
PHOTONIC SENSORS / Vol. 9, No. 2, 2019: 179‒188 

 

Infrared LSS-Target Detection Via Adaptive TCAIE-LGM 
Smoothing and Pixel-Based Background Subtraction 

Yanfeng WU1,2, Yanjie WANG1, Peixun LIU1, Huiyuan LUO1,2,             
Boyang CHENG1,2, and Haijiang SUN1* 

1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China  
2University of Chinese Academy of Sciences, Beijing 100049, China  

*Corresponding author: Haijiang SUN      E-mail: sunhaijiang@126.com 

 

Abstract: Infrared small target detection is a significant and challenging topic for daily security. This 
paper proposes a novel model to detect LSS-target (low altitude, slow speed, and small target) under 
the complicated background. Firstly, the fundamental constituents of an infrared image including the 
complexity and entropy are calculated, which are invoked as adaptive control parameters of 
smoothness. Secondly, the adaptive L0 gradient minimization smoothing based on texture 
complexity and information entropy (TCAIE-LGM) is proposed in order to remove noises and 
suppress low-amplitude details in infrared image abstraction. Finally, difference of Gaussian (DoG) 
map is incorporated into the pixel-based adaptive segmentation (PBAS) background modeling 
algorithm, which can differ LSS-target from the sophisticated background. Experimental results 
demonstrate that the proposed novel model has a high detection rate and produces fewer false alarms, 
which outperforms most state-of-the-art methods. 
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1. Introduction 

Owing to the dominant position of the thermal 
infrared imaging system to run in dark and low light 
environments, infrared cameras have gained 
popularity for missile guidance, military night vision, 
airborne early warning, etc. Accordingly, 
LSS-targets (low altitude, slow speed, and small 
target) can be captured due to their hot temperature. 
Nevertheless, infrared images are frequently of poor 
quality, as a result of salt-and-pepper noises, less 
texture, and non-uniformity noise, which render it 
rather difficult to detect LSS-targets. To make things 

more intricate, LSS-targets without fixed moving 
trajectories are often submerged in heavy noises or 
complex backgrounds. Thus, it is a concerned and 
challenging topic in the infrared detection field. 

In order to detect such LSS-targets accurately, 
scholars in various countries have done a lot of 
researches and put forward diverse algorithms. Hu et 
al. [1] used the non-local mean filter based on 
circular mask to establish a background estimation 
model. By linking the gray scale distribution of the 
image to the temporal information, infrared dim 
targets can be extracted successfully. Yang et al. [2] 
simplified a two-dimensional median filter to a 
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one-dimensional median filter, which could 
eliminate the background and false targets. He et al. 
[3] realized small target detection by local entropy 
(LE) and one-dimensional empirical mode 
decomposition (EMD). Abdelkawy et al. [4] used 
two-dimensional Gauss function to construct a 
dictionary and proposed a two-dimensional 
orthogonal search (2D-FOS) algorithm. The time 
complexity of the algorithm is mainly dependent on 
the number of candidates and the size of the image 
in the dictionary. Compared with other orthogonal 
methods, the computation time is significantly 
reduced. An infrared small target detection 
algorithm based on the peer group filter (PGF), 
two-dimensional empirical mode decomposition 
(TDEMD), and local inverse entropy (LE) was 
proposed by Xie et al. [5]. Huang et al. [6] improved 
a dynamic programming track-before-detect 
algorithm (DP-TBD), which can simultaneously 
detect and track maneuvering dim targets. Gao et al. 
[7] built a co-detection model based on nonlinear 
weight and entry-wise weighted robust principal 
component analysis (RPCA), which can extract real 
targets accurately and suppress background clutters 
efficiently. Li et al. [8] proposed an infrared dim 
target detection approach based on sparse 
representation on a discriminative over-complete 
dictionary, which can not only capture significant 
features of background clutters and dim targets, but 
also strengthen the sparse feature difference between 
the background and target. Kim et al. [9] analyzed 
the characteristics of regional cluster and removed 
the false detection by means of spatial 
attribute-based classifications, the heterogeneous 
background removal filter, and temporal consistency 
filter. Motivated by the background classification 
and coastal region detection, Kim et al. [10] 
proposed a novel scene-dependent small target 
detection strategy involving the relationships 
between the geometric horizon and the image 
horizon. By classifying the infrared background 
types and detecting the littoral regions in 
omni-directional images, coastal regions can be 
detected by fusing the region map and curve map. 

As discussed above, these methods can be 
classified into two categories: one is for the 
single-frame image target detection, which uses a 
filtering algorithm to eliminate complex 
backgrounds and estimate the foreground target. 
Morphology top-hat transform [11], high-pass filter 
[12], and two-dimensional entropy [13] can achieve 
real-time detection of targets, but the accuracy is not 
high under low signal to noise ratio (SNR) 
conditions. The detection accuracies of the matched 
filter [14], the wavelet transform [15], partial 
differential equations (PDE) [16], and the 
probabilistic principal component analysis matrix 
[17] (PCA) are high, but it is almost impossible to 
achieve real-time detection. Other methods such as 
particle filtering [18], mobile weighted pipeline 
filtering [19, 20], and likelihood ratio test [21] are 
based on the multi-frame image, which need to 
achieve target detection through inter-frame context 
information. This kind of algorithms has superior 
accuracy, but aims can’t be found effectively if the 
targets are submerged in the backgrounds or   
noises [22]. 

Statistical background modeling is a 
fundamental and important part of many visual 
searching systems and other computer vision 
applications. This article focuses on how to remove 
noise and smooth the background for infrared 
images and then detect the real target according to 
the inter-frame difference from static complex 
background. Firstly, this paper analyzes the 
characteristics of infrared images. Secondly, a novel 
adaptive texture complexity and information entropy 
(TCAIE-LGM) smoothing filter is proposed, which 
can remove stripe noises and salt-and-pepper noises 
of infrared images. Finally, a pixel-based 
background subtraction is introduced to remove the 
complex background and detect the real target. 

2. IR noise suppression 

Because of the abnormity of material’s internal 
structure and crystal defects, non-uniformity is a 
natural defect in the infrared imaging system. 
What’s more, the LSS-target detection is ordinarily 
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applied under the background of the sky or sky-earth 
junction in many cases. The infrared image shows 
obviously inhomogeneous character due to low 
temperature radiation from the sky. Therefore, noise 
suppression must be done before using infrared 
cameras. This section reviews the related papers in 
terms of noise suppression and proposes the 
TCAIE-LGM algorithm, which can adaptively 
suppress the low frequency details and noises of the 
IR image. 

2.1 Related work in terms of noise suppression 

Scribner et al. [23, 24] proposed two adaptive 

non-uniformity correction algorithms based on the 
human visual system. One is the time domain high 
pass filter, which refers to the low-pass filtering 

characteristics of human eye horizontal cells in 
optical signals and constructs time-domain high pass 
filter to correct the offset coefficient. This method is 

simple and easy to implement, but leads to target 
degradation and ghost phenomenon in stationary 
scene. The other algorithm is the representation of 

space operation, which takes advantages of the 
neural network structure and the steepest descent 
method to adaptively suppress the stripe noise. The 

algorithm has a good effect on the spatial high 
frequency noise suppression, but the rate of 
convergence is slow. Harris and Chiang studied the 

non-uniformity correction algorithm with constant 
parameter statistics, in which thousands of images 
were needed for training [25]. Qin et al. [26] utilized 

wavelet transform in terms of clutter rejection, but 
the speed of convergence was slow as well. 

2.2 L0 gradient minimization 

Image smoothing is an important instrument for 
computing photography. Its function is to eliminate 

unimportant details and retain larger image edges. 
Xu et al. [27] proposed the L0 gradient 
minimization (LGM), which was a global smoothing 

filter based on the sparse strategy. LGM suppresses 
low-amplitude details and sharpens salient edges, 
which can remove noise, unimportant details, and 

make the results immediately usable in background 

subtraction. Distinct from other filters, this method 
can faithfully maintain small-resolution objects and 
thin edges. 

The LGM enhances the highest contrast edges 

and removes small amplitude gradients globally by 

confining the number of non-zero gradients. In the 

2D image, what needs to be done is to constrain the 

number of gradients in the horizontal and vertical 

directions. The function representation is as 

   2
min p pS

p

S I C S
 

  
 
         (1) 

   =# S 0 , 0x p y pC S p S p         (2) 

where I is the input image, and S is the computed 

result. T( , )x p y pS S S     is the gradient of the 

image, which is calculated between neighboring 

pixels along horizontal and vertical directions. p is 

the counts of pixels whose magnitude is not zero. 

2.3 Adaptive TCAIE-LGM smoothing 

Although LGM can remove the noise and 
eliminate details, the degree of smoothness can’t be 

controlled effectively. Adaptive L0 gradient 
minimization smoothing based on texture 
complexity and information entropy (TCAIE-LGM) 

is purposed in this paper in order to remove noise 
and suppress low-amplitude details in the infrared 
image abstraction. 

2.3.1 Information entropy of image 

Entropy was first proposed by Shannon [28] and 

applied in thermodynamics, which refers to the 

degree of chaos in the system. It has significant 

applications in the fields of cybernetics, probability 

theory, number theory, astrophysics, life science, and 

so on. It is a very critical parameter in various fields 

and has a more specific definition as well. 

Information entropy is a random measure of 

information contained in an image. It is a statistical 

form of characteristics, which reflects the average 

amount of information in an image. 

The one-dimensional information entropy of the 

image represents the information contained in the 
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gray scale distribution of the image, which 

represents the aggregate characteristics of the image. 

The entropy of a gray image is defined as 
255

1
0

logi i
i

ENT P P


               (3) 

where Pi indicates the proportion of pixels in the 
image with a gray value of i, which can be obtained 
from the histogram. 

The one-dimensional information entropy of 
images can represent the aggregate characteristics of 
the gray scale distribution in the image, but can’t 
reflect the spatial characteristics of the image. In 
order to demonstrate the spatial feature, the 
two-dimensional entropy of the image is composed 
on the basis of one-dimensional entropy, which can 
reflect the features of the spatial distribution of the 
gray level. The two-dimensional information 
entropy can address the complexity and the 
inhomogeneity of the image. When the image is a 
pure color graph, there is only one gray value. At 
this time, the two-dimensional information entropy 
of the image is the minimum, and the amount of 
information about the image is zero. If the gray 
value of each pixel is different, the two-dimensional 
information entropy of the image is the biggest, and 
the information of the image is the largest. For 
two-dimensional digital images in discrete form, the 
two-dimensional information entropy formula is as 

2

( , )
( , )

f i j
P i j

M
               (4) 

   
255 255

2
0 0

,  log ,  
i j

ENT P i j P i j
 

          (5) 

where i represents the gray value of current pixels, 

and j represents the gray value of current pixels in 
the neighborhood. The mean value of neighborhood 
in the image is chosen as the spatial characteristic of 

the gray distribution and forms a two-element 
feature group with the pixel gray level of the image, 
which is recorded as f(i, j). M is the scale of the 

image, P is the frequency of appearance of each 
gray level, and P(i, j) is the frequency of appearance 
of the two-element feature group (i, j). The 

two-dimensional entropy can reflect the position 

information of the gray pixel in the image and the 
comprehensive characteristics of the gray value 
distribution in the neighborhood under the premise 
that the amount of image information is not zero. If 

the probability distribution of pixel value is balanced, 
the outline of the object is clear, and the entropy 
value is large. Otherwise, if the elements of the 

co-occurrence matrix are different, the entropy value 
is small. 

2.3.2 Texture complexity 

Texture is a kind of visual feature reflecting the 
homogeneous phenomenon in the image, which 
embodies the structure and arrangement properties 
of surface structure with gradual change or periodic 
change. Texture feature is a global feature, which 
describes the surface properties of the scene 
corresponding to the image or image area. As a 
statistical feature, texture features have rotation 
invariance and strong resistance to noise. The 
angular second moment is a measure of the gray 
scale change of the image texture, which reflects the 
uniformity of the gray scale distribution and the 
thickness of the texture. Therefore, this paper uses 
the angular second moment of the image histogram 
to calculate the texture complexity of the image. 

Firstly, a normalized one-dimensional histogram 
of infrared images is necessary. The histogram of the 
image whose gray level is [0, L‒1] is a discrete 
function. The following statistics are made on the 
image as 

( ) ,  0,  1,  ,  1i ih z n i L            (6) 

where zi is the gray value of level i, and ni is the 

number of pixels zi in the image. The normalized 

histogram is calculated as 

   ( ) i
i

n
p z

n
               (7) 

where n is the total number of pixels in the image, 

and p(zi) is the probability value of the gray level zi. 

The mean value of the gray level can be 

calculated as follows: 

 
1

0

L

i imean z p z


 .           (8) 
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The angular second moment of the histogram is 

as follows: 

     
1

2

0

mean
l

i iz z p z


  .      (9) 

2.3.3 Improved methods 

In our purposed method, information entropy is 

used to evaluate the energy distribution of the image, 

and the angular second moment is calculated to 

evaluate the texture complexity of the image. These 

two parameters are introduced into (1), which 

replace the regularization parameter  in the original 

equation and adaptively smooth the IR image 

according to the complexity of the image. 

     2

1 2min p pS
p

S I C S 
 

   
 
     (10) 

   =# S 0 , 0x p y pC S p S p          (11) 

   
255 255

1 2
0 0

l
1 1

= ,  og ,  
i j

ENT p i j P i j
   

       (12) 

     
21

2
0

1 1 l

i iz z m p z 
 



         (13) 

where к1 and к2 are adaptive variables depending on 

the information entropy and the angular second 

moment and φ and φ are empirical parameters. 

As the L0-norm is not guided, the global optimal 

problem is a non-deterministic polynomial (NP) 

hard problem. So the variable splitting variable is 

applied here as a result turning the problem into the 

quadratic programming problem, each of which has 

its closed-form solutions as 

     

    

2

1 2, ,

2 2

min ,

              (14)

p pS h v
p

x p p y p p

S I C h v

S h S v

 




   



       


 

   , # 0 , 0p pC h v p h v p          (15) 

where auxiliary variables, hp and vp, correspond to 

∂xSp and ∂ySp, respectively, and C(h, v) is an 

automatically adapting parameter to control the 

similarity between variables (h, v) and their 

corresponding gradients. The function above is 

solved through alternatively minimizing. The S 

estimation sub-problem corresponds to 

       2 2 2
.p p x p p y p p

p

E S S I S h S v             

(16) 

Fixing h and v and solving the upper formula, S 

is calculated as 

         
         

1

1

x y

x x y y

F I F F h F F v
S F

F F F F F





           

           

 

(17) 

where F is an FFT operator, and * denotes the 

complex conjugate. Fixing S and h, v is calculated as 

follows:  

   

   

2 2

,

1 2

min

, .                               (18)

x p p y p ph v
p

S h S v

C h v
 



     


 





 

Equation (18) is accordingly decomposed as 

   
   

2 2

,

1 2

min

                         (19)

p p
p x p p y ph v

p

p p

h S v S

H h v
 


     

 
 




 

where H(|hp| + |vp|) is a binary function: 

  1,  0

0,  others 

p p
p p

h v
H h v

    


.     (20) 

Each single pixel in (19) is as follows: 

   
   

2 2

1 2                           (21)

p p x p p y p

p p

E h S v S

H h v
 


      

 
 



 

when the upper is minimization, (22) is obtained as 

follows: 

 
       

 

2 2 1 20,  0 ,  
,

, ,  otherwise

x p x p

p p

x p y p

S S
h v

S S

 


 
   

 
  

. 

