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Abstract: A feature parameter was proposed to quantitatively explore the boundedness of running-in attractors; 

its variation throughout the friction process was also investigated. The enclosing radius R was built with 

recurrence plots (RPs) and recurrence qualification analysis (RQA) by using the time delay embedding and 

phase space reconstruction. Additionally, the typology of RPs and the recurrence rate (RR) were investigated 

to verify the applicability of R in characterizing the friction process. Results showed that R is larger at the 

beginning, but exhibits a downward trend in the running-in friction process; R becomes smooth and trends to 

small steady values during the steady-state friction period, and finally shows an upward trend until failure 

occurs. The evolution of R, which corresponded with the typology of RPs and RR during friction process, can 

be used to quantitatively analyze the variation of the running-in attractors and friction state identifacation. 

Hence, R is a valid parameter, and the boundedness of running-in attractors can offer a new way for monitoring 

the friction state of tribological pairs. 
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1  Introduction 

The friction coefficient (or “coefficient of friction”, 

COF) generated from friction couples is an important 

information carrier of friction conditions, directly 

reflecting wear state and wear mode [1, 2]. Owing to 

their strong dependence on a tribological system and 

their time varying nature, friction signals inevitably 

display nonlinear and complex characteristics [3]. 

The study of the COF based on nonlinear theory has 

gained much attention over the years, particularly 

with respect to the field of fractal and chaos [4]. 

The sequence signals extracted from friction systems, 

including friction force, friction coefficient, friction- 

induced vibration, and friction temperature, have 

been proven to be chaotic, and the output phase 

spaces show obvious low dimension [5, 6]. The phase 

trajectory, obtained by connecting the phase points 

in turn, was demonstrated to intuitively describe the 

time evolution process of a system [7, 8]. The attractors 

are spontaneous ordered spatiotemporal structures of 

phase trajectory during the running-in process; thus, 

the attractors in tribo-system are also referred to as 

running-in attractors. As typical chaotic attractors, 

the running-in attractors have the properties of 

boundedness, fractal-dimensionality, and intrinsic 

randomness [9], which can be characterized by 

fractal and chaotic parameters, including fractal and 

multifractal parameters [10, 11], Lyapunov exponent 

[12], entropy [13], and predictability [14]. Each mea-

surement presents and emphasizes the attractors from a 

different perspective. It has been widely confirmed 

that both the fractal dimension and multifractal 

spectra play a vital role in characterizing the fractal 

structures, while the Lyapunov exponent contributes 

to measuring the speed of divergence or convergence 

of nearby orbits in phase space, and the entropy 

measures the complexity of the attractors. Additionally, 
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Zhou et al. [15] had successfully introduced pre-

dictability as a quantitative statistical judgment of the 

intrinsic randomness degree in running-in attractors. 

The study of running-in attractors focuses not only 

on their properties and characterization parameters, 

but also on their extensive use in wear condition 

identification. Zhu et al. [16] discovered that running-in 

attractors are shaped during the running-in process. 

Sun et al. [17] stated that the evolvement of the 

friction vibration attractors corresponds to changes  

in wear state from the running-in stage to the stable 

wear stage. Zhou et al. [18] indicated that the evolution 

of friction temperature attractors abided by the  

law of “forming-keeping-disappearing”, which was 

consistent with the stages of “running-in, steady- 

state, and increasing friction”. Liu et al. [19] analyzed 

the cross correlation between tangential and normal 

friction vibration, and suggested that the chaotic 

attractors of both signals can be used to describe 

variations in the running-in process. Jiang et al. [20] 

developed a reliable method for fault diagnosis for 

gear boxes based on the chaotic degree of friction- 

induced vibration attractors; the results showed that 

the chaotic attractor was maintained in a steady state, 

and the chaotic degree was related to fault severity. 

The above-mentioned information and references 

are only a fraction of existing research papers that 

discuss running-in attractors, and there remains some 

unresolved issues. Firstly, as noted in Ref. [16, 18−20], 

the friction states can be recognized by the evolution 

of the phase trajectory of running-in attractors. 

However, there is no quantitative description of the 

degree of convergence of the running-in attractors, thus 

the existing studies on wear condition identification 

by phase space trajectory merely rest on qualitative 

analysis [21, 22]. Additionally, effective characteriza-

tion parameters to appraise the boundedness of the 

running-in attractors are lacking. Zhang et al. [23] 

indicated that the bounds of a domain containing all 

compact invariant sets obtained in many cases can be 

used not only for theoretical studies of chaotic attractors, 

but also for estimating for the Haudorff dimension 

and/or for further numerical researches. Furthermore, 

it has been ascertained that there are obvious short-

comings in the characterization of rather short-time 

nonstationary sequences with the method of entropy, 

fractal dimension, and the maximum Lyapunov 

exponent [24, 25]. 

The primary goal for this paper is to put forward a 

feature parameter to quantitatively characterize the 

boundedness of running-in attractors, and to further 

investigate the evolvement of the nonlinear dynamic 

behavior of tribological systems by describing the 

variation in the proposed parameter. Moreover, 

recurrence plots (RPs) and recurrence quantification 

analysis (RQA) are explored to verify the proposed 

parameter. This paper is organized as follows. In 

Section 2, the friction experiments are described, and 

the COF signals are acquired throughout the friction 

process. In Section 3, measurement of the enclosing 

radius R based on RPs and RQA is introduced to 

define the boundedness of running-in attractors. In 

Section 4, the morphological evolution of RPs, and 

the evolution of feature parameters are further studied. 

Finally, the major conclusions of the paper are 

summarized in Section 5. 

2 Experiments 

2.1 Apparatus 

A self-regulating rotational motion tribometer 

illustrated in Fig. 1(a) was applied to conduct friction 

experiments. It can be clearly seen that the upper 

ring sample (Fig. 1(b)) was fixed into the ring holder 

by a locking bolt and locating pin, while a center hole 

and a mill groove were machined on the disc holder 

to locate the lower disc sample (Fig. 1(c)). Moreover, 

the wedge-ended pin was used to ensure relative 

stability of the disc sample. Rotary motion of the 

main shaft, driven by a motor, was carried through 

the ring holder to the upper sample, causing relative 

sliding between the contact surfaces. A frequency 

converter was applied to realize rotational speed 

adjustment, and the normal load was adjusted by 

weight. The COF was then calculated via the collected 

friction torque signal, which was measured using the 

static torque sensor mounted on the disc holder 

bottom, and then uploaded to the computer via the 

signal collecting device. With μ as the COF and M  

as friction torque, the relationship is given via the 

following formula [26]: 
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Fig. 1 Schematic of rotating tribometer and installation of 
specimen. 
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where R1 and R2 are the outer and inner radius of  

the ring specimen, respectively. P is the normal load 

applied on the contact surface. 

2.2 Test samples and test conditions 

The lower disc sample was made up of AISI 1045 steel 

with an HB194 hardness and was cut into Φ 46 × 12 mm 

segments. The upper ring sample was made of AISI 

52100 steel that was hardened up to 698 HB. The ring 

sample had an outer diameter of 34 mm and an inner 

diameter of 24 mm. Thus, the nominal contact area was 

455.53 mm2, and the equivalent radius was 14.5 mm. 

The initial surface roughness of the ring and disc 

were 0.036‒0.040 μm and 5.60‒5.90 μm, respectively. 

It is noted that both rings and discs were carefully 

cleaned with anhydrous ethanol via ultrasonic bath 

prior to being used in the friction experiments. 

Four tests were carried out under different normal 

loads and velocities, and the experimental conditions 

were summarized in Table 1. The samples were 

lubricated with CD 15W-40 type machine oil with a 

viscosity of 12.5‒16.3 at 100 °C, with the flash point 

temperature higher than 215 °C and freezing point 

temperature lower than –20 °C. Prior to tests, a 

volume of 0.2 mL lubricating oil was added to the 

contact surfaces and no more oil was supplied during  

Table 1 Experimental conditions parameters in rotating friction 
tests. 

Test run Velocity 
(m/s) 

Normal load 
(N) 

Normal pressure 
(MPa) 

1 0.76 480 1.05 

2 1.06 480 1.05 

3 0.76 580 1.27 

4 1.06 580 1.27 

 

the tests. Furthermore, the tests were carried out at 

room temperature. The COF signal was measured with 

a sampling frequency of 10 Hz. 

2.3 Test results 

Any processed signal inevitably contains an abundance 

of noise, which can not only degrade the accuracy  

of parameters as-calculated, but also obscure or even 

destroy the inherent principles of the signal itself. 

Empirical mode decomposition (EMD) is widely 

known to be capable of eliminating the noise effects, 

and was introduced in the study for the de-noising. 

