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Abstract: A rigid conformal (RC) lap can smooth mid-spatial-frequency (MSF) errors, which are 
naturally smaller than the tool size, while still removing large-scale errors in a short time. However, 
the RC-lap smoothing efficiency performance is poorer than expected, and existing smoothing 
models cannot explicitly specify the methods to improve this efficiency. We presented an explicit 
time-dependent smoothing evaluation model that contained specific smoothing parameters directly 
derived from the parametric smoothing model and the Preston equation. Based on the 
time-dependent model, we proposed a strategy to improve the RC-lap smoothing efficiency, which 
incorporated the theoretical model, tool optimization, and efficiency limit determination. Two sets of 
smoothing experiments were performed to demonstrate the smoothing efficiency achieved using the 
time-dependent smoothing model. A high, theory-like tool influence function and a limiting tool 
speed of 300 RPM were obtained. 
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1. Introduction 
Large aspheric optical surfaces can be precisely 

manufactured using computer-controlled optical 
surfacing (CCOS). For next-generation large- 
aperture and high-resolution imaging optical 
systems such as the thirty meter telescope (TMT) 
and giant magellan telescope (GMT) [1, 2], 
correcting mid-spatial-frequency (MSF) errors on 
the optical surfaces is very important. Failure to 
control the MSF characteristics yields reduced 
optical performance due to the resultant MSF errors, 

which are directly related to the point-spread- 
function sharpness [3]. 

Two different approaches to controlling MSF 
errors exist: directed figuring and natural smoothing. 
The directed figuring of small-scale errors requires 
small tools, which in turn requires a long polishing 
run time, high-accuracy optical metrology, and 
high-accuracy tool positioning. A large polishing 
tool can naturally correct MSF errors smaller than 
the tool size, while also removing large-scale errors 
within a short time period. However, smoothing 
MSF errors from aspheric mirrors using large tools 
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is challenging, because the curvature changes on the 
surface require tools with sufficient compliance to 
fit the surface, but with sufficient rigidity to realize 
natural smoothing. 

In 2010, Kim and Burge developed a rigid 
conformal (RC) lap using a visco-elastic 
non-Newtonian fluid to overcome the conflict 
between the desired rigidity and flexibility for large 
polishing laps [4]. Compared with active stress laps 
[5] and semi-flexible tools [6], an RC lap provides 
numerous advantages, such as ease of large-scale 
manufacture, superior surface roughness, and a 
highly stable theory-like tool influence function 
(TIF). However, the RC-lap smoothing efficiency 
performance is poorer than expected [7]. 

To quantify the smoothing effect, various 
mathematical models have been developed. For 
example, Brown et al. proposed a smoothing model 
for an elastic-backed flexible lapping belt in 1981 
[8]. Subsequently, Jones simulated MSF error 
evolution based on a simple linear parametric model 
[9], and Mehta and Reid later proposed the classic 
Bridging model to study the smoothing effect, which 
is based on the theory of elasticity [10]. Tuell et al. 
then improved the Bridging model using the spatial 
Fourier decomposition method [11]. Later, Kim et al. 
introduced a parametric smoothing model based on 
the simplified Bridging model to describe smoothing 
effects [12]; this parametric smoothing model was 
further verified by Shu et al. using a 
correlation-based model [13]. Shu et al. also noted 
that the model presented by Kim et al. neglected the 
instantaneous property and therefore constructed a 
new model based on the Bridging model [14]. This 
new model discloses the exponential decay of the 
MSF errors with time during smoothing. Finally, 
Nie et al. constructed a generalized numerical 
pressure distribution model to solve the 
superposition of innumerable sinusoidal errors with 
different frequencies and amplitudes through finite 
element analysis (FEA) [15]. 

As indicated above, the majority of the past 

works have focused on the construction of models to 
quantitatively describe the smoothing effect. 
However, no explicit guidance has been developed 
to specify methods through which the smoothing 
efficiency can be improved. For instance, the 
parametric smoothing model reveals that the 
smoothing efficiency is related to the tool stiffness. 
However, if the smoothing time is considered, a 
greater number of factors can influence the 
smoothing efficiency. 

