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Abstract: Starting from the basic equations describing the evolution of the carriers and photons 
inside a semiconductor optical amplifier (SOA), the equation governing pulse propagation in the 
SOA is derived. By employing homotopy analysis method (HAM), a series solution for the output 
pulse by the SOA is obtained, which can effectively characterize the temporal features of the 
nonlinear process during the pulse propagation inside the SOA. Moreover, the analytical solution is 
compared with numerical simulations with a good agreement. The theoretical results will benefit the 
future analysis of other problems related to the pulse propagation in the SOA. 
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1. Introduction 

Semiconductor optical amplifier (SOA) is a key 

component in the optical information processing 

systems. Owning to advantages such as low cost, 

low power consumption, and fast optoelectronics 

response, it can be employed in the fiber sensor 

systems [1, 2]. In many SOA-based applications, 

pulse propagation is a basic problem and necessary 

to be deeply understood for the designers. In theory, 

lots of works have been reported on this issue. In [3], 

Agrawal et al. presented a comprehensive model for 

describing pulse propagation in an SOA and 

analyzed the self-phase modulation and spectral 

broadening of the output pulse. In [4], on the basis 

of the work of Agrawal et al., Meccozi et al. 

developed an advanced model including the gain 

compression mechanism and obtained an 

approximate solution in the temporal domain by 

using the perturbation analysis. In [5], pulse 

propagation in a porlarization sensitive SOA was 

studied analytically. An approach similar to the way 

used in [6] was adopted, and an implicit solution in 

time domain was achieved. In [7], the authors 

constructed approximation analytical solutions for 

gain recovery dynamics experienced by a pulse 

propagated through an SOA, by making use of the 

multi-scale technique. In [8], through complete 

numerical simulation, the authors analyzed the rising 

and falling time of the output pulse by an SOA. In 

the past two decades, homotopy analysis method 

(HAM) has become more and more interesting in 

nonlinear scientific and engineering problems in 

different areas [9‒12]. It is proven to be an effective 

method to solve nonlinear differential equations, 

especially those possessing strong nonlinearity. 
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Owing to so many successful cases of solving 

nonlinear problems, it is reasonably expected that 

HAM will be a reliable technique for dealing with 

nonlinear models in optical systems. 

In this paper, HAM is used to derive an explicit 

series solution for pulse propagation in SOAs. The 

remainder of the paper is organized as follows. In 

Section 2, the theory and basic equations 

characterizing the pulse propagation in an SOA are 

introduced and derived. Section 3 presents a detailed 

process of solving the equations in Section 2 by use 

of HAM. Section 4 offers necessary numerical 

experiments to validate the analytical results and 

some discussions. Conclusions are provided in 

Section 5. 

2. Theory and basic equations 

As described in [3], the equations governing the 

electrical field and the carrier inside the SOA can be 

expressed as follows without taking account for the 

transverse effect: 
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where A denotes the complex amplitude of the 

electrical field along the SOA, t is time, z is the 

distance measured from the left facet of the SOA, N 

is the carrier density, c is the light speed in vacuum, 

h is the Plank’s constant, λ is the signal wavelength, 

0[ ( , ) ]g a N z t NΓ= −  is the optical gain, and Γ is 

the mode confinement factor. 

Let us introduce a transformation / gt z vτ = −  

and rewrite A as exp(i )A P φ= , then we can get 
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where P is the normalized power of the pulse, ϕ is 

the phase of the pulse, β is the linewidth 

enhancement factor, 0g  is the small signal gain, 

and Es is the saturation energy for input pulse. 

Defining a function as follows:  

=
L

dzzgh
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),()( ττ            (6) 

then the solutions of (3) and (4) can be written as 

follows:  

 out in( ) ( )exp[ ( ) ]P P h Lτ τ τ α= −         (7) 

out in

1
( ) ( ) ( )

2
hϕ τ ϕ τ β τ= − .          (8) 

If h(τ) is known, then the waveform and 

transient phase of the output pulse for a given input 

one are obtained. 

Integrating (3) along the SOA length and 

eliminating gP by use of (5), we can get an ordinary 

differential equation that h(τ) obeys as follows: 
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Obviously, this is a nonlinear ordinary 

differential equation. For many existed techniques, it 

is unable to acquire the exact solution. 

