Skip to main content

Assessing Muscle Stem Cell Clonal Complexity During Aging

  • Protocol
  • First Online:
Stem Cells and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2045))

Abstract

Changes in muscle stem cell (MuSC) function during aging have been assessed using various in vivo and ex vivo systems. However, changes in clonal complexity within the aged MuSC pool are relatively understudied. Although the dissection of stem cell heterogeneity has greatly benefited from several technological advancements, including single cell sequencing, these methods preclude longitudinal measures of individual stem cell behavior. Instead, multicolor labeling systems enable lineage tracing with single cell resolution. Here, we describe a method of inducibly labeling MuSCs with the Brainbow-2.1 multicolor lineage tracing reporter in vivo to track individual MuSC fate and assess clonal complexity in the overall MuSC pool throughout the mouse lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67. https://doi.org/10.1152/physrev.00043.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Keefe AC, Lawson JA, Flygare SD, Fox ZD, Colasanto MP, Mathew SJ, Yandell M, Kardon G (2015) Muscle stem cells contribute to myofibres in sedentary adult mice. Nat Commun 6:7087. https://doi.org/10.1038/ncomms8087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pawlikowski B, Pulliam C, Betta ND, Kardon G, Olwin BB (2015) Pervasive satellite cell contribution to uninjured adult muscle fibers. Skelet Muscle 5:42. https://doi.org/10.1186/s13395-015-0067-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sacco A, Puri PL (2015) Regulation of muscle satellite cell function in tissue homeostasis and aging. Cell Stem Cell 16(6):585–587. https://doi.org/10.1016/j.stem.2015.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456(7221):502–506. https://doi.org/10.1038/nature07384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129(5):999–1010. https://doi.org/10.1016/j.cell.2007.03.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, Blasco MA, Tajbakhsh S (2012) A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 148(1–2):112–125. https://doi.org/10.1016/j.cell.2011.11.049

    Article  CAS  PubMed  Google Scholar 

  8. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301. https://doi.org/10.1016/j.cell.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  9. Tierney MT, Sacco A (2016) Satellite cell heterogeneity in skeletal muscle homeostasis. Trends Cell Biol 26(6):434–444. https://doi.org/10.1016/j.tcb.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tierney MT, Stec MJ, Rulands S, Simons BD, Sacco A (2018) Muscle stem cells exhibit distinct clonal dynamics in response to tissue repair and homeostatic aging. Cell Stem Cell 22(1):119–127.e113. https://doi.org/10.1016/j.stem.2017.11.009. S1934-5909(17)30461-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144. https://doi.org/10.1016/j.cell.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  12. Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56–62. https://doi.org/10.1038/nature06293. nature06293 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Nishijo K, Hosoyama T, Bjornson CR, Schaffer BS, Prajapati SI, Bahadur AN, Hansen MS, Blandford MC, McCleish AT, Rubin BP, Epstein JA, Rando TA, Capecchi MR, Keller C (2009) Biomarker system for studying muscle, stem cells, and cancer in vivo. FASEB J 23(8):2681–2690. https://doi.org/10.1096/fj.08-128116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Noirez P, Torres S, Cebrian J, Agbulut O, Peltzer J, Butler-Browne G, Daegelen D, Martelly I, Keller A, Ferry A (2006) TGF-beta1 favors the development of fast type identity during soleus muscle regeneration. J Muscle Res Cell Motil 27(1):1–8. https://doi.org/10.1007/s10974-005-9014-9

    Article  CAS  PubMed  Google Scholar 

  15. Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35(4):445–453. https://doi.org/10.2307/1931034

    Article  Google Scholar 

  16. Diggle P (1983) Statistical analysis of spatial point patterns. Mathematics in biology. Academic Press, London, New York

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant R01 AR064873 (to A.S.), NIH grant F31 AR065923 (to M.T.T.), and NIH grant F32 AR070630 (to M.J.S.). We thank Leslie Boyd, Buddy Charbono, and the Cell Imaging and Animal Core Facilities at SBPMDI for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Sacco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tierney, M.T., Stec, M.J., Sacco, A. (2018). Assessing Muscle Stem Cell Clonal Complexity During Aging. In: Turksen, K. (eds) Stem Cells and Aging . Methods in Molecular Biology, vol 2045. Humana, New York, NY. https://doi.org/10.1007/7651_2018_139

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_139

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9712-1

  • Online ISBN: 978-1-4939-9713-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics