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Abstract: Spectral distortion often occurs in spectral data due to the influence of the bandpass 
function of the spectrometer. Spectral deconvolution is an effective restoration method to solve this 
problem. Based on the theory of the maximum posteriori estimation, this paper transforms the 
spectral deconvolution problem into a multi-parameter optimization problem, and a novel spectral 
deconvolution method is proposed on the basis of Levenberg-Marquardt algorithm. Furthermore, a 
spectral adaptive operator is added to the method, which improves the effect of the regularization 
term. The proposed methods, Richardson-Lucy (R-L) method and Huber-Markov spectroscopic 
semi-blind deconvolution (HMSBD) method, are employed to deconvolute the white light-emitting 
diode (LED) spectra with two different color temperatures, respectively. The correction errors, root 
mean square errors, noise suppression ability, and the computation speed of above methods are 
compared. The experimental results prove the superiority of the proposed algorithm. 
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1. Introduction 

Charge coupled device (CCD) spectrometer is a 

basic equipment for measuring and analyzing the 

material structure and composition by using the 

optical principle. It is widely applied in agriculture, 

astronomy, environmental detection, film industry, 

food safety, color measurement, and other     

fields [1–5]. However, since influenced by the 

bandpass function of the spectrometer, the measured 

spectrum usually produces spectral distortion. The 

bandpass function is mainly related to the incident 

slit of the spectrometer. In order to obtain high 

signal-to-noise ratio (SNR) signals, it is necessary to 

increase the luminous flux, thus the width of the slit 

must be enlarged to ensure sufficient light energy. 

However, this will also lead to the augment of the 

bandpass function of the spectrometer which 

decreases the spectral resolution. To overcome the 

shortcoming, the spectral deconvolution algorithm is 

an effective and commonly used correction method 

to obtain the accurate measurement result. 

Spectral deconvolution is a classical problem in 

the field of the spectroscopic instrument. The 
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development of the spectral deconvolution algorithm 

can be divided into two stages. In the first stage, 

only the effect of the bandpass function on the 

original spectrum is considered. The original 

spectrum is solved by using the mathematical 

relationship among the original spectrum, the 

measured spectrum, and the bandpass function. 

Typical methods include the Stearns and Sterns (S-S) 

method [6], improved S-S method [7], maximum 

entropy deconvolution [8], higher-order statistical 

method [9], and differential operator method [10]. 

However, there are some defects in these methods, 

the problem itself is ill-posed [11, 12]. When dealing 

with such a problem, these methods will amplify the 

noise and other errors in the spectrum and generate 

the artificial noise. Since the CCD contains fewer 

pixels previously, the data interval of the measured 

spectrum is larger, and it is insensitive to noise, 

these methods can also be well applied. In recent 

years, due to the improvement of the CCD 

technology, the spectral data interval has been 

reduced and the resolution is increased which makes 

the above methods no longer applicable. Different 

from the first stage, the methods of the second stage 

take into account the influence of the error term on 

the measurement spectrum by utilizing 

regularization methods to suppress the spectrum, 

avoiding the amplification of the error term. For 

example, Eichstädt et al. extended Richardson-Lucy 

(R-L) method [13] applied in image correction to 

spectroscopy. The R-L method introduces a new 

stopping function, which stops the iteration before 

the function converges completely, thus playing the 

role of regularization and avoiding over-correction. 

However, the stopping condition will make the R-L 

algorithm stop iteration earlier, resulting in 

undercorrection. Considering spectral deconvolution 

as a maximum a posteriori (MAP) estimation 

problem, Liu et al. proposed a Huber-Markov 

spectroscopic semi-blind deconvolution (HMSBD) 

method [14] based on Huber-Markov priori [15], 

which has better protection for the high frequency 

effective signal. However, since this method is 

essentially a gradient descent method, the 

convergence of the algorithm is slow. Jin et al. 

proposed a bandwidth correction method [16] for the 

light-emitting diode (LED) spectrum based on the 

Levenberg-Marquart (L-M) algorithm [17, 18]. By 

optimizing the parameters of the He-Zheng LED 

model [19], the noise [20–22] of the LED spectrum 

can be eliminated and the spectrum itself can be 

smoothed. However, this method can only be   

used for deconvolution of LED spectra.      

When the measured spectra are quite different from 

the He-Zheng model, the effect of this method is 

poor. 

In this paper, a spectral deconvolution method 

based on the Levenberg-Marquardt algorithm is 

proposed, and an adaptive operator is introduced as 

the coefficient of the regularization term. To verify 

the validity and applicability of this method, the 

white LED spectra affected by the bandpass function 

are constructed. The proposed methods, R-L method, 

and HMSBD method, are used to deconvolute the 

measured spectra. The correction error and the root 

mean square error, the noise suppression ability and 

the computation speed of all three methods, are 

compared. The experimental results show the 

superiority of the proposed method. 

2. Proposed model 

Since the broadening effect of spectrometers, 

spectral distortion often occurs in spectral data. 

Most spectral data measured by spectrometers can 

be modeled mathematically by convolution of the 

real spectrum and the bandpass function, as well as 

the errors superimposed on the spectra which are the 

mainly noise produced during the spectral 

measurement. This process can generally be 

described as 
( ) ( ) ( )M S b Nλ λ λ= ⊗ +          (1) 

where ( )M λ  and ( )S λ  denote the real spectrum 

and measured spectrum, b  represents the 

bandwidth function (also called line spread function 
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or blur kernel), and ( )N λ  represents the noise in 

the measured spectrum. 

It is assumed that the bandpass functions at any 

wavelength position are identical in (1), but in 

practice, they are similar, but not identical. This is 

due to the different aberrations at different 

wavelength positions. Therefore, it is more 

appropriate to use the following matrix form to 

describe the process. 
= +M BS N               (2) 

where N  denotes the noise of spectrometer which 

mainly includes the dark noise, readout noise, 

optoelectronic noise, and fixed pattern noise. B  is 

the bandwidth function matrix, which contains the 

bandwidth function of all wavelength positions and 

can be expressed as 

11 12 1
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1 2 ×
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n

n n n n n

b b b
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 
 

B




   


         (3) 

where n  is the number of pixels. Hence, M , S , 

and N  in (2) can be represented as 
T

1 2( , , , )nM M M=M  , T
1 2( , , , )nS S S=S  , and 

T
1 2( , , , )nN N N=N  . On the basis of the proposed 

mathematical model and the measured spectrum, 

MAP estimation maximizes the conditional 

probability of the real spectrum, of which 

mathematical expressions can be 
arg  max ( | )p=S S M .          (4) 

Applying Bayes formula and logarithmic 

function, (4) can be converted to (5): 

{ }arg  max lg ( | ) lg ( )p p∝ +S M S S .     (5) 

In (5), ( | )p M S  denotes the probability of the 

measured spectrum behaving as M  which entirely 

depends on the distribution of the noise while the 

real spectrum S  and the bandpass function matrix 

B  are known. For spectrometers, many   

literatures [20–22] have proved that the noise in 

instruments is mainly Gaussian noise. Thus, ( )p N  

obeys the Gaussian distribution and can be 

expressed as 

2

2

( | ) ( ) (0, )=

( )1
exp

22
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i ii

p p N σ

σπσ
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∏
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M BS
       (6) 

where σ  denotes the standard deviation of the 

noise. Equation (6) can be expressed in the form of 

norms as 

2

1 2

1
( | )= exp

2
p C

σ
 − − 
 

M S BS M      (7) 

where 1C  is the constant coefficient. 