3. Analytical solution by HAM 

In this section, we will employ HAM to derive 

approximate solution for (9). As seen from the 

original form of (9), the mathematical form of Pin(τ) 
is unknown, and we substitute Pin(τ) by a 

finite-order series, commonly the first several terms 

of its Taylor’s series. This is feasible for any form of  

the input pulse, and thus the formation of (9) is 

completely knowable. Then we try to transform the 

nonlinear term in (9), 1)exp( −h , into a more 

tractable form. In this paper, we take the first three 

terms of its Taylor’s series. It should be noted   

that after careful examination, the above  

mentioned approximation holds well in the typical 

parameter range for a typical SOA. Then (9) is 

translated into 
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where 
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In the framework of HAM [9], we try to 

construct the zeroth-order deformation equation for 

(10) 

0 0(1 ) [ ( , ) ( )] [ ( , )]q L q h qc N qΦ τ τ Φ τ− − =    (11) 

in which q is the embedded variable, [ ( , )]L qΦ τ =  
( , )qΦ τ
τ
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 is the auxiliary linear operator, the 
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is the homotopy parameter, used for controlling the 

convergence speed of the series solution. When q = 0, 

(11) is transformed into the linear differential 

equation 0[ ( , ) ( )] 0L q hΦ τ τ− = , and the function 

( , )qΦ τ  is equal to the initial guess solution 
0 ( )h τ . 

When the embedded parameter q = 1, (11) is 

transformed into the original nonlinear differential 

(10), and the function ( , )qΦ τ  is the solution of 

(10). As described by Liao’s theory [9], the 

convergence region of the solution seems to increase 

as the homotopy parameter 0c  tends to zero. 
Expanding ( , )qΦ τ  to Taylor’s series at q = 0, 

we have 
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When q = 1, the analytical solution of (10) can be 

expressed as 
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with the initial condition 00 );0( Hch = . 

Based on the zeroth-order deformation (11), we 

can derive the m-order deformation equation as 

described in [9]: 
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Equation (14) represents an infinite set of 

recurrence linear differential equations, which 

indicates that the original nonlinear equations are 

transformed into infinite linear equations. By using 

the symbolic computational software such as 

MATHEMATICA or MAPLE, the above equation 

can be solved iteratively, and thus the series solution 

of (10) can be achieved. 

Observing the structure of the solutions of   

(14), )(τmh  can be expressed in the following 

form: 
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When (16) holds for an arbitrary τ, we have 
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Then the series solution of (10) can be expressed 

as 
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and the corresponding K-order approximation 

solution is as follows: 
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For the practical SOA, the approximated order K 

and the homotopy parameter 0c  can be properly 

selected by minimizing the residue of the original 

nonlinear equation [9]. 

By using the above approximation solution (19), 

we can get the output pulse profile and the 

frequency chirp as follows: 
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4. Analysis and discussions 

In this section, we will take some numerical 

experiments to verify our derivations of previous 

section. In the following, except for special 

statement, the parameters used in the simulations are 

taken the following values, Ain = 20.8μm , L =  500 μm , 

N0  = 
24 31.1 10 m−× , a  = 20 22.7 10 m−× ,α = 1 000 m−1, 

4.8β = , and 0.06Γ = . On the other hand, we take 

the approximate order K as 20 for the analytical 

solution by (20). 

Figure 1 presents the relationship between the 

output profile and the input one. In this figure, the 

width of the input pulse is 20 ps, and the peak power 

is 50 mW. The solid line indicates the simulation 

results, and the dashed line denotes the analytical 

solution of (20). From the figure, it is obvious that 

our analytical solution is in good agreement with the 

numerical simulation. Moreover, this figure also 

indicates that our theoretical results are capable of 

describing the physical features during a pulse 

amplification process by an SOA. 
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Fig. 1 Temporal profile of the input and output pulses: dotted 

line: the input pulse; dashed line: the analytical result by (20); 
the solid line: numerical result. 

To further validate our research work, we 

examine more numerical examples taking large 

parameter range. Figure 2 displays the maximum 

relative error between the analytical result and the 

numerical one over a large parameter range. In this 

figure, it is clear that in a large parameter range, the 

correctness of our analytical result can be 

guaranteed. From a mathematical point of view, the 

findings of this paper can be regarded as a 

prolongation of the successful application of the 

HAM in the optical engineering domain. For the 

investigation into the optical signal processing by 

SOA, it is reasonable to take the HAM as a powerful 

tool in the research works. 
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Fig. 2 Two-dimension map of the maximum relative error 

between the analytical result and the numerical one in the 
parameter space of the input pulse width and the peak power, 
and the bias current is 100 mA. 

5. Conclusions 

In this paper, the HAM is introduced into the 

investigation into pulse propagation inside an SOA. 

After some simplifications, the analytical expression 

of the output pulse is obtained. By comparing the 

numerical results, the HAM is proved to be an 

effective approach to research the dynamics in an SOA, 

and the correctness of the expressions is verified. 
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