(22) 

The preprocessing method can remove the small 

non-zero gradient, smooth the unimportant details, 

and enhance the saliency edge of the image, which 

plays an important role in the goal of the pixel-based 
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background subtraction (PBAS) algorithm. The 

preprocessing method can also effectively eliminate 

the texture information which may cause 

interference in the process of background modeling 

and highlight the boundary features of the target. 

This makes the detection result clearer and reduces 

the noise and background interference effectively. 

3. LSS-target detection using PBAS 

PBAS is to automatically generate a binary mask 

which divides a set of pixels into the set of 

foreground and a set of background pixels [29]. This 

paper presents an improved nonparametric method 

aiming at IR images, which can overcome the 

influence of background changes and smear 

phenomenon. 

In our case, the front N frame pixels xi are 

collected as background models B(xi). 

          1 2,  ,  ,  ,  ,  i i i k i N iB x B x B x B x B x   . 

(23) 
To calculate the foreground segmentation mask, 

the discriminant formula is expressed as follows: 

        1,  # dist , #min

0, else. 

i k i i
i

I x B x R x
F x

       


 

(24) 
If the pixel xi satisfying the formula is less than 

the threshold #min, xi is decided to be the 

foreground. Otherwise, pixel xi is defined as the 

background. R(xi) is represented as the judgment 

threshold. 

The gradient magnitude at the pixel Im(xi) is 

calculated as  

   ,m
iI x DoG K x y            (25) 

   

1 2

2 2 2 2 2 2
1 2

+y /2 +y /2

1 2

G

1 1 1
e e       (26)

2

x x

DoG G 

 

 



 

 

 
  

 

 

where Gζ1 and Gζ2 are Gauss functions, and 1 and 2 

are the scale parameters of Gauss function. K(x, y) is 

the average of difference of Gaussian gradient 

magnitude over the last observed frame. 

Correspondingly, ( )m
k iB x  is the gradient magnitude 

of the background history. For the distance 

calculation, we use the following equation: 

   

       

dist ,

   (27)

i k i

m m v v
i k i i k i

m

I x B x

I x B x I x B x
I



  

    
 

where ( )v
iI x  is the pixel value, ( )v

k iB x  is the 

pixel value of the background history, and ( )v
iI x  

is the average gradient magnitude over the last 

observed frame. The currently observed minimal 

distance is expressed as follows: 

     min min dist ,  i k i k id x I x B x    .   (28) 

An array of minimal decision distances is 

created as follows: 

          1 2,  ,  ,  ,  ,  .i i i k i N iD x D x D x D x D x  
(29) 

Whenever an update of ( )k iB x  is carried out, 

dmin(xi) is written to the array D(xi). The average of 

these values is expressed as follows: 

   min

1
i k i

k

d x D x
N

  .         (30) 

When the minimum distance between the new pixel 

value and the sample set is smaller than the 

threshold, it is suggested that the pixel may be the 

background. At this time, the minimum distance can 

describe the complexity of the background. The 

larger the distance is, the more complex the 

background is. Therefore, the average value of the 

minimum distance in the sample set is invoked as a 

measure of background complexity. The decision 

threshold can be dynamically adapted as follows: 

inc dec min scale

inc dec

( ) (1 ),  ( ) ( )
( )

 ( ) (1 ),  else.

i i i

i

i

R x R R x d x R
R x

R x R

     
 

 

(31) 
In order to respond to changes in the background, 

it is necessary to update the background template 

B(xi). Updating means that for a certain index, the 

corresponding background model value is replaced 

by the current pixel value. This means that the 

current pixel value may be placed into the 

background model with the update rate T(xi). We 

define the update rate as 
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 

   
   

 

   
   

 

min

min inc

min

min dec

, 1

, 0

i i
i

i i

i

i i
i

i i

d x T x
F x

d x T x T
T x

d x T x
F x

d x T x T

 


   



 

  (32) 

 lower upperiT T x T              (33) 

where Tinc and Tdec are fixed parameters, and the 
observed minimal distance can be calculated as (1). 
F(xi) = 1 implies foreground, and F(xi) = 0 implies 
background. The higher T(xi) is, the likely a pixel 
will be updated. Because the foreground area can’t 
be used to update the model, the background model 
can only be used to update those pixels that 
currently belong to the background. The updating 
process is comparable to that of the visual 
background extractor (ViBe) algorithm [30]. When a 
pixel is considered as a background point, it is 
updated. Different from the ViBe algorithm, the 
update rate T(xi) is adaptive, and the neighboring 
pixel can be updated by its current pixel value 
randomly as well. 

4. Experiments and results 

In order to verify the effectiveness of our 
algorithm, 4 groups of video are tested, and the 
experimental results are compared with the three 
frame difference algorithms, mixture of Gaussian 
[31], and Kernel density estimation (KDE) 
algorithm [32]. As shown in Table 1, 
Quadrocopter_1 (video 1) is from real-time shooting 
of our infrared camera, Quadrocopter_2 (video 2) is 
from VOT-LTIR 2015 dataset, bat_seq1 (video 3) is 
from OTCBVS Benchmark, and plane (video 4) is 
from Terravic Motion IR Database. 

In order to ensure the fairness and the accuracy 
of the experimental results, this article uses the open 
source code from cited articles to run the test video. 
Our method is written in C language. On the 
computer of Intel (R) Core (TM) i7-8650 CPU @ 
4.3 GHz, 16.00 GB memory, NVDA GTX1070 
graphics card, and Windows 10 system, the 
experimental environment is built with OpenCV 
3.4.2 library and Microsoft visual C++ 2017 
software. 

Table1 Test sequences in our experiments. 

Video Frame number Scale SCR  
Video 1 215 640 512  0.34 
Video 2 1010 640 480  1.02 
Video 3 760 320 240  0.68 
Video 4 1100 640 512  1.41 

Our method consists of eleven tunable 
parameters which need to be well tuned for specific 

test videos under specific scenarios. This paper gives 
a set of optimized parameters, which has a good 
effect in the test dataset, as shown in Table 2. 

Table 2 Parameters setting in our experiments. 

Serial number Parameter value 
(a) φ 100 
(b) φ 1000 
(c) Rinc/Rdec 0.04 
(d) Rlower 20 
(e) Tdec 0.1 
(f) Rscale 10 
(g) ζ1 0.1 
(h) ζ2 0.8 
(i) Tinc 2 
(j) Tlower 20 
(k) Tupper 50 

The calculation method of the local signal to 

clutter ratio (SCR) is as follows: 

t b

b

SCR
 



 .             (34) 

Among them, t is the average value of the 
pixels in the local area of targets, and tb and b are 
the average value and standard deviation of the 
pixels in the neighborhood of targets, respectively. 
The average signal to heterozygous ratio ( SCR ) [33] 
is as 

1

1 tN

i
it

SCR SCR
J 

              (35) 

where Jt is the number of targets, and SCRi is the 
SCR of target i. 

In order to test the degree of noise suppression, 
we use Video 1, which includes obvious stripe noise, 
to test our algorithm. The result is shown in Fig. 1. 

Figure 1(a) is the origin image, and Fig. 1(b) is the 
experimental result of our method. Through our 
method, the SNR of image is obviously improved. 

By calculating the correlation between two points at 
the same distance and to the same direction in either 



                                                                                             Photonic Sensors 

 

186

image, the gray level co-occurrence matrix (GLCM) 
can reflect the comprehensive information including 
the direction, interval, and amplitude of the image. 
GLCM is a symmetric matrix, and the more 

convergent the diagonal matrix is, the better the 
correlation between pixels is. Figure 2(a) is the 
GLCM of the origin image, and Fig. 2(b) is the 

GLCM of the result image through our method. It 
can be seen from the contrast that noises have been 
greatly suppressed. 

 
(a)                       (b) 

 
(c)                       (d) 

Fig. 1 Background suppression result: (a) the original image, 
(b) the result after adaptive TCAIE-LGM smoothing, (c) GLCM 
of the original image, and (d) GLCM of the smooth image. 

 
(a)        (b)       (c)        (d)        (e) 

Fig. 2 Experimental result: (a) the original images, (b) TFD 
algorithm, (c) mixture of Gaussian algorithm, (d) KDE 
algorithm, and (e) our method. 

In order to quantitatively analyze the 

performance of the detection algorithm, the 

detection probability (Pd), the false alarm rate (Fa), 

and the time complexity of the algorithm (time 

complexity) are used in the experiment to evaluate 

the detection effect of the algorithm. The detection 

probability and the false alarm rate are defined as 

follows: 
number of true detections

number of actual targetsdP         (36) 

number of false detections

number of frame insequenceaF  .    (37) 

Table 3 Detection probability (%).  

Test 
video 

Detection probability (Pd) 
Three 
frame 

difference

Mixture 
of 

Gaussian 
KDE Ours 

Video 1 76.3 82.6 81. 7 95.6 
Video 2 80.4 85.2 74.5 93.2 
Video 3 69.6 89.8 86.3 94.3 
Video 4 85.3 90.5 77.4 97.8 

The detection probability and false alarm rate are 

obtained and shown in Tables 3 and 4. The time 

complexity of the algorithm is shown in Table 5. 

The average time is as follows: 

average

total time consumption

frame number of video
t  .     (38) 

Table 4 False alarm rate (%). 

Test 
video 

False alarm rate (Fa) 
Three frame 
difference 

Mixture of 
Gaussian 

KDE Ours 

Video 1 46.3 36.3 40.3 1.6 
Video 2 20.4 10.8 16.7 4.3 
Video 3 32.1 12.1 14.2 7.0 
Video 4 13.3 9.4 35.3 7.8 

Table 5 Average time consuming of the algorithm (ms). 

Test 
Video 

Average time (taverage) 
Three 
frame 

difference

Mixture 
of 

Gaussian 
KDE Ours 

Video 1 4.3 36.5 52.8 73.6 
Video 2 4.1 33.2 50.9 72.7 
Video 3 3.4 17.6 21.3 32.8 
Video 4 3.8 35.9 53.2 71.4 
 
In order to illustrate the comparison results more 

explicitly, the experimental results of our method 
and the comparison algorithm are given in Fig. 2. 
Among them, Fig. 2(a) is the original test video 

sequence (Video 1–Video 4), Fig. 2(b) is the 
experimental result of the frame difference 
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algorithm, Fig. 2(c) is the experimental result of the 
mixture of Gaussian algorithm, Fig. 2(d) is the 
experimental result of KDE algorithm, and Fig. 2(e) 
is the experimental result of our method. 

5. Conclusions 

In order to detect the low altitude, slow speed, 

and small target from the infrared complex 

background, this paper proposes a novel detection 

method via TCAIE-LGM smoothing and improved 

pixel-based background subtraction. Complexity and 

entropy are calculated and introduced into L0 

gradient minimization smoothing, which can remove 

noises and suppress low-amplitude details in 

infrared image abstraction. In addition, difference of 

Gaussian map is integrated into the adaptive 

pixel-based segmentation background modeling 

algorithm, which can differentiate LSS-Target from 

the sophisticated background. Experimental results 

show that the proposed method significantly 

outperforms the existing methods in detection 

accuracy and can detect the infrared LSS-target with 

the static complex background. 

However, our method also has some limitations. 

Once the target remains stationary for a long time, 

the moving target will gradually be absorbed by the 

background. The updating of our model occupies a 

great deal of memories and resources, which leads to 

low computational efficiency of the algorithm. Our 

method needs to be further optimized to solve the 

above problems in the future. 
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