In this paper, we present a time-dependent 
smoothing model containing specific factors directly 
related to the smoothing efficiency, which is derived 
from the parametric smoothing model and Preston 
equation. Based on this model, we can maximize the 
RC-lap smoothing performance. The remainder of 
the paper is organized as follows. In Section 2, we 
briefly introduce the general information on the RC 
lap and the parametric smoothing model. In Section 
3, we propose a strategy to improve the smoothing 
efficiency, which incorporates the theoretical model, 
tool optimization, and efficiency limit determination. 
In Section 4, we apply the above principles to actual 
smoothing experiments, and present the results. The 
conclusions are given in Section 5. 

2. RC lap and parametric smoothing 
model 

(1) RC lap and smoothing effect 
The RC lap uses a non-Newtonian fluid (Silly- 

PuttyTM) as a medium, which conforms to an 
aspheric surface while generating a naturally 
smoothing effect. Having rigidity and viscosity 
intermediate between a solid and a liquid, the RC 
lap has the advantages of both rigid and compliant 
tools. When the tool is slowly travelling along the 
tool path, it acts like a compliant tool over a large 
time scale. However, in the short term, the RC lap 
behaves like a rigid tool, as a result of the tool 
motion and bumpy surface. 

The basic principles of the RC-lap smoothing 
effect are straightforward. As the RC lap has a flow 
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characteristic, it can fully deform in response to 
MSF errors. The MSF-error peaks have higher 
pressure than the valleys, because of the elastic 
property of the non-Newtonian fluid. The MSF 
errors then converge, because of the nonuniform 
material removal. The polishing pressure 
distribution between the RC lap and workpiece 
induced by a particular spatial frequency feature for 
the one-dimensional (1D) case is shown in Fig. 1. 
Note that the specific tool structure is presented in 
Section 3(3). 

 
Fig. 1 RC-lap polishing pressure distribution induced by 

sinusoidal error. 
(2) Parametric smoothing model 
The parametric smoothing model can be used to 

describe the smoothing effect for visco-elastic 
polishing tools [12]. The dimensionless smoothing 
factor SF is defined as the ratio of Δɛ to ΔZ, where 
Δɛ is the difference between the peak-to-valley (PV) 
magnitude of a particular spatial frequency error 
before and after smoothing, and ΔZ is the 
corresponding change in the nominal removal depth. 
The linear relationship between SF and the initial 
surface error ɛini can be expressed as 

ini 0( )SF k
Z
ε ε ε−∆

= = ⋅
∆

         (1) 

where ɛ0 is a fixed value indicating the final 
smoothing limit, and k is the sensitivity to ɛini. 

 
Fig. 2 Before εbefore, after εafter, and final ε0 smoothing 

profiles for sinusoidal error. 

As shown in Fig. 2, ɛ0, Δɛ, and ΔZ can be 
measured experimentally during smoothing, and the 
smoothing efficiency k can be obtained by fitting the 
measurement results. The SF function slope is 
proven to be related to the tool stiffness κtotal. 
However, the k defined in this model neglects the 
instantaneous property. It has been shown that the 
MSF errors decay exponentially with time during 
smoothing [14]. Unfortunately, the smoothing rate is 
not yet well defined. 

3. Smoothing-efficiency k improvement 
strategy 

(1) Theoretical model 
In order to derive an explicit equation for k 

improvement, we now present a time-dependent 
smoothing model, which contains specific factors 
related to the smoothing rate. 

For the orbital motion, the instantaneous lap 
velocity V (mm/s) can be obtained from the stroke 
speed Ω (RPM) and the orbital radius A (mm), such 
that 

2
60

AV π Ω⋅ ⋅
= .             (2) 

Based on the dynamic mechanical properties of 
Silly-Putty, the storage modulus E′ is a function of 
the applied stress frequency f (Hz), as shown in  
Fig. 3 [16]. Because f is determined by the     
local features under the tool motion, it can be   
expressed as 

2 / 60f V Aξ π Ω ξ= ⋅ = ⋅ ⋅ ⋅         (3) 
where ξ (mm‒1) is the spatial frequency of a 
sinusoidal error. 

 
Fig. 3 Silly-putty storage modulus E′ as a function of applied 

stress frequency f. 
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According to the parametric smoothing model 
derivation process, the compressive stiffness of the 
entire tool κtotal and the slope of the SF function, 
which corresponds to k, can be expressed as 

otherstotal elastic

1 1 1
( )fκ κ κ

= +          (4) 

nominal
otherselastic

1
1 1

( )

k
P

fκ κ
⋅

=
+[ ]

      (5) 

where κelastic is the elastic stiffness of the Silly-Putty, 
κothers is the combined stiffness of all other structures, 
e.g., the polishing pad and polishing compound fluid, 
and Pnominal is the nominal polishing pressure under 
the tool. 

Here, we assume that E′ is equivalent to the 
Young’s modulus, because E′ represents the elastic 
property of the Silly-Putty. The elastic stiffness 
κelastic is proportional to E′. The entire structure of 
the RC lap remains unchanged, except for variation 
of the elastic stiffness; therefore, the combined 
stiffness of all other components is a constant. 
Further, κtotal can be expressed as a function of V 
with 

total

nominal

( )Vk
P
κ

= .             (6) 

Inspired by Burge, Kim, and Martin [17], the 
following differential equation can be derived 
directly from (1): 

0
0

( ) [ ( ) ] [ ( ) ]d Z d Z k Z
dZ dZ
ε ε ε ε ε−

= = − ⋅ −    (7) 

having the solution 
ini 0 0( ) ( ) k ZZ eε ε ε ε− ⋅

− ⋅= +        (8) 
where ɛ is the PV magnitude of a particular spatial 
frequency error as a continuous function of the 
nominal removal depth Z. In order to transform ɛ(Z) 
to a function of the polishing time t, we combine (8) 
and the well-known Preston equation 

pZ K P V t⋅ ⋅= ⋅ .             (9) 
Hence, we obtain 

nominal
ini 0 0( ) ( ) pk K P V tt eε ε ε ε⋅ ⋅

− ⋅
− ⋅ ⋅= +    (10) 

where Kp is the coefficient of the Preston equation, 
P is the polishing pressure, and t is the polishing 

time. Using (6) and (10), the final mathematical 
model is expressed as 

total( )
ini 0 0( ) ( ) pV K V tt e κε ε ε ε⋅ ⋅

− ⋅
− ⋅= + .    (11) 

Equation (11) clearly indicates that the 
smoothing rate is related to κtotal, Kp, and V. We can 
divide the contribution of V to the smoothing rate 
into two terms: κtotal(V) and the removal term Kp˙·V. 
The former is a non-analytic function of V, and the 
contribution of V decreases if V increases, based on 
the E′ trend shown in Fig. 3. For the latter, it is 
apparent that Kp˙·V is related to V directly. In other 
words, we can assume that an infinite smoothing 
rate will be obtained using an infinite V. Thus, Kp˙·V 
dominates k, and determining the limitation V is the 
first task of our strategy. Our second task is to apply 
this limitation V to actual smoothing experiments, so 
as to calculate κtotal by fitting the data to the SF 
function. Finally, we evaluate the combined 
influence on k of κtotal, Kp, and V, based on our 
smoothing model. In addition, (11) is also very 
valuable for quantitative prediction of the smoothing 
effect for a real fabrication process. For a CCOS 
process, the dwell map is based on the 
de-convolution of the target removal map using a 
TIF. If we obtain this dwell map, we can estimate 
the MSF errors before polishing and the resultant 
change. 

(2) Tool optimization 
The smoothing is not an independent process, as 

it must be accompanied by the figuring. In other 
words, no technique to correct MSF errors without 
removing any large-scale errors has been developed 
in the history of CCOS. The use of a low-quality 
TIF to figure the surface is one of the MSF-error 
sources. Thus, the TIF is one of the key factors 
influencing the smoothing process, which further 
explains why we employ the RC lap as the polishing 
tool in this study. 

The use of a lowered drive pin hole allows the 
original RC lap to overcome the gradient pressure 
effect, which is induced by the moment from the 
shear force on the workpiece surface [4]. When 
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polishing hard ceramic materials such as RB-SiC, 
the polishing pressure is higher (>1 psi) than the 
conventional range (0.2 psi−0.6 psi). An unstable 
TIF occurs when higher polishing pressure is 
applied to the RC lap, which is caused by the local 
high pressure at the tool edge. A new RC-lap 
structure is designed herein, in order to mitigate the 
high nominal polishing pressure at the edge using a 
lowered back plate. Schematic 3-dimentional (3D) 
models of the old and new RC-lap designs are 
shown in Fig. 4. 