The basic functions of the EMD method are derived 

from the signal itself, so the method can be used to 

analyze nonstationary and nonlinear processes [27]. 

By using EMD, noisy signals can be decomposed 

into a number of intrinsic mode functions (imfs) and 

a residue r. Each imf has only one frequency, and 

can reflect the intrinsic and real information of the 

signal [28]. Taking Test 3 as an example, the temporal 

waveform of the original COF signals and its power 

spectral density (PSD) spectra are respectively shown 

in the top left-hand-side and right-hand-side diagrams 

of Fig. 2. It can be clearly observed that the raw COF 

signals contained two frequency components before 

decomposition. Therefore, the first two decomposed 

imfs (imf1 and imf2) and their PSD spectra are shown 

in the successive left-hand-side and right-hand-side 

diagrams, respectively. Obviously, the waveforms  

of imf1 and imf2, and their PSD spectra displayed  

in Figs. 2(c)–2(f) show that they are nearly mono- 

component, whilst the frequency of the first two imfs 

coincides with the dominant frequencies of the original 

signals, which is approximately 110.2 Hz and 79.2 Hz, 

separately. Thus, it can be confirmed that these two 

imfs mainly correspond to the noise components. 

The de-noised COF signals throughout friction 

process of four tests are shown in Fig. 3. Although the  
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Fig. 2 Partial results of EMD decomposition and corresponding 
PSD spectra graph. 

wear lives in four tests are not the same on account of 

different working conditions, the COF signals evolve 

in a similar way, which can be mainly divided in three 

stages: the running-in, steady-state, and increasing 

friction stages. The COF signals first increased, quickly 

reaching a peak value in the running-in friction 

process (Fig. 3(b)(i)), then gradually decreased and 

remained in a stable value in steady-state friction 

process (Fig. 3(b)(ii)), and the COF sharply increased in 

the increasing process (Fig. 3(b)(iii)). Additionally, there 

were fluctuations in signals at mean value, especially 

in the running-in and increasing friction stages. 

 

Fig. 3 COF signals during the rotating friction process. 

3 Feature parameter extraction of chaotic 

attractors 

3.1 Phase space reconstruction 

Reconstructing the friction signal time series into an 

appropriate high dimension phase space is an effective 

means to investigate the chaotic characteristics of the 

friction process in a tribological system. According 

to the time delay embedding technique proposed by 

Takens, the method of delays can be used to embed a 

scalar time series {xi} (i=1,2,3,…,N) into an m-dimension 

space as follows [29]: 
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where N is the number of the phase space vector  

and N=n–(m–1)τ, τ is the delay time and m is the 

embedding dimension. 

Takens’ theorem assumes that the time delay τ can 

be chosen almost arbitrarily in the case of an infinite 

noise-free data set [30]. However, the real data sets 

are finite and noisy; thus, the selection of embedding 

parameters plays a significant role in the construction 

of the phase space. In the presented work, τ and m 

are established by applying the mutual information 

(MI) method and the false nearest neighbors (FNN) 

method, separately. As suggested in Refs. [31, 32],   

τ can be determined as the first minimum of the MI 

function, and according to Refs. [33, 34], the phase 

space is entirely opened when the percentage of the 

FNN point decreases to 5%, and the optimal embedding 

dimension m is computed. 

3.2 Recurrence plot and recurrence rate RR 

A recurrence plot (RP), a visualization tool introduced 

by Eckmann et al. [35], is presented to visualize 

recurrences in multi-dimensional phase space. 

Concretely, it is a two dimensional graphical representa-

tion of the trajectory of the dynamical system in the 

form of a binary recurrence matrix R, and the entry 

Ri,j is expressed as follows: 

      
,

, , , , 1,2,...,m

i j i j i j
R X X X X R i j N  (4) 

where Ri,j is an element of the recurrence matrix; N is 

the number of the vector {Xi} (i=1,2,3,…,N); ε is the 

threshold distance; the notation ║·║ is calculated as 

a Euclidean norm in the phase space, and Θ(·) is the 

Heaviside function, defined as follows:  

   
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0, 0;

1, 0

x
x

x
             (5) 

Owing to unnecessary prior assumptions on 

statistical properties, the RPs, along with RQA, are 

applicable to the characterization of nonlinear time 

series and have gained an increasing amount of 

attention in a variety of fields [36, 37]. The recurrence 

for a time series is when a point on the trajectory 

repeats itself, which means that a point is close 

enough to another one within a suitably selected 

interval of error [38]. The basic measure of the RQA is 

the recurrence rate (RR) [39], which measures the 

percentage of darkened pixels in an RP: 



  ,2
, 1

1
RR

N

i j
i j
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N

             (6) 

RR is a measure of the density of recurrence points 

and corresponds to the correlation integral. However, 

the calculation of correlation dimension needs a large 

amount of data points, and the determination of the 

scaling region is relatively subjective. We can avoid 

the constraints with RR. By employing the definition 

of the Ri,j in Eq. (4), we can directly relate RR to ε: 
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        (7) 

An RR value, ranging from 0 to 1, is a measure 

based on overall probability that a certain state recurs 

in an RP. Given a specified ε, a large RR indicates  

an intensive distribution of phase points and a high 

degree of convergence. Furthermore, a trajectory with 

a larger RR has a stronger space-filling capacity. 

3.3 Feature parameter R of chaotic attractors 

In order to extract a quantitative characterization of 

the size range where running-in attractors exist, the 

recurrence matrix and RPs are obtained based on 

phase space reconstruction, and the relationship 

between RR and ε is defined as in Eq. (7) is calculated. 

The cutoff distance ε defines a hypersphere centered 

at phase points, every point in the phase space is a 

neighbor of every other point when ε is large enough, 

and the phase space will be included in a hypersphere 

of radius ε, which can be defined as the enclosing 

radius R. R can be computed by the plot of RR and ε, 

and the eigenvalue corresponds to the first abscissa 

when RR = 1. The phase points can be completely 
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enclosed when ε is greater than R. 

We take the typical Lorenz chaotic attractor, which 

is defined by Eq. (8), as an example to illustrate the 

calculation of R. The differential equations are solved 

numerically by the four-order Runge-Kutta method 

with a step of 0.01 and iterating time is 150 s, after 

discarding the initial transient points to allow the 

trajectory to fall to the attractor. A file containing 

4000 data points is obtained as a time series. 

  
   
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( ),

,

x y x

y rx xz y

z xy bz





                (8) 

where, σ = 10, r = 28, b = 8/3. The initial values of x, y, 

and z are 10, 20, and -10, respectively. 

The determination procedure of embedding para-

meters of the Lorenze time-series (Fig. 4(a)) are shown 

in Figs. 4 (b)‒4(c), τ corresponds to the first minimum 

of the MI function, and the percentage of FNN 

stabilizes after m = 4, as indicated by the filled dot. 

Therefore, for the given time series, τ= 15 and m = 4 

are used for the phase space reconstruction and the 

following analysis. The RPs of the Lorenz time series 

dependent on the cutoff distance ε are shown in 

Fig. 5. 

As shown in Fig. 5, a fixed ε results in a symmetric 

RP, and the RPs exhibit characteristic small-scale 

patterns that are caused by different ε values. When ε 

is relatively small, there are few recurrence points, 

 

Fig. 4 One-dimensional time series y of the Lorenz system and 
embedding parameters. 

and the RP is sparse, with an increase in ε, the pairs 

of recurrence point increase, and the black area is 

larger than the white area within an RP. Figure 6 

illustrates how the ε can determine RR. RR was 

calculated by a fixed ε and using a Euclidean distance. 

From results shown in Fig. 6, RR first increases and 

then tends to stabilize with increasing ε, and R of the 

given theoretical time series is 61.72. It is important 

to note that the magnitude of the parameter is not 

related to whether the attractor is chaotic, but is a 

quantitative representation of the volume and degree 

of convergence of the attractors. A lower magnitude 

of R indicates that in a smaller volume where the 

attractors exist and a higher degree of convergence of 

phase points. 

 

Fig. 5 RPs of the Lorenz time series dependent on cutoff 
distance ε; σ is the variance of the given series. 

 

Fig. 6 Sketch map of computing enclosing radius R based on RR. 
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4 Boundedness of running-in attractors 

4.1 Recurrence plots of COF signals 

As noted above, such recurrence of a state at time i at 

a different time j is pictured within an RP with black 

and white dots, where black dots mark a recurrence. 

It has been generally confirmed that the visual 

inspection of RPs reveals four typical large-scale 

patterns (the typology): homogeneous, periodic, drift, 

and disrupted [40]. The typology of the RPs can 

qualitatively give hints about specific dynamic behaviors 

of a system. The first two patterns correspond to 

stationary systems with short relaxation times and 

periodic (or quasi-periodic) systems, respectively. On 

the contrary, non-stationary systems with slowly 

varying parameters have RPs paled away from the 

LOI (line of identity with an angle of π/4) and can be 

classified as drift, while abrupt changes or extreme 

events in dynamics cause white areas and lead to a 

disrupted RP. 

The embedding parameters of the four tests were 

established by applying the method introduced in 

Section 3, and the results are summarized in Table 2. 

The recurrence matrices of the COF signals were 

calculated by applying a threshold such that RR was 

50% and using the Euclidean norm, the RPs are  

then obtained via the MATLAB CRP Toolbox [41]. 

For shorter computational time and smaller memory 

requirements, the COF signals were divided into 

non-overlapping subsequences with an equal length 

of 23785 data points, and only the initial 3785 points 

were calculated at every subsequence. Owing to space 

limitations, this paper enumerates only the 16 profiles 

in Test 2, as displayed in Fig. 7. 

Table 2 Optimal time delay and embedding dimension of friction 
coefficient in friction process. 

 Test 1 Test 2 Test 3 Test 4 

Time delay τ 22 21 17 25 

Embedding 
dimension m 7 15 19 13 

 
Fig. 7 Evolvement of RPs of the COF signal of Test 2 during the friction process. 
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An overview of the RPs’ evolvement in the 

running-in attractors throughout the friction process 

is illustrated in Fig. 7, and the macroscopic patterns 

of RPs depict an evolution of “disrupted-drifted- 

disrupted”. It can be observed in Figs. 7(a)–7(d) that 

large black and white areas occur at the corner of the 

RPs, indicating the friction system is unstable during 

the period. The disrupted typology corresponds to a 

violent fluctuation and a sparse distribution of phase 

points. In Figs. 7(e)–7(m), there is a fine structure of 

vertical (horizontal) lines, essentially demonstrating 

that the phase space trajectory does not change or 

changes very slowly. It can be recognized as typical 

behavior of laminar states [42]. Interestingly, there  

is a checkerboard structure in Fig. 7(n); it seems 

plausible that on this time-scale the underlying states 

strongly deviate from the previous “laminar” states. 

After wearing for 238 min, the COF signal changes 

immensely and a large fluctuation starts to appear. 

The RPs shown in Figs. 7(o)–7(p) are characterized 

with large black regions concentrated at the lower 

left corner and can be regarded as disrupted patterns. 

The RPs evolve from a disrupted pattern to a 

drifted pattern during the running-in process, maintain 

the drifted pattern in the steady-state process, and  

finally return to a disrupted pattern in the increasing 

friction process. Although the amplitude analysis of 

the friction coefficient was more likely not accurately 

revealed, the qualitative features can be extracted for 

comparison. 

4.2 Feature parameters of running-in attractors 

In order to illustrate the applicability of the proposed 

running-in attractors quantitative measurements of 

COF, R and RR are computed for each signal, and the 

evolution of R and RR are displayed in Fig. 8. 

As shown in Fig. 8, in different friction stages, the 

characteristic parameters R and RR show temporal 

variation and preferable regularity. Within the 

running-in friction process, R shows a downward 

trend; during the steady-state friction period, R 

becomes smooth and trends towards the small steady 

values; and R shows an upward trend until failure 

occurs. On the contrary, RR increases at first, then 

maintains stability, and finally increases. It is shown 

that both the R and RR values computed from different 

tests evolve in a similar way, and the evolution is 

synchronous if both eigenvalues are extracted from 

one friction coefficient signal. The results of R and 

 

Fig. 8 Evolvement of R and RR of running-in attractors during the friction process. 
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RR correspond with the typology of RPs evolution 

displayed in Fig. 7. 

The Pearson correlation r is adapted as the statistic 

for measuring the association of the changes in  

two parameters. As shown in Table 3, the Pearson 

correlation r of R and RR obtained by the four tests 

are negative, and the absolute values are all greater 

than 0.76, indicating there is a fine negative correlation 

between the two parameters. 




cov( ,RR)

( ) (RR)

R
r

var R var
            (9) 

4.3 Discussion 

The phase trajectory is an effective tool for describing 

the time evolution process of a system intuitively; 

thus, it is perfectly suitable for analyzing tribological 

issues. According to the evolution of the phase 

trajectory of friction signals, the friction process  

can be interpreted as “self-organization, chaos, and 

system-instability”, which correspond to the patterns 

of “running-in, steady-state, and increasing” across 

the friction process. 

