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Abstract: Sub-nanometer displacement measurement is still a challenge in the current sensor field. 
In this study, a new type of displacement sensor is designed which is based on the coupling effect of 
two balanced gain and loss resonators. The optical properties of the sensor have been studied through 
the coupled mode theory and scatter matrix. The pole effect in the coupling system can be used to 
measure the sub-nanometer displacement. The resolution of the sensor can reach 0.001 nm over a 
dynamic range of 20 nm. The sensor has the highest sensitivity within the range of one nanometer. 
The environmental disturbance and structure parameter perturbation have been demonstrated to make 
trivial effect on the sensor performance. 
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1. Introduction 

Precision measurement is one of the key 

technologies in the modern industry and a sign of 

technology and industrial competitive power of 

countries. The precise displacement determination 

involves all aspects of manufacturing system 

engineering, such as the atomic force probes [1, 2], 

the accelerometers [3], the nanopositioning 

equipment in machine processing[4], the scanning 

stages [5], the confocal laser scanning microscope 

[6], the structural health monitoring [7], the 

landslide monitoring [8], the compliant microgripper 

[9], and the compliant micro-positioning platform 

[10]. The optical displacement sensor is widely used 

in the field of precise and ultraprecise displacement 

measurement due to advantages of non-contact 

process, high precision, and broadband [11‒13]. In 

recent years, laser interferometers and grating 

interferometers have become the main 

representations of the optical displacement sensor 

[12]. Laser interferometers are commonly used to 

achieve high-precision displacement sensing with 

independence of high-precision manufacturing 

process [5, 13]. However, laser interferometers are 

subject to environment disturbances such as 

temperature, pressure, humidity variations, and even 

vibrations. Compared with other sensor technologies, 

optical-grating sensors can provide relatively large 

range and high precision. However, the sensing 

precision depends on the manufacturing precision of 

grating lines. Thus, the sensing accuracy is 

determined by the definition and homogeneity of the 

grating line edges. Furthermore, if the sensor relies 

strictly on the machining precision of lithographic 

techniques, it is difficult to obtain nanometer 
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resolution owing to the fundamental diffraction limit 

of the optical scanning method [14, 15]. In the 

current nanotechnology age, displacement sensors 

with nanometer accuracy and resolution are crucial 

for precision positioning and machining systems. To 

overcome the limitation of optical-grating sensors, 

the time grating approach has been proposed to 

design the displacement sensor in which the space 

grating is replaced by time grating. The sensing 

precision reaches ± 200 nm and the resolution 

reaches 1 nm within 200 mm. However, in the 

nanopositioning system and nanofabrication, such as 

the scanning tunneling microscope [16] and the 

atomic force microscope (AFM) [17], they need the 

sub-nanometer precision. In the scanning tunneling 

microscope, the distance between probe and 

specimen of scanning tunneling microscope is less 

than 1 nm. A slight variation in the distance will 

affect the sensing results. Therefore, the distance 

between probe and specimen must be strictly 

controlled. The AFM is proposed to measure the 

photo-induced nanometer-scale surface 

displacement in solids, and the variation of 

displacement with time is much less than 1 nm. It is 

required to design the displacement sensor with 

sub-nanometer resolution or nanometer resolution. It 

is still a challenge to achieve the devices.  

Recently, parity-time (PT)-symmetry systems 

have been studied in optical structures. The 

PT-symmetry systems have a unique exceptional 

point (EP) effect and pole effect [18‒24]. These 

interesting physics have opened a new window in 

designing some new kinds of photonic device, such 

as lasing and anti-lasing transformer [19], sensor [20, 

21], and optical isolator [22]. In this paper, a layered 

resonator coupling system with quasi-PT-symmetry 

configuration is designed. Such a structure leads to 

an isolated pole with a large transmittance. Because 

the pole mode is resulted from the mode coupling 

through the air cavity, the transmittance of the 

structure is much sensitive to the thickness of the air 

layer. Such a mechanism can be used to design a 

new type of displacement sensor. It detects 

displacement by the transmittance at the pole. After 

the light power is transformed into electric current 

through photoelectric sensors, the results are read 

directly through the change of light current. The 

numerical results show that the sensor takes a great 

advantage over the traditional displacement sensors. 