 
Fig. 4 3D schematic structures of old (left) and new (right) 

RC-lap structures (exploded and halved). 
In order to understand the source of the high 

edge pressure, we consider an example using the 
static FEA to analyze the nominal contact pressure 
distribution between the tool and workpiece. The 
static elastic modulus of Silly-Putty is assumed to be 
2 MPa at 7 Hz, based on the dynamic mechanical 
properties of this material [15]. For a 68-N vertical 
force applied to the drive pin hole, symmetrical FEA 
models are established for the old and new RC laps 
(100 mm), using the ABAQUS software. The old (new) 
assembly model consists of 41592 (57797) nodes 
and 36292 (51874) elements, 35472 (50874) and 
820 (1000) of which are linear hexahedral elements 
of type C3D8I and linear wedge elements of type 
C3D6, respectively. The FEA models and boundary 
conditions are shown in detail in Fig. 5. The RC-lap 
assembly-component material properties are listed  
in Table 1. 

 
(a)                          (b) 

Fig. 5 Symmetrical FEA models for: (a) old and (b) new RC laps. 

Table 1 Assembly-component material properties. 

Component Material name 
Elasticmodulus 

(MPa) 
Poisson’s ratio 

Back plate Aluminum 7.0e4 0.38 

Non-Newton 
fluid 

Silly-Putty 2 at 7 Hz 0.45 

Diaphragm 
Woven fabric reinforced 

elastomer 
10 0.46 

Pad Universal LP-66 48 0.40 

Mirror RB-SiC 3.4e5 0.26 

 
The nominal contact pressure distribution 

between the RC lap and the workpiece is clearly 
shown in Fig. 6. An abrupt pressure change occurs at 
the edge in both cases. Because the RC lap consists 
of flexible materials, such as Silly-Putty, elastomer, 
and polyurethane, the high pressure at the edge is 
caused by the deformation of these materials when 
the vertical force to the drive pin hole becomes 
excessively high. Our new model minimizes this 
effect using a lowered back plate. The high edge 
pressure generates an undesirable TIF shape.  
Figure 7 depicts the orbital motion; the lap orbits the 
TIF center with a certain orbit radius. Ideally, the 
TIF peak region lies in the center, because the lap 
constantly covers the peak region in the figure. 
However, the line 1 in Fig. 7 indicates high pressure 
at the tool edge, which never affects the TIF peak 
region. Thus, the TIF peak region no longer 
corresponds to the TIF peak, and the line 2 indicates 
the new peak with a sharp cliff. Hence, a 
volcano-like TIF is obtained. Again, this effect is 
reduced by our proposed model, as shown below. 
Note that the real measured TIF may differ from the 
static FEA result, because the real motion is a 
dynamic problem. In addition, we have ignored the 
polishing compound fluid. 
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(a)                      (b) 

Fig. 6 Nominal contact pressure P distribution: (a) 3D P 
contour for new model and (b) P distribution along 
workpieceradius for both old and new models. 

In this study, we conducted two experiments 
using a 100-mm RC lap at 300-RPM orbital speed, 
with a 15 mm-orbital radius and under 1.47-psi 
polishing pressure; the results are shown in Fig. 8. 
The shape of the real measured TIF of our new   

structure was beyond our expectation, and a high, 
theory-like TIF was obtained. 

 

Polishing lap 

Line 2 

Line 1 

 TIF peak region 

W
ho

le
 T
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Fig. 7 Schematic picture of orbital motion (note: the line 1 

and line 2 represent the high pressure at the lap edge and the 
edge of the TIF peak region, respectively; the dashed line 
indicates the lap position distribution region). 

 
(a)                             (b)                               (c) 

Fig. 8 3D measured TIFs (top) and their normalized radial profiles (bottom) for (a) theoretical, (b) old, and (c) new models. 

(3) Preston coefficient vs. tool speed 
As discussed in Section 3(1), the influence of 

Kp·V on the smoothing rate is greater than that    
of κtotal(V). In this section, we discuss the      
Kp·V limitation using actual removal   
experiments. 

For many CCOS processes, the material removal 
amount is calculated based on the well-known 
Preston equation given in (9). In order to determine 

 

the Kp·V limitation, the Kp values for a wide range of 
V (50 RPM−400 RPM) were measured based on the 
Preston equation. Forty experiments were performed 
to measure the TIFs, with the Kp then being 
calculated from the TIFs. The detailed experimental 
conditions are listed in Table 2. The actual 100-mm 
RC lap and a computer numerically controlled (CNC) 
polishing machine are shown in Figs. 9 and 10, 
respectively. 

 



Chi SONG et al.: Improving Smoothing Efficiency of Rigid Conformal Polishing Tool Using Time-Dependent            
Smoothing Evaluation Model 

 

177 

Table 2 Overall experimental conditions. 

Polishing tool 100-mm RC lap 

Workpiece 150-mm RB-SiC 

Polishing compound 
Diamond slurry poly (2-µm particle 

size) 

Tool motion 
Orbital tool motion (15-mm orbital 

radius) 

Tool motion speed range 50 RPM−400 RPM (50-RPM interval) 

Polishing pressure 1.47 psi 

Repetitions 5 
  

 
(a)                   (b) 

Fig. 9 Workpiece and polishing tool for experiments:      
(a) 150-mm RB-SiC and (b) 100-mm RC lap. 

 
Fig. 10 CNC polishing machine used for experiments. 
To ensure that there is no adverse impact on the 

surface roughness Ra from the high-speed orbital 
motion, it is necessary to measure the Ra values for 
all experiments. The average Ra values are plotted 
in Fig. 11, and the typical macro roughness of 
RB-SiC is shown in Fig. 12. The results indicate that 
Ra is insensitive to the tool speeds for all cases. 

 
Fig. 11 Average surface roughness Ra values for all experiments. 

 
Fig. 12 RB-SiC roughness for 150-RPM orbital motion 

under 1.47-psi polishing pressure P. 
The measured Kp is plotted in Fig. 13. Each 

marker is the average value, and the standard 
deviation is indicated by the error bar. For a V of 
50-RPM, the Kp is comparatively low. As V 
increases in the 100-RPM − 300-RPM range, Kp 
increases exponentially. However, for the V range of 
300 RPM − 400 RPM, Kp decreases linearly. In order 
to clearly illustrate the relationship between the 
material removal and V, the ΔZ per hour is 
calculated (solid line, Fig. 13) using the averaged Kp 
values. Hence, it is apparent that the material Z 
increases only slightly as V increases from 300 RPM 
to 400 RPM, indicating that the smoothing rate Kp·V 
has reached a limitation. As stated above, our 
second task is to apply the limiting V to actual 
smoothing experiments, so as to calculate κtotal by 
fitting the data to the SF function. As mentioned in 
Section 3(1), κtotal(V) is a non-analytic function. 

 
Fig. 13 Non-linearity of Preston coefficient Kp over 

tool-speed V range. 
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Therefore, its contribution must be verified via 
smoothing experiments; these experiments are 
discussed in Section 4. 

4. Smoothing experiments and results 

(1) Experimental setup 
In order to quantitatively calculate the 

compressive κtotal(V), the parametric smoothing 
model in (1) was used. The linear trend was fitted 
with the experimental data (ɛ0, Δɛ, and ΔZ) to obtain 
the slope of the SF function, i.e., k. Hence, κtotal 
could be calculated from (6). 

A sinusoidal ripple with ξ = 0.2 mm‒1 and 
PV=~0.1 µm was generated on the central areas of 
150-mm diameter RB-SiC workpieces using 
magneto rheological finishing (MRF), as shown in 
Fig. 14. The reference area at the edge was 
intentionally left for the ΔZ measurement. 
Smoothing experiments were then conducted on 
these ripples. 

 

Fig. 14 Intensity map of MRF-generated sinusoidal ripples 
and reference area to measure nominal removal depth ΔZ. 

To facilitate a more informative comparison, two 
sets of experiments comparing the κtotal obtained 
using 300-RPM and 400-RPM RC-lap orbital tool 
motions were performed. A Zygo VerifireTM QPZ 
interferometer was used to monitor Δɛ and ΔZ. The 
smoothing process was repeated until there was no 
obvious surface error reduction (ɛ0). Details of the 
experimental setup are provided in Table 3. 

 

Table 3 Experimental conditions for smoothing. 

 300-RPM tool speed 400-RPM tool speed 

Polishing tool 100-mm RC lap 100-mm RC lap 

Workpiece 150-mm RB-SiC 150-mm RB-SiC 

Tool motion 
Orbital tool motion  

(15-mm orbital radius) 
Orbital tool motion 

 (15-mm orbital radius) 

Polishing pressure 1.47 psi 1.47 psi 

Polishing compound 
Diamond slurry poly 
 (2-µm particle size) 

Diamond slurry poly  
(2-µm particle size) 

 
(2) Experimental results 
Because some errors were induced during the 

smoothing processes, a band-pass (wavelength:    
2 mm − 6.5 mm) fast Fourier transform (FFT) filter 
was applied to separate the MSF error information 
from the measured map. Some measured surface 
errors and the filtered data are presented as 
examples in Fig. 15. The averaged PV value     
was determined from the filtered data to obtain the 
ɛ0, Δɛ, and ΔZ values, and then to fit the SF 
function. 