Owing to the rather rough initial machined surfaces, 

the contact pressure was large and the friction was 

severe at the very beginning of the experiments.  

The COF significantly fluctuated, indicating a sparse 

distribution of phase points and a high degree of 

divergence. The typology of RPs could be interpreted 

as disrupted, and the bounds of friction coefficient 

attractors were rather large. R was rather large, while 

RR was small. 

Within the running-in friction period, asperities 

grew increasingly abundant and came into contact; 

the friction coefficient grew stable with decreasing real 

contact pressure. The distribution of phase points 

becomes relatively concentrated, and the bound of 

the phase trajectory gradually converged. Hence, the 

running-in process can be regarded as the formation 

process of running-in attractors. This results in a 

uniformly distributed RP, a decrease in the shrinking 

of R, and an increase in RR. 

In the steady-state friction stage, the friction system 

was well lubricated, and chiefly characterized by steady 

surface contact with low and stable heat generation.   

Table 3 Correlation coefficient of R and RR during the friction 
process. 

 Test 1 Test 2 Test 3 Test 4 

Pearson 
correlation r 

–0.8762 –0.7636 –0.8971 –0.9611

 

The friction coefficient maintained stable values, and 

the phase space trajectory seemed trapped during 

this stage. The main structures in RPs are vertical and 

horizontal lines, where the trajectories hover in a 

confined space and remain stable. Both R and RR 

were relatively stable in this stage. 

When wear failure occurred, the COF increased and 

fluctuated sharply as a consequence of the generation 

of wear particles, as well as the deterioration of 

lubricant and worn surfaces. The phase trajectories 

gradually diverged and finally escaped the limited 

space in the increasing friction process, causing a 

disrupted RP. Moreover, R increased and RR decreased 

dramatically. 

Furthermore, for the same pressure, the amplitude 

and the fluctuation of R both decreased with 

increasing velocity. Meanwhile, for the same velocity, 

the amplitude of R decreased while the fluctuation 

increased with an increase in normal pressure. In the 

process of sliding friction, the actual contact and 

interaction of surface asperities can be dramatically 

reduced by the increasing velocity, leading to a stable 

friction coefficient. With increasing pressure, the 

actual contact surface and the number of interacted 

asperities increase, causing a smaller friction coefficient 

amplitude. At the same time, it can be stated that a 

higher pressure will result in an increasing mechanical 

engagement between the asperities, as well as a 

fluctuation in the friction coefficient. 

5 Conclusions 

The friction experiments were performed by sliding a 

ring (AISI 52100) against a stationary disc (AISI 1045) 

under lubricated conditions. The evolution in running-in 

attractors was investigated by defining a feature 

parameter R extracted by RP and RQA. The dynamic 

evolution of friction systems was intuitively analyzed 

by RPs and characteristic parameters R and RR. The 

major conclusions can be summarized as follows: 
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(1) The enclosing radius R, defined by RP and RQA, 

is adapted to describe the boundedness of running-in 

attractors. It is an effective way to reflect the behavior 

of COF during friction process. A small value of R 

indicates an intensive distribution of phase points and 

a high degree of convergence, while the convergence 

of trajectory indicates a decrease of energy dissipation. 

(2) R goes through a rapid downward path during 

the running-in period, a stable fluctuation in the 

steady-state friction stage, and an uptrend in the 

increasing friction stage, following the same trend as 

the COF in time domain. The identification of a 

friction state with R is consistent with that using the 

COF signals; therefore, R can be used to monitor the 

friction state of tribopairs. 

(3) The results of RPs and RQA indicate that the 

non-linear dynamic behavior of the friction process 

can be described by the pattern of RPs and RQA 

measures. The drifted typology of RPs, the decrease in 

R, and the increase in RR occur when the running-in 

process is terminated. Additionally, the disrupted 

typology of RPs, the increase in R, and the decrease 

in RR indicate the failure occurs. 

(4) The typology of RPs and chaotic parameters of 

COF signals during different friction tests evolve in  

a similar way, which can be used for wear condition 

identification. Furthermore, they synchronously evolve 

when the signal is extracted from a friction system. 
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