In Bayesian inference, the last item ( )p S  in (5) 

expresses the prior knowledge about the spectrum S, 

which is the spectral constraint item. Hence, its 

choice doesn’t need to be solely artificial and can be 

selected by the prior knowledge. It still plays the 

role of a regularization term which is introduced to 

solve the ill-posed problem and make the spectrum 

smooth as long as it is a proper distribution. Some 

conventional models such as Laplacian prior 

constrain, total variation prior, and Gauss-Markov 

prior regularize the corresponding ill-posed problem 

by forcing spatial smoothness on the spectrum. 

Gauss-Markov priori provides a statistical 

description of the spectrum. It focuses on the 

distribution of the pixels in the spectrum relative to 

their adjacent pixels, so it can correctly reflect the 

spectral correlation. Gauss-Markov priori can also 

be incorporated with the local statistical features of 

the spectrum as prior information into the iterative 

restoration process of the spectrum, maximizing the 

use of the prior information of the spectrum. Due to 

these advantages, in this paper, Gauss-Markov priori 

is selected as the prior probability, and the 

expression of ( )p S  can be written as 
2

2( ) exp( )p C α= −S S            (8) 

where 2C  is the constant coefficient. Equations (7) 

and (8) are substituted into (5) and simplified, the 

deconvolution problem is transformed into a 

multi-parameter optimization problem, and MAP 

estimation is equivalent to minimizing the objective 

function: 
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2 21
( )

2
E α= − +S BS M S        (9) 

where 
2α S  acts as the regularization term [23–31] 

and resembles the well-known Tikhonov 

regularization, and α  is the regularization 

parameter. The regularization parameter α  is 

usually unknown and needs to be determined by 

special methods according to the practical problem. 

There are three methods to solve regularization 

parameter α  most commonly, which include the 

general cross-validation (GCV) method [32–33], 

L-curve method [13, 34], and mean square of 

estimation (MSE) minimum method [35, 36]. The 

three methods determine the regularization 

parameter based on different specifications, and the 

value of the regularization parameter is also 

different. 

However, although the introduction of the 

regularization term can effectively avoid the 

amplification of error factors such as noise in the 

solving process of the inverse problem, there are still 

some problems. When the spectral intensity is weak, 

which means the value of S is small, the 

regularization term 
2α S  is also small, which has 

little effect on spectral constraints and cannot 

suppress noise well. On the contrary, when the 

spectral intensity is strong, which means the value of 

S is lager, the regularization term 
2α S  is also 

lager, which has a strong inhibition effect on the 

spectrum and often results in undercorrection. 

For better noise suppression and preventing 

undercorrection, adding an adaptive operator that 

can control the regularization term is a good  

solution [23–25]. The adaptive operator should 

depend on noise and spectral properties and should 

be a non-negative function. When the spectral 

intensity is weak, the adaptive operator needs to 

increase the value of regularization term 

appropriately to suppress the noise, and when the 

spectral intensity is strong, it needs to decrease the 

value of regularization term appropriately to avoid 

undercorrection. To satisfy the requirements of the 

above analysis, an adaptive operator for this 

problem can be formulated as 
2

1
12

14
2

           ,  
( )

1
,  

1 ( )

K
S K

S
S

S K
S K

β


≤= 

 >
 +

       (10) 

where 1K  and 2K  are constants, and the adaptive 

operator ( )Sβ  is a function of S. Thus, the 
regularization term with an adaptive operator is 

rewritten to 
2αβ S . After this improvement, 

2αβ S is larger than 
2α S  when the spectral 

intensity is lower, that is, the value of S is smaller. 

Compared with 
2α S , 

2αβ S  has stronger noise 

suppression effect. In the contrary, 
2αβ S  is 

smaller than 
2α S  when the spectral intensity is 

higher, that is, the value of S is larger. Compared 

with 
2α S , 

2αβ S  has a weaker inhibition on 

the spectrum and is more conducive to spectral 
restoration. The difference between the two 

regularization terms (
2α S  and 

2αβ S ) is shown 

in Fig. 1. 
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Fig. 1 Differences between the two regularization terms. 

As can be seen from Fig. 1, the regularization 

term with an adaptive operator satisfies the above 

analysis requirements and can be adapted to 

different spectra by adjusting the parameters 1K  

and 2K . 

Thus, the objective equation is updated to 
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2 21
( ) ( ( ), ) ( ) ( )

2
E F λ λ λ αβ λ= − +S S M S  (11) 

where [ ( ), ] ( )λ λ λ= ⋅F S B S . 

3. Optimization 

The optimization method refers to the method of 

determining the value of some optional variables 

under certain constraints, so that the selected 

objective function can be optimized. Mathematically 

speaking, it is a method of finding the extremum, 

that is, under a set of constraints of equality or 

inequality, the objective function reaches the 

extremum, i.e., the maximum or the minimum. 

The L-M algorithm is the most widely used 

non-linear least squares algorithm. It is an algorithm 

to get the maximum (minimum) value by gradient, 

which belongs to the hill climbing method. It has the 

advantages of both the gradient method and 

Newton’s method, which means fast convergence 

speed and strong stability of the algorithm. When 

the damping coefficient is very small, the step size is 

equal to that of Newton’s method, and when the 

damping factor is very large, the step size is equal to 

that of the gradient descent method. This makes the 

L-M algorithm deal with redundant parameter 

problems effectively, so that the probability of the 

objective function falling into the local minimum is 

greatly reduced. 

Because of the superiority of this algorithm, in 

this paper, the L-M algorithm is selected to solve 

(11). Assuming that δ  is the optimal increment of 

the S, the updated S can be expressed as follows 

through the Taylor series expansion: 
T( , ) ( , ) ( )S Sδ λ λ δ δ δ+ = + +F F J O     (12) 

where J  is the Jacobian matrix, and T( )δ δO  

denotes the remainder term. By substituting (12) 

into (11), the (13) can be obtained: 

2 2

( + )

1
( ) ( + , ) + .

2

E S

M S S

δ

λ δ λ δ αβ δ

=

− − +F J
 (13) 

Since (13) only has the minimum value  

without the maximum value, the minimum value   

is obtained when the derivative of (13) to δ  is zero. 

To obtain the value of δ , let the derivative of (13) 

be zero: 

( ) ( )αβ δ αβ+ = − −T TJ J I J M F S .    (14) 

To obtain the optimal increment δ  through 

(14), the inverse matrix of T( )αβ+J J I  needs to be 

calculated. However, the necessary and sufficient 

condition for a matrix to be an invertible matrix is 

that all its eigenvalues are not zero. Therefore, 

Levenberg introduced a damping term λI  to the 
T( )αβ+J J I  to construct a positive definite matrix 
T( )αβ λ+ +J J I I . The inverse matrix of the matrix 
T( )αβ λ+ +J J I I  is obtained which approximately 

replaces the inverse matrix of the matrix 
T( )αβ+J J I . Marquardt improved this method by 

using the diagonal matrix of the matrix 
T( )αβ+J J I  instead of the unit matrix. Thus, the 

optimal increment δ  can be obtained by 
T

T 1 T

(

     diag( )) ( ( ) )

δ αβ
λ αβ αβ−

= + +
+ − −

J J I

J J I J M F S
 (15) 

where λ  is the damping factor. Therefore, a new 

estimate of S can be obtained, as shown below: 

1k k kS S δ+ = +             (16) 

where k  represents the number of iterations. 

Through multiple iterations of (16), the estimated 

spectrum can achieve the required accuracy. 

It is particularly important for the iterative 

process to select the initial values of parameters and 

stopping rules. For such non-constrained least 

squares problems, a good initial value selection can 

accelerate the convergence process as well as reduce 

the running time of the program, and the suitable 

stopping rules can prevent over-fitting, thus 

improving the correction effect of the algorithm. 

Generally speaking, the measured spectrum is 

chosen as the initial value of the estimated spectrum 

for iteration. This applies a certain prior knowledge, 

because the measured spectrum is closest to the true 

spectrum compared with other values. Setting it to 

the initial value can prevent the algorithm from 

falling into the local optimal solution and converge 
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quickly. The iteration stopping rules of the 

algorithm generally include two kinds. The first one 

is that the iteration of the algorithm has reached a 

certain number of times, and the second one is that 

the increment of the iteration has been reduced to a 

certain extent. In general, iteration increment δ  

decreases with the number of iterations. Although 

continuing iteration may make the corrected 

spectrum closer to the real spectrum, it also takes 

more time and may result in over-fitting. Therefore, 

after reaching a certain accuracy, it is a general 

choice to stop iteration and output the corrected 

spectrum. In this paper, the iteration is stopped and 

the result is output only if 500k >  or 810kδ −<  

is satisfied. 

According to the aforementioned analysis, the 

detail of the proposed method is as follows: 

(1) Select the values of α , λ , 1K , 2K , maxk , 

and thresholdδ , set 0 =S M  and 1k = . 

(2) While thresholdkδ δ>  and maxk k< , fix 

1k k kS S δ+ = +  and 1k k= + . 

(3) Output the estimated spectrum kS . 

4. Experiments and discussion 

In order to verify the effectiveness of the 

spectral deconvolution method based on the L-M 

algorithm and adaptive regularization term (LMAR) 

and whether the LMAR method is better than the 

spectral deconvolution method based on the L-M 

algorithm and original regularization term (LMOR), 

a series of experiments were carried out. Two kinds 

of white LED spectra with different color 

temperatures were simulated as the original spectra. 

The original spectra were convolved with a 

bandpass function and the noise was added to 

simulate the measured spectra. It is noted that in 

order to simulate the situation as realistically as 

possible, the relevant parameters of USB4000 

spectrometer (Ocean Optics) were used here. The 

normalized Hg-Ar light spectrum measured by 

USB4000 was used as the bandpass function. The 

level of simulated noise was the same as that of 

USB4000 under 25 ℃ ambient temperature and  

3.8 ms integration time. The original spectra and 

measured spectra of white LEDs are shown in   

Figs. 2 and 3, respectively. 

As can be seen from Figs. 2 and 3, the original 

spectra are changed to varying degrees due to the 

influence of the bandwidth function. The 

narrowband part of the original spectrum has larger 

deformation, while the deformation of the 

broadband part is smaller. 
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Fig. 2 Original spectrum, measured spectrum and error of 

them of the white LED 1#. 
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Fig. 3 Original spectrum, measured spectrum and error of 

them of the white LED 2#. 

4.1 Parameter analysis 

The selection of the regularization parameter and 

the adaptive operator parameter is an important part 
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of the algorithm, which balances the original 

objective function and the regularization term. In 

order to better explain the role of the three 

parameters, the experiment of optimal parameters 

selection for the LED spectrum was designed. The 

root mean square errors (RMSEs) and its type A 

uncertainties of the original spectrum and the 

corrected spectra were calculated by changing the 

values of the parameters in turn, and the relationship 

between the parameters and RMSE was obtained. 

The RMSE was used to represent the deviation 

between the corrected spectrum and the original 

spectrum. The smaller the numerical value is, the 

better the correction effect of this method is. It can 

be calculated by (17): 

2

1

1
ˆ( )

n

i i
i

RMSE y y
n =

= −         (17) 

where n represents the total number of the 
spectrum, y denotes the original spectrum and ˆiy  

represents the measured spectrum. 
Uncertainty indicates the reliability of the results. 

The smaller the uncertainty is, the higher the quality 

of the data is and the higher the credibility of the 

results is. The greater the uncertainty is, the lower 

the quality of the data is and the lower the credibility 

of the results is. The type A uncertainty at 

confidence level P=0.95 is derived from (18): 

2
1( )

( 1)

n
i i

A

x x
u t

n n
= −

= ⋅
−

         (18) 

where n represents the repetition times of 

experiments and when n=10, and t=2.26. x  denotes 

the corrected spectrum, and x  is the average of the 

corrected spectrum. 

The parameters corresponding to the minimum 

RMSE are chosen as the optimal parameters. 

Because 1K  and 2K  are based on α  to optimize 

their correction effect and they are not correlated 

with each other, α , 1K , and 2K  are optimized in 

turn. The relationships between the parameters and 

RMSE of LED 1# are shown in Figs. 4 to 6, 

respectively. 
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Fig. 4 Relationship between the parameter α and RMSE. 
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Fig. 5 Relationship between the parameter 1K  and RMSE 

while 0.005α = . 
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Fig. 6 Relationship between the parameter 2K  and RMSE 

while 0.005α =  and 1 1200K = . 

From these figures, it can be seen that with an 
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increase in the parameters, RMSE curves first 

decrease and then rise, all of which have the lowest 

points. A set of parameters of RMSE which can 

make the correction spectrum reach the minimum 

are 0.005α = , 1 1200K = , and 2 65000K = , 

respectively. The proposed correction algorithm 

uses only the optimal α , the optimal α  and 1K , 

and the optimal α , 1K , and 2K  for correction, 

respectively. The correction results of LED 1# are 

shown in Fig. 7. The same operations are done on 

LED 2# and the optimal parameters are 0.008α = , 

1 2000K = , and 2 55000K = , and the correction 

result of LED 2# is shown in Fig. 8. 
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Fig. 7 Original spectrum and corrected spectra of white  
LED 1#. 
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Fig. 8 Original spectrum and corrected spectra of white  

LED 2#. 

It can be seen from Figs. 7 and 8 that the 

proposed algorithm has a good correction effect. 

Compared with the measured spectra, the corrected 

spectra are closer to the original spectra, which 

proves the effectiveness of the algorithm. However, 

if only the regularization parameter α is used, it can 

be clearly seen that the spectrum is undercorrected 

in the position of strong spectral intensity, and the 

phenomenon of oscillation appears in the position of 

low spectral intensity, due to the weak effect of 

regularization on noise suppression. When the 

adaptive operator is introduced and suitable K1 and 

K2 are selected, the oscillation at low spectral 

intensity is weakened and the correction effect of the 

position with strong spectral intensity is improved, 

which proves the superiority of the adaptive 

operator. 

4.2 Comparison with other algorithms 

In the next step of the experiment, the R-L 

method, the HMSBD method, and the LMAR 

method were used to deconvolute the measured 

spectra. Each method selected the number of 

iterations based on the individual stopping rule and 

the correction results are shown in Figs. 9 and 10, 

respectively. 
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Fig. 9 Original spectrum and corrected spectra of white  

LED 1#. 
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Fig. 10 Original spectrum and corrected spectra of white 

LED 2#. 

As can be seen from Figs. 9 and 10, all three 

methods show excellent improvement of the white 

LEDs, which can correct deformation and suppress 

noise well. However, in restoring the spectrum at the 

position with larger deformation and suppressing 

noise at the flat position, the LMAR method is better 

than the R-L method and HMSBD method, whose 

corrected spectra are closer to the original spectrum. 

To further analyze the correction effect of several 

methods, the correction errors, RMSE, and noise 

suppression ability of these methods were calculated. 

The correction error was obtained by subtracting the 

correction spectrum from the original spectrum, 

which could most intuitively reflect the correction 

effect of various correction algorithms at different 

wavelength positions. The RMSE was used to 

represent the deviation between the corrected 

spectrum and the original spectrum, and the noise 

suppression ability denotes the noise suppression 

effect of the algorithm. Since the measured spectra 

contain both noise and deformation, RMSEs in flat 

regions (350 nm – 400 nm) of the two spectra were 

calculated to characterize the noise suppression 

degree of the algorithm. Figures 11 and 12 show the 

correction errors of all three methods for two 

different white LED spectra. The RMSE and noise 

suppression ability of the three methods were 

calculated, as shown in Tables 1 and 2, respectively. 
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Fig. 11 Correction errors of all three methods for processing 

white LED 1# spectrum. 
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Fig. 12 Correction errors of all three methods for processing 

white LED 2# spectrum. 