The SF function was successfully fit using the 
experimental data, as shown in Fig. 16. From k,   
i.e., the slope of the SF function, and (6), the RC-lap 
compressive κtotal was calculated as listed in   
Table 4. 

It is clearly apparent that the 400-RPM V  
yields higher compressive κtotal, which is caused by 
the non-linear visco-elastic behavior of the 
Silly-Putty. In Section 3(1), it was explained    
that the final k is related to κtotal, V, and Kp.  
Applying (11) to the Kp measured in Section 3(3) 
and the κtotal calculated from the SF function, we can 
express the surface error as a function of the 
smoothing time t directly. An example having a 
0.3-µm εini is shown in Fig. 17 to facilitate a 
comparison of the k obtained for 300-RPM and 
400-RPM V values. 
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(a) 

 

(b) 

Fig. 15 Selected measured surface errors (top) and filtered data (bottom) in timed sequence: (a) 300-RPM and (b) 400-RPM 
tool-speed V results. 
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Fig. 16 Measured smoothing factor SF vs. initial magnitude 

ɛini and linear fitting results for 300-RPM and 400-RPM tool 
speed V. 

Table 4 Slope of SF function k and compressive tool 
stiffness κtotal. 

RPM 300 400 

k 0.36 0.41 

κtotal(Pa/µm) 3649 4054 

 

 
0 

Smoothing time (h) 
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μm
) 

1 2 3 4 5 6 7 8 
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0.20 

0.25 

0.30 

0.35 

300 RPM ε(t)=0.28e−0.58t+0.02 

400 RPM ε(t)=0.26e−0.72t+0.04 

 
Fig. 17 Surface error εini vs. smoothing time t for 300-RPM 

and 400-RPM tool speed V. 

The result is straightforward. The ripples are 
almost fully smoothed out for both cases. The 
convergence rate is higher for the 400-RPM tool 
speed, but ε0 for the 300-RPM case is lower. Our 
actual data in Fig. 15 also explain this result. The 
error map for the 300-RPM case is smoother, having 
a 13.039-nm root-mean-squared (RMS) value in the 
final filtered data. In contrast, the RMS value of the 
400-RPM case is 18.633 nm. The smoothing rates 
for the 300-RPM and 400-RPM cases are almost 
identical, which verifies our assumption: the Kp˙·V 
term is more important than the κtotal term for the RC 

laps. In addition, the induced errors of the 400-RPM 
case, which may be caused by the higher κtotal or the 
higher V, yield a higher (i.e., less favorable) ɛ0.  
Thus, the optimal smoothing speed V considering t 
is 300 RPM. 

Note that the errors induced by the polishing 
parameters will be studied in a separate investigation 
in the future. Further, as shown in Fig. 18, the 
300-mm RC lap was successfully employed in the 
Key Laboratory of Optical System Advanced 
Manufacturing Technology at the Changchun 
Institute of Optics, Fine Mechanics, and Physics 
(CIOMP). 

 
Fig. 18 300-mm diameter RC lap on 4-m-diameter RB-SiC 

mirror at CIOMP. 

5. Conclusions 

A time-dependent smoothing evacuation model 
that contains specific smoothing parameters was 
successfully derived from the parametric smoothing 
model and the Preston equation. Based on the 
time-dependent model, we proposed a strategy to 
improve the smoothing rate. A new RC-lap structure 
was designed to overcome the extreme polishing 
pressure, while providing a highly stable, theory-like 
TIF. Using our new structure, the limiting speed of 
300-RPM was determined via a series of 
experiments. The surface roughness values were 
also measured for all experiments, being stable at  
12 nm −15 nm for all cases. Two sets of smoothing 
experiments were performed using 300-RPM and 
400-RPM tool speeds. The SF function was 
successfully fit against the experimental data and the 
tool stiffness was calculated. Based on the 
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time-dependent model, the smoothing rates for 
various tool speeds were compared. Hence, the 
optimal smoothing tool speed was defined as being 
300-RPM. 
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