2. Models and methods 

As shown in Fig. 1, two cavities formed by two 

metal layers (the yellow layers in the figure) and 

medium layer (G or L) are fixed on the fixed base 

and movable object, respectively. The air layer is 

between the two resonators. Layers G and L are 

made of gain and loss medium, respectively. The 

refraction indexes and thicknesses of all layers are 

denoted as nM, nG, nL, nA, and dM, dG = dL, dA, 

respectively. Based on the Drude model, nM is given 

by [25] 

Photoelectric
sensor 

Laser 

PC

dA 

G L 

Fixed base Moving object 

 
Fig. 1 Schematic of the displacement sensor. 
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where   is the frequency of incident wave, and 

ep  is the frequency of electronic plasma that 

equals to 1.2 × 1016
 s‒1. For ep  , nM is an 

imaginary number. On this case, a reflection occurs 

when the incident wave meets the mental layer, and 

the evanescent fields will enter into layers G, L, and 

A. The electromagnetic waves in layers A, G, and L 

will be reflected on their two interfaces. When the 
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incident wavelength satisfies the condition of 

resonance, layers A, G, and L will become three 

resonators. The gain layer G could be achieved 

through the material based on thick InGaAsP 

multiple quantum wells [19]. The loss layer C could 

be achieved through the absorbing Cr/Ge material. 

In the PT symmetry structure, the distribution of the 

refractive index should be an even function for the 

real part, and the imaginary part should be an odd 

function. The refraction indexes of layers G and L 

can be adjusted to be G in n    and L in n   , 

respectively, to satisfy the PT-symmetry condition. 

The value of   denotes the intensity of gain or loss. 

As is known, the optical PT-symmetry condition 

requires that the refraction index distribution is a 

conjugate symmetric function, i.e., n(r) = n*(‒r) [18]. 

However, nM in our structure has an imaginary value, 

the condition of n(r) = n*(‒r) in Fig. 1 is not satisfied. 

In this case the metal film induces an additional 

perturbation and the system becomes quasi-PT 

symmetry. Because the metal film is very thin, the 

perturbation is trivial. In this paper, the structure is 

still studied with the help of PT-symmetry theory.  

There could be coupling effect among the three 

resonators L, G, and A. The coupling effect can be 

observed from the transmission spectra. The 

transmission spectra can be obtained through the 

calculations based on the transfer matrix method 

[26]. The incidence angle and structure parameters 

are taken as: 0  , n = 3.205,   = 0, and nA = 

1.00027, and dM = 50 nm, dG = dL = 676 nm, and dA = 

2320 nm. These parameters have been optimized to 

achieve the coupled modes around 1550 nm.  = 0 

denotes a passive structure. The transmittance 

spectra are plotted in Fig. 2. In the Figure, the left 

two close peaks correspond to the coupled modes of 

the resonators L and G. The right isolated peak 

corresponds to the resonance mode of layer A. All 

the peaks have the unit peak values. In general, the 

intense coupling occurs among the modes with small 

intervals. Because the right peak is far away from 

the left peaks, the mode of the resonator A is not 

coupled with the modes of the resonators G and L, 

but it will influence the coupling coefficient of 

resonators G and L through the change of thickness. 

In the following, the coupling effect of the 

resonators G and L with 0   will be studied.  
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Fig. 2 Transmission spectra of the structure in Fig. 1 with 
0  . 

The modal field evolution in the layers G and L 

can be analyzed through the coupled mode theory. 

The equations can be given in the following 

equation [22]: 

1 0 1 2

2 0 2 1

/ i( i ) i

/ i( i ) i

da dt g a a

da dt a a

 
  

   
    

       (2) 

where a1 and a2 are the field amplitudes of layers G 

and L, respectively, and 0  is the resonance 

frequency of the two resonators with the same 

thickness. g and   are the gain and loss 

coefficients of the two cavities, respectively, and 

their values are dependent on the value of  . k is 

the coupling efficient of the two resonators. 

Assuming the system has the form of ie t , where 

  is the eigenfrequency, then it will leads to 

1 1

2 2

i
a ad
a adt


   

    
   

.           (3) 

Combining (2) and (3) leads to the eigen matrix 

equation as follows:  

0 1 1

0 2 2

( i )

( i )

g a a

a a

 


  
     

          
.     (4) 

In the PT-symmetry system, it satisfies g   . 

