Skip to main content

Metabolomic and Proteomic Analyses of Mouse Primordial Germ Cells

  • Protocol
  • First Online:
Stem Cells and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2045))

Abstract

Primordial germ cells (PGCs), the precursors of gametes, are the only cells capable of acquiring totipotency upon fertilization, but the molecular mechanisms regulating germ cell characteristics have not been fully elucidated. Although intracellular metabolic status and regulation are responsible for the control of cell function and differentiation, little is known about the metabolic features of PGCs. Here, we describe use of an integrated metabolomic, proteomic, and energy metabolic analysis method to comprehensively elucidate the metabolic characteristics of PGCs using mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ginsburg M, Snow MH, McLaren A (1990) Primordial germ cells in the mouse embryo during gastrulation. Development 110:521–528

    CAS  PubMed  Google Scholar 

  2. Saitou M, Yamaji M (2012) Primordial germ cells in mice. Cold Spring Harb Perspect Biol 4: pii: a008375

    Google Scholar 

  3. Seki Y, Hayashi K, Itoh K et al (2005) Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol 278:440–458

    Article  CAS  Google Scholar 

  4. Seisenberger S, Andrews S, Krueger F et al (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48:849–862

    Article  CAS  Google Scholar 

  5. Ng JH, Kumar V, Muratani M et al (2013) In vivo epigenomic profiling of germ cells reveals germ cell molecular signatures. Dev Cell 24:324–333

    Article  CAS  Google Scholar 

  6. Brinster RL, Harstad H (1977) Energy metabolism in primordial germ cells of the mouse. Exp Cell Res 109:111–117

    Article  CAS  Google Scholar 

  7. Yoshimizu T, Sugiyama N, De Felice M et al (1999) Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Develop Growth Differ 41:675–684

    Article  CAS  Google Scholar 

  8. Soga T, Ohashi Y, Ueno Y et al (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2:488–494

    Article  CAS  Google Scholar 

  9. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  Google Scholar 

  10. Hayashi Y, Otsuka K, Ebina M et al (2017) Distinct requirements for energy metabolism in mouse primordial germ cells and their reprogramming to embryonic germ cells. Proc Natl Acad Sci U S A 114:8289–8294

    Article  CAS  Google Scholar 

  11. Soga T, Baran R, Suematsu M et al (2006) Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem 281:16768–16776

    Article  CAS  Google Scholar 

  12. Soga T, Igarashi K, Ito C et al (2009) Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal Chem 81:6165–6174

    Article  CAS  Google Scholar 

  13. Xia J, Sinelnikov IV, Han B et al (2015) MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res 43:W251–W257

    Article  CAS  Google Scholar 

  14. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  Google Scholar 

  15. Imamura M, Aoi T, Tokumasu A et al (2010) Induction of primordial germ cells from mouse induced pluripotent stem cells derived from adult hepatocytes. Mol Reprod Dev 77:802–811

    Article  CAS  Google Scholar 

  16. Maeda I, Okamura D, Tokitake Y et al (2013) Max is a repressor of germ cell-related gene expression in mouse embryonic stem cells. Nat Commun 4:1754

    Article  Google Scholar 

Download references

Acknowledgments

Y.M. was supported by a Grant-in-Aid for Scientific Research (KAKENHI) in the Innovative Areas, “Mechanisms regulating gamete formation in animals” (grant #25114003) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by AMED-CREST (grant #JP17gm0510017h) from the Japan Agency for Medical Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhisa Matsui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hayashi, Y., Matsui, Y. (2018). Metabolomic and Proteomic Analyses of Mouse Primordial Germ Cells. In: Turksen, K. (eds) Stem Cells and Aging . Methods in Molecular Biology, vol 2045. Humana, New York, NY. https://doi.org/10.1007/7651_2018_164

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_164

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9712-1

  • Online ISBN: 978-1-4939-9713-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics