; leg muscles contributions to 

perform standardized jumps [103]; the muscle 

behavior during jump skills [99]; and the interaction 

between lower leg muscles and the Achilles tendon 

in walking [100]. 

Compared to buckle transducers, a clear 

advantage of these sensors is their minimally 

invasive impact since there are smaller and only 

require an anesthetic cream, applied to the skin 

surrounding the tendon, instead of anlar anesthesia 

[102]. However, the validity of previous studies has 

been questioned. Contradicting the original findings 

by Komi et al. [97], a nonlinear relationship was 

observed between the sensor output and the tendon 

force, requiring the use of third order polynomials 

for adequate fitting [104]. Hysteresis [104, 105], 

cable migration [104, 106], loading rate [105, 106], 

tendon creep [107], calibration procedures [108] and 

skin movement artifacts [106] were also pointed as 

possible sources of error in force prediction. To 

diminish these sources of error is a challenge 

because soft tissues are complex structures with 

nonlinear, visco or poroelastic properties requiring 

the most accurate sensors and techniques to obtain 

precise measurements. 

The macrobending losses of an optical fiber have 

also been explored to monitor respiratory and 

cardiac functions, namely through the fiber optic 

respiratory plethysmography (FORP) technique. 

This non-invasive technique was firstly described by 

Augousti et al. in 1993 [109], at the School of Life 

Sciences of the Kingston University (United 

Kingdom) and was based on a notional geometrical 

model of the human respiratory system that 

consisted of two stacked connected cylinders, with 

the top cylinder representing the thorax and the 

lower abdomen [110]. It was presented as an 

alternative to the respiratory inductive 

plethysmograph technique, considered to be 

expensive and susceptible to electromagnetic 

interference [109, 111]. Authors also presented a 

improved version based on a novel figure-of-eight 

loop configuration, contributing for the increased 

linearity of response, less mechanical resistance and 

hysteresis [112]. The FORP technique was also  

explored by others [113–115]. Such an example was 

the FORP system presented by Davis et al. [113], 

from the Centre for Imaging and Advanced Optics 
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of the School of Biophysical Sciences and Electrical 

Engineering (Swinburne University of Technology, 

Melbourne, Australia). The system was improved to 

monitor children high-frequency, low amplitude 

chest wall movements, claiming for no risk of 

electric noise and shock [114]. 

The possibility to apply optical fibers into 

textiles and create smart wearable clothes to monitor 

vital functions and motion was an important 

application in biomechanics. 

Initial contributions were focused on gloves to 

assess the hand/fingers motion and interact with 

virtual environments. A large variety of sensors have 

been employed, including strain gauges, bend 

sensors, fiber optics, pneumatics, Hall effect sensors, 

among others [116–119]. Actually, initial gloves 

prototypes, such as the Sayre glove, developed in 

1977 by Thomas de Fanti and Daniel Sandin 

(University of Illinois,Chicago, IL, USA), were 

based on light attenuation caused by bend of a 

flexible tube (not an optical fiber), with a light 

source at one end and a photocell at the other [116]. 

However, it was commercialization of DataGloveTM 

that triggered research about these devices and 

spread their popularity worldwide [119]. 

DataGloveTM was developed by Zimmerman et al. 

[120] at VPL Research (VPL Research, Inc.; 

acquired by SunMicrosystems which was acquired 

by Oracle Corporation, Redwood Shores, CA, USA), 

the first company to sell virtual reality gloves and 

the pioneer in 3D computer graphics. It consisted of 

a hand to machine the interface device providing 

real-time motion of the hand. A neoprene glove 

incorporating several sensors and technologies was 

used. The optical part of it consisted of patented 

optical goniometers intended to measure the fingers 

joints motion [121]. These devices were made of a 

flexible black rubber tube with a reflective inner 

wall coated with aluminum spray (a possible 

embodiment). An optical source and a 

photosensitive detector (it could be an optical fiber), 

were placed at the ends of the tube allowed for 

measurement of light attenuation concomitant with 

the bend of the tube. Wise et al. [122], from the 

Rehabilitation Research and Development Center of 

VA Medical Center (Palo Alto, CA, USA), evaluated 

DataGloveTM performance for clinical application. 

Inclusion of abduction/adduction measurement, as 

well as the wrist motion and full characterization of 

the thumb movement, has been recommended to be 

used as an effective clinical tool [122]. 

Fifth Dimension Technologies (5DT, Irvine, CA) 

developed another glove using optical fibers to sense 

the fingers motion. The sensor was modulated by the 

intensity to sense the fingers angular motion with a 

5- (one joint per finger) or 14-sensor arrangement 

(two joints per finger) [123, 124]. It has been used 

as the primary manual input device for virtual reality 

technologies [123] and to improve hand function in 

adolescents with cerebral palsy, by means of the 

in-home gaming technology [124, 125]. It was, 

however, an expensive device (the current lower 

price for one glove is US$995) [126]. The price 

increased in versions incorporating further sensors 

or intended for specific applications, such as for the 

MRI environment. In fact, other affordable sensors 

were presented, such as the non-optical bend sensor 

(Flexpoint, South Draper, UT) developed by Simone 

et al. [117] for 24-hour daily life monitoring of 

finger motion. The sensor total cost was less than 

US$40 [117]. 

Miniature fiber optic goniometers seemed also 

interesting to study the association between highly 

repetitive movement and musculoskeletal disorder. 

The impact of typing was a possible application, 

which was studied by Nelson et al. [9] (General 

Motors, Orion Assembly Center, MI, USA), using 

opto-electric finger goniometers, developed in the 

Biodynamics Laboratory of the Ohio State 

University (Columbus, OH, USA). A similar study, 

using commercial sensors (Shape Sensors, 

Measurand Inc., New Brunswick, Canada), was 

performed by Jindrich et al. [10] at the Department 

of Environmental Health of the Harvard School of 
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Public Health (Boston, MA, USA). 

The current research has been focused on the 

process of embedding fiber optic sensors into textile. 

In 2006, the OFSETH European project (Optical 

Fiber Sensors Embedded into technical Textile for 

Healthcare – OFSETH), a €3.5 million project made 

its contribution in the field [127, 128]. Several 

configurations, such as intensity-modulated, fiber 

Bragg gratings and optical time domain 

reflectometry (OTDR), were explored for healthcare 

applications. Project results were published for 

respiratory monitoring in the MRI environment 

[129–132] and pulse oximetry using near infrared 

spectrometry [133]. 

To conclude our approach to intensity-modulated 

sensors, a reference to pressure mapping devices 

seems mandatory. Several companies such as  

Tekscan Inc. (South Boston, MA, USA) and Novel 

GmbH (Munich, Germany) already offered powerful 

accurate electronic based systems at the relatively 

low cost for many biomechanical applications. Thus, 

optical fiber based systems should be capable of 

competing with these standard technologies. 

Meanwhile, some of their limitations were described. 

Tekscan sensors were based on conductive 

elastomers, which might exhibit nonlinear response, 

hysteresis, and gradual voltage drift [134]. The 

novel sensors used capacitive-based transducers, 

which could be affected by electrical interference 

and suffered from low spatial resolution, drift, and 

high sensitivity to temperature [134]. Moreover, 

with both technologies only normal loads and 

pressures could be measured. Until now, few 

alternative contributions have been presented in this 

field. The work of Wang et al. [135], from the 

Departments of Mechanical Engineering and 

Orthopaedics and Sports Medicine of the University 

of Washington (Seattle, WA, USA), is of particular 

interest because it represents the first contribution in 

the field using a bend loss technique. A 2×2 array of 

multimode fibers, embedded into the 

high-compliance material and forming four 

orthogonal intersection points, was developed to 

form the basic sensing sheet. Under compressive 

loading, light attenuation caused by physical 

deformation of the fibers at the intersection points 

allowed to calculate the (x, y) coordinates of the 

pressure point and the corresponding normal stress. 

To obtain shear stress, two layers of the basic 

sensing sheet, placed between gel/polymeric shoe 

insole pads, were used. In this way, the relative 

difference between the corresponding pressure 

points allowed calculation of the amount of shear. 

Repeatable results were obtained under bench 

mechanical loading tests. The minimum detectable 

vertical and shear forces were 0.4 N and 2.2 N (at 60º 

pitch angle), respectively. To address some 

limitations of the previous configuration (e.g., low 

spatial resolution, consistent and accurate 

manufacturing of the sensor, cost and noise), a batch 

process to fabricate Poly (dimethylsiloxane) (PDMS) 

as the optical medium, and a neural network 

technique to provide an accurate description of the 

force distribution were proposed [134, 136, 137]. 

After successful bench tests, the same group 

recently presented a full-scale foot pressure/shear 

sensor, capable of measuring normal forces ranging 

from 19.09 kPa to 1000 kPa [138]. 

6. Final remarks 

Intensity modulated fiber optic sensors applied 

for biomechanics have been reviewed. Usually, they 

fall into one of two categories: a reflective 

membrane/mirror that changes its distance to the 

fiber tip; or an optical fiber that bends accordingly to 

the action of the measurand. While the first 

configuration has been used to sense pressure in 

many sites of the human body, the second seems to 

offer a wide range of applications from tendons 

force measurement to respiratory monitoring and 

goniometric applications. 

Since the middle 1960s, the fiber optic 

technology has progressed at an astonishing rate, 

triggered by the increasingly demands of large 
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capacity communication networks, turning out the 

optical fiber systems to be nowadays the backbone 

of the information society. This movement benefits 

the development of other applications of the optical 

fiber, most notably in the sensing domain where the 

intrinsic characteristics of the fiber remarkably 

match the ideal requirements of a sensor system. 

Indeed, besides the fiber being the sensing element 

and the communication (telemetry) channel, it 

brings the optical field (optical power) to the 

measurement region, eliminating the need of 

additional wiring for power delivery to the sensor, a 

need in many sensing approaches as is the case of 

electrical sensing in most of its applications. 

Therefore, the fast development of this sensing 

technology and its utilization in a diversity of areas 

are not surprising, as is the case of biomechanics. 

Here, what has been achieved so far, reviewed in 

this paper when considering measurand induced 

optical power modulation, is a clear indication of 

how valuable the fiber sensing approach is when 

addressing this field and provides an insight into 

what can be achieved in the future. 
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