Through solving the algebraic equation, the 

following equation is obtained as follows: 
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2 2
0 .                      (5)g      

Equation (5) determines the system state. If k > g, 

  has two real values denoting the PT-symmetry 

state and a mode splitting. k = g results in the 

exceptional point at which the two eigenstates are 

just coalesced. If k < g,   has two complex values 

denoting the broken PT-symmetry state. In fact, the 

behavior of the PT-symmetry structure can be also 

described by the eigenvalues of the scattering matrix 

S. The S matrix describes the relation between the 

reflectance and incidence on the structure and is 

denoted as (see Appendix) 

 11 12

21 22

s sa b b

s sd c c

      
        

      
S         (6) 

where a and d denote the reflectances from the 

incidence and output spaces, and b and c denote the 

incidences from the incidence and output spaces. 

The eigenvalues of the S matrix either form pairs 

with reciprocal moduli corresponding to the broken 

PT-symmetry state or become unimodular 

corresponding to the PT-symmetry state. In the 

broken PT-symmetry state, some poles or zero 

points may occur [23, 24]. The pole and zero points 

correspond to amplification and attenuation, 

respectively. In the current system, on the 

PT-symmetry condition ( 0  ), the coupling effect 

of resonators G and L will lead to the pole effect. 

The pole effect is just the sensing basis in this study. 

3. Results and analysis 

It is clear that the values of the three peaks in  

Fig. 2 are all equal to unit. Keeping the structure 

parameters in Fig. 2 and increasing  by steps, the 

transmittance spectra of the structure is calculated 

and plotted in Fig. 3. With an increase in , the left 

two transmittance peaks will become closer and 

higher. When  is up to 0.0042, the two peaks merge 

into one peak at =1550 nm. According to (5), the 

merged peak has entered into the broken 

PT-symmetry state and has a peak value much larger 

than unit.  
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Fig. 3 Transmission spectra of the structure in Fig. 1 with 

different . 
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Fig. 4 Transmission spectrum and two eigen values of the 

scatter matrix with =0.0042. 

To make an insight into the system state, the 

transmission spectra in a larger range, and two 

eigenvalues q1 and q2 of the scatter matrix of the 

system with =0.0042 are plotted in Fig. 4. The right 

peak corresponding to layer A is far from the left 

peak, which further states that the resonator A does 

not join the coupling process of the resonators G and 

L. The two reciprocal peaks of q1 and q2 correspond 

to the pole and zero points. The zero point 

corresponds to the coherent perfect absorption (CPA) 

solutions [23]. For one side incidence, only the pole 

effect is excited. It is clear that the left peak is just at 

the pole position of the two eigenvalues at =  

1550 nm. Thus the maximum transmittance peak is 

resulted from the pole effect. Through the following 

study, the peak value at the pole is found to be 

extraordinary sensitive to the value of dA, because 
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the air cavity influences the coupling efficient of the 

two resonators. It just offers a way to design the 

displacement sensor. 

As schematized in Fig. 1, the resonator G is fixed 

at the base, and the resonator L is fixed at the 

moving object. Thus the change of dA is just the 

displacement to be detected. It should be noted that 

Fig. 1 just means an experimental model. It is not a 

real experimental equipment. However, the 

experimental model can be applied to many 

occasions. For example, in the cutting process, the 

distance between the cutter and target object is very 

small and has to be precisely determined. Thus the 

resonator G is fixed at the target object, and the 

resonator L is fixed at the cutting. The change of dA 

can determine the cutting range. The same design 

can be also applied to the atomic force microscope. 

The distance between the probe and specimen of 

scanning tunneling microscope will affect the 

measurement results. Thus the resonator G is fixed 

at the probe and the resonator L is fixed at the 

specimen. Through the changing of dA, the distance 

between the probe and the specimen can be 

determined precisely. To measure the displacement, 

the incidence wavelength 1550 nm is used to 

calculate the transmittance of the system on normal 

incidence. The changes of transmittances with dA for 

different   are plotted in Fig. 5(a). If dA and the 

transmittance have one-to-one correspondence, the 

transmittance can be used to determine dA and the 

displacement from its change. Figure 5(a) shows 

that the curves for =0.0042 , =0.00422 , and 

=0.00424  all monotonically decrease with dA 

increasing, but the curve of =0.00417  has a 

convex shape near dA = 2320 nm. Thus =0.00417  

can not be used as the sensing parameter. In this 

study =0.0042  is chosen because it has larger 

transmittances. The slope of the curve of =0.0042  

describes how quickly the transmittance changes 

with dA, i.e., the sensing sensitivity. To make a 

quantum analysis, the sensitivity is defined as 

/ ( )T T d   in which d=0.001 nm is the 

increment of dA for calculating T . The sensitivity 

is shown in Fig. 5(b). It is clear that the sensitivity 

has a maximum value of 1.27 nm‒1 at dA = 2320.6 nm. 

Such sensitivity occurs for the displacement of   

0.6 nm. To give a comparison, a displacement sensor 

based on the response of optical intensity should be 

chosen. For the intensity-modulated plastic fiber 

optic displacement sensor in [11], the 

displacement-dependent optical response R is 

plotted as the function of displacement. The 

sensitivity is defined as the partial derivative of the 

function. In the linear region, the sensitivity is about 

0.25 mm‒1. In a small displacement range, the 

sensitivity in this study is higher than the similar 

sensor in [11]. 
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Fig. 5 Transmittance and sensitivity: (a) transmittance for 
different  and (b) the sensitivity for =0.0042. 

To read the sensing results, the optical signal 
from the transmittance has to be transformed into 

the electric signal through the photoelectric sensor. 
The detecting resolution and range are also 
dependent on the photoelectric sensor. For the 

photoelectric sensor called variable-gain 
temperature-compensated avalanche photo detectors 
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(APD430C), the minimum and maximum detectable 
optical power are the order of PW and μW , which 
means that the ratio of the minimum and maximum 
detectable optical power can attain 10‒6. Because the 

transmittance is proportional to the optical power, 
the minimum relative change /T T  could reach 
10‒6. To give a reliable estimation, 4/ 10T T    is 

regarded as the threshold value that can be detected 
by the photoelectric sensor. Thus an increment 

0.001d  nm is chosen to calculate the 

corresponding values of /T T  at different dA. 
The result is shown in Fig. 6. It is seen that in the 
range of dA from 2320 nm to 2340 nm, the values of 

lg( / )T T  is larger than ‒4 (labeled by the 
horizontal dash line). Thus the sensing range is   
20 nm. Because the d values of lg( / )T T are 

based on increment = 0.001 nm, the displacement 
d= 0.001 nm is detectable, that is, 0.001 nm is the 
sensing resolution. Therefore, a sub-nanometer 

displacement sensor has been achieved.  
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Fig. 6 Values of lg (T/T) based on the increment d=  

0.001 nm. 

In order to further increase the sensitivity, the 
thicknesses of layer M are chosen as dM = 49 nm,  
50 nm, and 51 nm with =0.00454 , =0.0042 , and 

=0.00386 , respectively. With the same incidence 

wavelength 1550 nm, we plot the transmittances of 
the three structures in Fig. 7. It is clear that the 
curves for dM = 49 nm and dM = 51 nm decrease the 

fastest and the slowest, respectively. It should point 
out that Fig. 7 is a simulation result. In a real 
measurement, the random disturbance of 

experimental condition should be considered. In this 

study, we mainly consider the effect of random 
disturbance of laser wavelength and gain coefficient 
  on the sensitivity. The thicknesses of dM  are   

49 nm,  50 nm, and 51 nm with gain 

coefficient 1=0.00454+  , 2=0.0042+  , and 

3=0.00386+   are chosen, respectively. The 
incidence wavelength is chosen as 

4=(1550 )  nm. 1 ‒ 3  are random numbers 
ranging from 50.5 10   to 50.5 10  and 4  is 
a random number ranging from 0.5  to 0.5 . The 

sensitivities of the three structures with dA are made 
twenty times. The results are plotted in Fig. 8. Each 
dashed line corresponds to the result with the 

random disturbance. The solid line is the statistical 
average value for the twenty calculations. The 
statistical value can delete the random errors owing 

to the random disturbance. It is clear that the 
average curves for dM = 49 nm and dM = 51 nm 
decrease the fastest and the slowest, respectively. In 

the range for dA from 2320 nm to 2325 nm, the 
sensitivity for dM = 49 nm and dM = 51 nm are the 
highest and the lowest, respectively. However, the 

three sensitivity curves are most overlapped when 
dA is over 2325 nm. The values of /T T  for the 
three structures are plotted in Fig. 9. As can be seen, 

the measurement ranges are almost the same from 
2320 nm to 2340 nm.  
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Fig. 7 Transmittances of three structures. 

In practical applications, the stability and 

reproducibility of a sensor is very important. For the 

current sensor, the stability and reproducibility are 

related to the fault tolerance. The influence of 
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parameter perturbation on the sensor performance is 

studied. First, nA will be affected by the 

environmental disturbance such as airflow and 

position modification. The relative difference 

/T T  is used to describe the influence, where 

T  is the difference of the values with and without 

perturbation. The values of /T T  versus nA for 

three structures are shown in Fig. 10. As can be seen, 

/T T  for dM = 49 nm and dM= 51 nm are the largest 

and the smallest, respectively. 
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Fig. 8 Sensitivity versus dA of three structures. 
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Fig. 9 Values of lg( / )T T  corresponding to d=   

0.001 nm for three structures. 

