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Abstract: We fabricated a simple, compact, and stable temperature sensor based on an S-shaped 
dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the 
optimal parameters based on the theory and our experiment, such as the dislocation amount and 
length of the dislocation optical fiber. According to the relationship between the temperature and the 
peak wavelength shift, the temperature of the environment can be obtained. Then, we made this fiber 
a micro bending as S-shape between the two dislocation points, and the S-shaped micro bending part 
could release stress with the change in temperature and reduce the effect of stress on the temperature 
measurement. This structure could solve the problem of sensor distortion caused by the cross 
response of temperature and stress. We measured the S-shaped dislocation fiber sensor and the 
dislocation fiber without S-shape under the same environment and conditions, and the S-shaped 
dislocation fiber had the advantages of the stable reliability and good linearity. 
Keywords: Dislocated optical fiber; temperature sensor; interference; cross-sensitivity 

Citation: Haitao YAN, Pengfei LI, Haojie ZHANG, Xiaoyue SHEN, and Yongzhen WANG, “A Micro S-Shaped Optical Fiber 
Temperature Sensor Based on Dislocation Fiber Splice,” Photonic Sensors, 2017, 7(4): 372–376. 

 

1. Introduction 

Optical fiber sensors have the advantages of 
inexpensiveness, compactness, low weight, and 
immunity to electromagnetic interference, which 
results in a great demand for fiber sensors in the 
sensing applications. In all kinds of optical fiber 
sensors, temperature and stress sensors are the first 
to be developed [1]. Now, many optical methods and 
typical structures are used to research of temperature 
and stress fiber sensors, and the main methods 
include using Rayleigh scattering [2], Raman 
scattering [3], reflection [4], interference [5], 
evanescent field [6], and so on, and measuring 

optical signal intensity, phase, polarization state 
changes with the temperature or stress variation 
[7–8]. The mainly used optical structure has the 
Fabry-Perot (F-P) cavity [9], fiber grating [10], fiber 
grating array [11], and fiber ring resonator [12], and 
the applied fiber has a single-mode and multimode, 
photonic crystal fiber, microstructured fiber, and 
birefringent fiber. In above methods, the fiber 
Mach-Zehnder interference (MZI) has the 
advantages of simple structure, low cost, high 
sensitivity, and stability. Recently, some special 
structures were also proposed to fabricate the MZI, 
such as micromachining the fiber by femtosecond 
laser [13], splicing a section of single-mode 
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noncircular twin-core fiber [14], splicing special 
double-cladding fiber [15] between standard 
single-mode fibers (SMFs), or splicing the fiber with 
dislocation [16]. However, fiber MZI-based sensors 
exhibited the cross-sensitivity between temperature 
and stress. It is also one of the key problems in the 
practical application of optical fiber sensors. 

In our work, we demonstrated a simple, compact, 
and stable temperature MZI fiber sensor based on an 
S-shaped dislocated optical fiber. This sensor was 
fabricated by means of splicing a section of one 
standard SMF with two standard SMFs. And two 
splice points have a micro dislocation. Then this 
fiber was given a micro bending as S-shape, and the 
S-shaped micro bending part could release stress 
with the change in temperature. Several advantages 
are involved in the proposed sensor, such as high 
stability and linearity. 

2. Sensor fabrication 

As shown in Fig. 1(a), an amplified spontaneous 
emission (ASE) source with a laser wavelength 
ranging from 1530 nm to 1560 nm, an optical 
spectrum analyzer (OSA) (Ando AQ6317D2), and 
an optical circulator were employed to monitor the 
spectrum of the proposed based sensor, which was 
fabricated as described below. 

Firstly, a section of the standard SMF (Corn 
G.652) with the core and cladding diameters of    
9 µm and 125 μm, respectively was spliced to two 
standard SMFs, with a 2 μm – 10 μm offset between 
the two fiber cores by use of a commercial fusion 
splicer machine (Fujikura, FSM-100P+), in which 
there are two pairs of motors, i.e. the axial and 
vertical moving motors, with a movement accuracy 
of 0.01 µm and 0.1 µm, respectively. 

As shown in Fig. 1(b), the light transmitting in 
SMF1 is divided into two parts at the 
misalignment-spliced joint. A part of light is coupled 
into the core of SMF2 as a core mode, and the other 
part of the light is coupled into the cladding of 
SMF2 as cladding modes. The two parts of the light 

will be coupled into the core of the lead-in SMF3. 
The two parts light of SMF2 formed the MZI in the 
SMF2 fiber, and an MZI-based sensor in one fiber 
was achieved. Then, as shown in Fig. 1(a), we 
measured the dislocation fiber MZI-based sensor. 

 
Fig. 1 Microscope image of the dislocation fiber:         

(a) schematic diagram of the proposed dislocation fiber 
MZI-based sensor measurement system, (b) schematic diagram 
of the dislocation fiber MZI-based sensor, and (c) microscope 
image of the point of dislocation fiber (6 μm). 

In order to determine the offset and the length of 
SMF2, we measured the transmission of the sensor 
with different offsets and lengths of SMF2 under the 
temperature of 20 ℃, respectively. The results are 
shown in Figs. 2 and 3. 

 
Fig. 2 Spectra of the dislocation fiber MZI-based sensor with 

offsets of 2 μm, 4 μm, 8 μm, 10 μm, and a SMF2 length of 6 mm, 
respectively. 
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Fig. 3 Spectra of the dislocation fiber MZI-based sensor with 

SMF2 length of 2 mm, 4 mm, 6 mm, 8 mm, 10 mm, and offsets 
of 6 μm. 

As shown in Fig. 2, the spectra of our sensor 
have the offsets of 2 μm, 4 μm, 6 μm, 8 μm, 10 μm, 
and an SMF2 length of 6 mm, respectively. Each 
sample sensor with a certain core offset exhibits a 
distinct fringe contrast in the interference patterns 
due to the core-offset-induced change in the ratio of 
lights coupled into the core and cladding modes in 
SMF2. And it can be found from Fig. 2 that the 
sample sensor with a core offset of 6 µm has the 
largest fringe contrast of 28.18 dB. 

As shown in Fig. 3, the spectra of dislocation 
fiber MZI-based sensor have SMF2 lengths of 2 mm,  
4 mm, 8 mm, 10 mm, and offsets of 6 μm. A clear 
interference fringes pattern is observed in those 
spectra. Each sample with different SMF2 lengths 
exhibits a distinct fringe contrast in the  
interference patterns. From Fig. 3, the sample sensor 
with an SMF2 length of 6 mm has the largest fringe 
contrast. 

 With the above results, the fringe has the 
largest fringe contrast when the offset of the sensor 
is 6 µm and the length of SMF2 is 6 mm. Moreover, 
we calculate the free spectrum range (FSR) of the 
interference fringes by 

dip
eff2

m
mn L
λλ∆ ≈

∆
            (1) 

where eff
mn∆  is the effective refractive index (RI) 

difference between the core and mth cladding modes 

in SMF2, and L is the length of SMF2. The 
measured FSR of the sensor with the offset 6 µm and 
the length of SMF2 6 mm is about 4.97 nm. 

Based on the above parameters, the sensor with 
the offset 6 µm and the length of SMF2 6 mm was 
bended as S-shape and packaged. The part of 
dislocation fiber SMF1 and the SMF3 was inserted 
into the capillary steel tubes and fixed with epoxy 
resin glue. And then, the two capillary steel tubes 
were fixed on the micro displacement platform, a 
small displacement was given in the vertical 
direction, and the dislocation fiber SMF2 part 
became an S-shaped. As shown in Fig. 4, the 
packaged optical fiber was packaged with a package 
housing, protective sleeve, and some heat 
conducting oil to form a true temperature sensor. 

 
Fig. 4 Schematic diagram of the sensor with S-shaped 

bending and packaged (1: package housing; 2: capillary steel 
tube; 3: protective sleeve; 4: heat conducting oil; and 5: 
dislocation fiber). 

3. Measurements and discussions 

We tested the characteristics of the sensor in the 
case of temperature changes. The test method is in 
accordance with Fig. 1(a). The test results are shown 
in Fig. 5. The temperature range was 20 ℃ – 80 ℃, 
and the step size was 10 ℃. Obviously, we can see 
from the spectra that in the case of temperature 
change, the fringe retention and stability are very 
good. Taking the wave through near the 1545 nm 
wavelength as an example, the offset of the central 
wavelength is about 0.5 nm per –10 ℃. So we can 
obtain the temperature sensitivity s=∆λ/∆T =    

0.05 nm/℃ = 50 pm/℃. The results proved that our 
sensor was mainly temperature sensitive, avoiding 
the sensitive cross between the temperature and 
stress. The reasons are as follows. 
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Fig. 5 Spectra evolution of the MZI-based sensor with 

different temperatures from 20 ℃ to 80 ℃, per–10℃ 
(polynomial fits). 

The light propagating at the dislocation point 
between SMF1 and SMF2 was equally split into two 
beams in SMF2, which were propagating as the core 
mode and cladding mode. The two beams coupled 
into the core of SMF3 at the dislocation point 
between SMF2 and SMF3. We denote the intensities 
of the core mode and cladding mode in SMF2 as Ico 
and Icl, and the output intensity of sensor can be 
expressed as 

co cl co cl 0
2+2 cos l nI I I I I π ϕ
λ
∆ = + + 

 
   (2) 

where λ is the light wavelength, L is the length of 
SMF2, Δn = nco – ncl is the effective RI difference 
between the two interference arms of MZI, where 
nco and ncl are the effective RIs of the core mode and 
the cladding mode, and the φ0 is the initial phase of 
the interference. From (2), the interference spectrum 
reaches the minimum value when the following 
condition is satisfied: 

0
2 (2 1)

k

l n kπ ϕ π
λ
∆

+ = +         (3) 

where k is an integer, and λk is the wavelength of the 
kth order interference dip. 

When the temperature changes, the sensor’s 
maximum response is the length of SMF2. The 
change is due to the length of the interference arm. 
But, in the dislocation fusion point, the stress effect 
will lead to a lateral change. Therefore, the change 

in L with temperature is as 
i jT SL L L∆ = ∆ + ∆            (4) 

where ΔLT is corresponding to the temperature 
changes, and ΔLS is corresponding to the change in 
stress. So the interference fringe was a relationship 
between ΔLT and ΔLS.   

We made the sensor in S-shape, which was given 
a stress with slow release in the process of 
temperature change. It counteracted the stress effect 
of ΔLS. So, the offset was caused by temperature ΔL, 
which contains only a ΔLT. 

4. Conclusions 

We demonstrated a temperature senor based on 
an S-shaped dislocated optical fiber. We made this 
fiber a micro bending as S-shape, and the S-shaped 
micro bending part could release stress with the 
change in temperature and reduce the effect of stress 
on the temperature measurement, and this structure 
solved the problem of sensor distortion caused by 
the cross response of temperature and stress. The 
senor has very good linear, retention, and stability, 
which can utilize the difference between the lengths 
of the dislocation points to achieve cascade and 
multipoint monitoring. 
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