Table 1 RMSE of all three methods. 

Method 
Spectrum 

White LED 1# White LED 2# 

R-L 133.553 129.994 

HMSBD 109.111 101.311 

LMAR 99.933 102.526 

Table 2 RMSEs of all three methods in flat regions of the 
two spectra. 

Method 
Spectrum 

White LED 1# White LED 2# 

R-L 89.228 85.994 

HMSBD 86.235 74.311 

LMAR 72.933 68.526 

 

As can be seen from Figs. 11 and 12, in the 

position of larger deformation, the LMAR method 
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has better correction effect and its correction error is 

closer to zero. Compared with the R-L method and 

the HMSBD method, the correction error of the 

LMAR method is smoother, which means that its 

correction spectrum is smoother. As can be seen 

from Table 1, the RMSEs of the LMAR method and 

the HMSBD method are much smaller than that of 

the R-L method. When dealing with the spectrum of 

white LED 1#, the RMSE of the LMAR method is 

smaller, and while dealing with the spectrum of 

white LED 2#, the RMSE of the HMSBD method is 

relatively smaller. This is because the spectrum of 

white LED 1# is mainly the narrowband spectrum 

while that of white LED 2# is the broadband 

spectrum. The LMAR method has better correction 

effect for the narrowband spectrum, while the 

HMSBD method has better correction effect for the 

broadband spectrum, which can also be seen in  

Figs. 11 and 12. As can be seen from Table 2, the 

RMSE of LMAR method in flat regions of the two 

spectra is the smallest of the three methods, which 

means that its noise suppression effect is the best 

among the three methods. 

In addition to the correction effect, the 

computation speed of the correction methods is also 

an important consideration particularly if a large 

number of spectra are to be processed. In this paper, 

various methods were implemented by using 

MATLAB 2016a. The central processing unit (CPU) 

of the computer was Intel (R) Core (TM) 

i5-7300HQ, and the memory was 8GB. The 

computation speed of each method is shown in  

Table 3. 

Table 3 Computation speed of each method. 

Method 
Spectrum 

White LED 1# White LED 2# 

R-L 0.367s 0.425s 

HMSBD 5.568s 7.311s 

LMAR 0.351s 0.368s 

 
It can be seen that the computation speed of the 

HMSBD method is much slower than those of the 

other methods, since the essence of the HMSBD 

method is a gradient descent method, of which 

convergence rate is fairly slow. The LMAR method 

and R-L method have similar computation speed, 

but the computation speed of the LMAR method is 

faster than that of the R-L method, which suggests 

that the convergence speed of the LMAR method is 

faster. According to the above discussion, one can 

conclude that the LMAR method has the excellent 

correction effect and fast computation speed, which 

is suitable for current real-time spectral processing. 

5. Conclusions 

Because of the broadening effect of the 

spectrometer, spectral distortion often occurs in the 

spectral data. Spectral deconvolution is an effective 

method to obtain accurate spectral data. In this paper, 

a spectral deconvolution method based on the L-M 

algorithm is proposed, and an adaptive operator is 

introduced as the coefficient of the regularization 

term. In order to verify the effectiveness of the 

proposed method and the effect of the adaptive 

operator, the proposed method, R-L method, and 

MAP method are used to correct different LED 

spectra. The correction error, the root mean square 

error, the noise suppression ability, and the 

computation speed of all three methods are 

compared. The results show that the LMAR method 

has the excellent correction effect and fast 

computation speed, and the adaptive operator can 

effectively enhance the correction effect of the 

method. 
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