In processing real instrument, it is difficult to 
keep the exact balance of gain and loss in the two 
resonators. Thus, it is necessary to study the effect 

of non-balanced structure on the sensor performance. 
Here L in n    is kept invariant and Gn  is made 
as G i( + )n n      (   is the non-balanced 

perturbation). The values of /T T  for the three 
structures with different   are calculated. The 
results are shown in Fig. 11. It is clear that the 

values of /T T for dM = 49 nm and dM = 51 nm are 
the largest and the smallest, respectively. Therefore, 
the sensitivity and the fault tolerance capability are 
contradictory. The structure with dM = 49 nm has the 

highest sensitivity but the lowest fault-tolerant 
capability. A trade-off is needed between the 
sensitivity and the fault-tolerant capability in real 

applications. 
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Fig. 10 Relative difference of the transmittances versus dA 

for different nA: (a) dM = 49 nm, (b) dM = 50 nm, and (c) dM =     

51 nm. 
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Fig. 11 Relative difference of the transmittances versus dA 

for different  : (a) dM = 49 nm, (b) dM = 50 nm, and (c) dM =   

51 nm. 
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4. Conclusions 

In this paper, the coupling of two resonators with 

balanced gain and loss through an air layer has been 

studied. The pole effect can make the structure 

system become the displacement sensor. The sensor 

takes great advantages over the traditional 

displacement sensors because of its ultra-high 

resolution of 0.001 nm, high sensitivity within one 

nanometer, and simple structure. It has avoided the 

large processing cost of the sensors based on 

optical-gratings and laser interferometers. The only 

limitation is the difficulty to realize the balanced 

gain and loss resonators. But the difficulty has been 

overcome in recent experiment studies. This study 

will open a new door to design sensors by 

PT-symmetry optics. 

Appendix 

al al al1 

l+1 l l 

bl bl bl1 

z

 
Fig. 12 Schematic of scatter matrix elements. 

This part presents the deduction of scatter matrix. 

In Fig. 12, al and bl are the amplitudes of forward 

and backward waves in an arbitrary layer l, 

respectively. For the two neighboring layers l′ and l, 

the four wave amplitudes al, bl, al′, and bl′ are related 

by a scatter matrix S(l′, l) as follows: 

( ,  )l l

l l

a a
l l

b b




   
   

   
S .            (7) 

By that analogy, the four wave amplitudes in 

layers l′ and l + 1 can be written as follows: 

1

1

( ,  1)l l

l l

a a
l l

b b


 

   
    

   
S .          (8) 

Defining i
1̂

ˆ ( ) e l lq d
lf f d   (ql is the z 

component of wave vector in layer l) leads to 

1

1 1

ˆ
( ,  1)

ˆ
ll l

l l l

af a
l l

b f b



 

   
    

      
I          (9) 

where ' '

' '

1 1
1 1

1
( ',  )

1 12
1 1

l l

l l

l l

l l

q q

k q k q
l l

q q

k q k q

   
 
 
  

 

I , (k = 1 and 

2

'

l

l

n
k

n

 
  
 

 correspond to TE and TM waves, 

respectively) is the matrix determining the 
electromagnetic field transition on the interface. 
Through some deduction, one can obtain the four 
elements of ( ,  1)l l S  from ( ,  )l lS  as follows:  

1

11 11 12 21 11
ˆ ˆ( ,  1) ( ,  ) ( ,  )l lS l l I f S l l I f S l l


        (10) 

1

12 11 12 21

1 12 22 12 1

ˆ( ,  1) ( ,  )

ˆ ˆ ˆ                     ( ,  )         (11)

l

l l l

S l l I f S l l I

f f S l l I I f



 

      
   

 

21 21 22 21 11( ,  1) ( ,  ) ( ,  ) ( ,  1)S l l S l l S l l I S l l        
(12) 

22 12 22 1
ˆ( ,  1) ( ,  1) lS l l S l l I f      .    (13) 

For N-layer structure, the initial matrix is 
1 0

(0,0)
0 1

 
  
 

S . Equations (10)‒(13) will lead to 

the total scatter matrix S(0, N). 
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