Skip to main content

Methods and Strategies for Procurement, Isolation, Characterization, and Assessment of Senescence of Human Mesenchymal Stem Cells from Adipose Tissue

  • Protocol
  • First Online:
Stem Cells and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2045))

Abstract

Human adipose-derived mesenchymal stem (stromal) cells (hADSC) represent an attractive source of the cells for numerous therapeutic applications in regenerative medicine. These cells are also an efficient model to study biological pathways of stem cell action, tissue injury and disease. Like any other primary somatic cells in culture, industrial-scale expansion of mesenchymal stromal cells (MSC) leads to the replicative exhaustion/senescence as defined by the “Hayflick limit.” The senescence is not only greatly effecting in vivo potency of the stem cell cultures but also might be the cause and the source of clinical inconsistency arising from infused cell preparations. In this light, the characterization of hADSC replicative and stressor-induced senescence phenotypes is of great interest.

This chapter summarizes some of the essential protocols and assays used at our laboratories and clinic for the human fat procurement, isolation, culture, differentiation, and characterization of mesenchymal stem cells from adipose tissue and the stromal vascular fraction. Additionally, we provide manuals for characterization of hADSC senescence in a culture based on stem cells immunophenotype, proliferation rate, migration potential, and numerous other well-accepted markers of cellular senescence. Such methodological framework will be immensely helpful to design standards and surrogate measures for hADSC-based therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hass R, Kasper C, Bohm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12. https://doi.org/10.1186/1478-811X-9-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Singer NG, Caplan AI (2011) Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 6:457–478. https://doi.org/10.1146/annurev-pathol-011110-130230

    Article  CAS  PubMed  Google Scholar 

  3. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736. https://doi.org/10.1038/nri2395

    Article  CAS  PubMed  Google Scholar 

  4. Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG, Nishikawa S (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129(7):1377–1388. https://doi.org/10.1016/j.cell.2007.04.028

    Article  CAS  PubMed  Google Scholar 

  5. Jiang Y, Berry DC, Tang W, Graff JM (2014) Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis. Cell Rep 9(3):1007–1022. https://doi.org/10.1016/j.celrep.2014.09.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lunyak VV, Amaro-Ortiz A, Gaur M (2017) Mesenchymal stem cells secretory responses: senescence messaging secretome and immunomodulation perspective. Front Genet 8:220. https://doi.org/10.3389/fgene.2017.00220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lindner U, Kramer J, Rohwedel J, Schlenke P (2010) Mesenchymal stem or stromal cells: toward a better understanding of their biology? Transfus Med Hemother 37(2):75–83. https://doi.org/10.1159/000290897

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells—current trends and future prospective. Biosci Rep 35(2). https://doi.org/10.1042/BSR20150025

    Article  CAS  Google Scholar 

  9. Ben-Ami E, Miller A, Berrih-Aknin S (2014) T cells from autoimmune patients display reduced sensitivity to immunoregulation by mesenchymal stem cells: role of IL-2. Autoimmun Rev 13(2):187–196. https://doi.org/10.1016/j.autrev.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  10. Aso K, Tsuruhara A, Takagaki K, Oki K, Ota M, Nose Y, Tanemura H, Urushihata N, Sasanuma J, Sano M, Hirano A, Aso R, McGhee JR, Fujihashi K (2016) Adipose-derived mesenchymal stem cells restore impaired mucosal immune responses in aged mice. PLoS One 11(2):e0148185. https://doi.org/10.1371/journal.pone.0148185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Attar-Schneider O, Zismanov V, Drucker L, Gottfried M (2016) Secretome of human bone marrow mesenchymal stem cells: an emerging player in lung cancer progression and mechanisms of translation initiation. Tumour Biol 37(4):4755–4765. https://doi.org/10.1007/s13277-015-4304-3

    Article  CAS  PubMed  Google Scholar 

  12. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30(1):42–48

    Article  PubMed  Google Scholar 

  13. Chen Y, Xiang LX, Shao JZ, Pan RL, Wang YX, Dong XJ, Zhang GR (2010) Recruitment of endogenous bone marrow mesenchymal stem cells towards injured liver. J Cell Mol Med 14(6B):1494–1508. https://doi.org/10.1111/j.1582-4934.2009.00912.x

    Article  PubMed  Google Scholar 

  14. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843

    Article  PubMed  Google Scholar 

  15. Gaur M, Dobke M, Lunyak VV (2017) Mesenchymal stem cells from adipose tissue in clinical applications for dermatological indications and skin aging. Int J Mol Sci 18(1). https://doi.org/10.3390/ijms18010208

    Article  PubMed Central  Google Scholar 

  16. Gaur M, Wang L, Amaro-Ortiz A, Dobke MI, King Jordan I, Lunyak VV (2017) Acute genotoxic stress-induced senescence in human mesenchymal cells drives a unique composition of senescence messaging secretome (SMS). J Stem Cell Res Ther 7(8):396. https://doi.org/10.4172/2157-7633.1000396

    Article  Google Scholar 

  17. Eggenhofer E, Luk F, Dahlke MH, Hoogduijn MJ (2014) The life and fate of mesenchymal stem cells. Front Immunol 5:148. https://doi.org/10.3389/fimmu.2014.00148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O, Charbord P, Domenech J (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25(7):1737–1745. https://doi.org/10.1634/stemcells.2007-0054

    Article  CAS  PubMed  Google Scholar 

  19. Liu R, Chang W, Wei H, Zhang K (2016) Comparison of the biological characteristics of mesenchymal stem cells derived from bone marrow and skin. Stem Cells Int 2016:3658798. https://doi.org/10.1155/2016/3658798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Signer RA, Morrison SJ (2013) Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 12(2):152–165. https://doi.org/10.1016/j.stem.2013.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lopez MF, Niu P, Wang L, Vogelsang M, Gaur M, Krastins B, Zhao Y, Smagul A, Nussupbekova A, Akanov AA, Jordan IK, Lunyak VV (2017) Opposing activities of oncogenic MIR17HG and tumor suppressive MIR100HG clusters and their gene targets regulate replicative senescence in human adult stem cells. NPJ Aging Mech Dis 3:7. https://doi.org/10.1038/s41514-017-0006-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang J, Geesman GJ, Hostikka SL, Atallah M, Blackwell B, Lee E, Cook PJ, Pasaniuc B, Shariat G, Halperin E, Dobke M, Rosenfeld MG, Jordan IK, Lunyak VV (2011) Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle 10(17):3016–3030. https://doi.org/10.4161/cc.10.17.17543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Niu P, Smagul A, Wang L, Sadvakas A, Sha Y, Perez LM, Nussupbekova A, Amirbekov A, Akanov AA, Galvez BG, Jordan IK, Lunyak VV (2015) Transcriptional profiling of interleukin-2-primed human adipose derived mesenchymal stem cells revealed dramatic changes in stem cells response imposed by replicative senescence. Oncotarget 6(20):17938–17957. https://doi.org/10.18632/oncotarget.4852

    Article  PubMed  PubMed Central  Google Scholar 

  24. Perin EC, Sanz-Ruiz R, Sanchez PL, Lasso J, Perez-Cano R, Alonso-Farto JC, Perez-David E, Fernandez-Santos ME, Serruys PW, Duckers HJ, Kastrup J, Chamuleau S, Zheng Y, Silva GV, Willerson JT, Fernandez-Aviles F (2014) Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the PRECISE trial. Am Heart J 168(1):88–95.e82. https://doi.org/10.1016/j.ahj.2014.03.022

    Article  CAS  PubMed  Google Scholar 

  25. Rumman M, Dhawan J, Kassem M (2015) Concise review: quiescence in adult stem cells: biological significance and relevance to tissue regeneration. Stem Cells 33(10):2903–2912. https://doi.org/10.1002/stem.2056

    Article  PubMed  Google Scholar 

  26. Holton J, Imam MA, Snow M (2016) Bone marrow aspirate in the treatment of chondral injuries. Front Surg 3:33. https://doi.org/10.3389/fsurg.2016.00033

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301. https://doi.org/10.1634/stemcells.2005-0342

    Article  CAS  PubMed  Google Scholar 

  28. Tuan RS, Boland G, Tuli R (2003) Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5(1):32–45

    Article  CAS  PubMed  Google Scholar 

  29. Cheriyan T, Kao HK, Qiao X, Guo L (2014) Low harvest pressure enhances autologous fat graft viability. Plast Reconstr Surg 133(6):1365–1368. https://doi.org/10.1097/PRS.0000000000000185

    Article  CAS  PubMed  Google Scholar 

  30. Li K, Gao J, Zhang Z, Li J, Cha P, Liao Y, Wang G, Lu F (2013) Selection of donor site for fat grafting and cell isolation. Aesthetic Plast Surg 37(1):153–158. https://doi.org/10.1007/s00266-012-9991-1

    Article  PubMed  Google Scholar 

  31. Shim YH, Zhang RH (2017) Literature review to optimize the autologous fat transplantation procedure and recent technologies to improve graft viability and overall outcome: a systematic and retrospective analytic approach. Aesthetic Plast Surg 41(4):815–831. https://doi.org/10.1007/s00266-017-0793-3

    Article  PubMed  Google Scholar 

  32. Duscher D, Atashroo D, Maan ZN, Luan A, Brett EA, Barrera J, Khong SM, Zielins ER, Whittam AJ, Hu MS, Walmsley GG, Pollhammer MS, Schmidt M, Schilling AF, Machens HG, Huemer GM, Wan DC, Longaker MT, Gurtner GC (2016) Ultrasound-assisted liposuction does not compromise the regenerative potential of adipose-derived stem cells. Stem Cells Transl Med 5(2):248–257. https://doi.org/10.5966/sctm.2015-0064

    Article  CAS  PubMed  Google Scholar 

  33. Canizares O Jr, Thomson JE, Allen RJ Jr, Davidson EH, Tutela JP, Saadeh PB, Warren SM, Hazen A (2017) The effect of processing technique on fat graft survival. Plast Reconstr Surg 140(5):933–943. https://doi.org/10.1097/PRS.0000000000003812

    Article  CAS  PubMed  Google Scholar 

  34. Kapur SK, Dos-Anjos Vilaboa S, Llull R, Katz AJ (2015) Adipose tissue and stem/progenitor cells: discovery and development. Clin Plast Surg 42(2):155–167. https://doi.org/10.1016/j.cps.2014.12.010

    Article  PubMed  Google Scholar 

  35. Klein JA (1990) Tumescent technique for regional anesthesia permits lidocaine doses of 35 mg/kg for liposuction. J Dermatol Surg Oncol 16(3):248–263

    Article  CAS  PubMed  Google Scholar 

  36. Gupta N, Gupta V (2014) Life-threatening complication following infiltration with adrenaline. Indian J Anaesth 58(2):225–227. https://doi.org/10.4103/0019-5049.130850

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tonnard P, Verpaele A, Peeters G, Hamdi M, Cornelissen M, Declercq H (2013) Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg 132(4):1017–1026. https://doi.org/10.1097/PRS.0b013e31829fe1b0

    Article  CAS  PubMed  Google Scholar 

  38. Tambasco D, Arena V, Finocchi V, Grussu F, Cervelli D (2014) The impact of liposuction cannula size on adipocyte viability. Ann Plast Surg 73(2):249–251. https://doi.org/10.1097/SAP.0b013e31828a0ac1

    Article  CAS  PubMed  Google Scholar 

  39. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  40. Shen JL, Huang YZ, Xu SX, Zheng PH, Yin WJ, Cen J, Gong LZ (2012) Effectiveness of human mesenchymal stem cells derived from bone marrow cryopreserved for 23-25 years. Cryobiology 64(3):167–175. https://doi.org/10.1016/j.cryobiol.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  41. Macallan DC, Fullerton CA, Neese RA, Haddock K, Park SS, Hellerstein MK (1998) Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: studies in vitro, in animals, and in humans. Proc Natl Acad Sci U S A 95(2):708–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Asher E, Payne CM, Bernstein C (1995) Evaluation of cell death in EBV-transformed lymphocytes using agarose gel electrophoresis, light microscopy and electron microscopy. II. Induction of non-classic apoptosis (“para-apoptosis”) by tritiated thymidine. Leuk Lymphoma 19(1–2):107–119. https://doi.org/10.3109/10428199509059664

    Article  CAS  PubMed  Google Scholar 

  43. Burns TC, Ortiz-Gonzalez XR, Gutierrez-Perez M, Keene CD, Sharda R, Demorest ZL, Jiang Y, Nelson-Holte M, Soriano M, Nakagawa Y, Luquin MR, Garcia-Verdugo JM, Prosper F, Low WC, Verfaillie CM (2006) Thymidine analogs are transferred from prelabeled donor to host cells in the central nervous system after transplantation: a word of caution. Stem Cells 24(4):1121–1127. https://doi.org/10.1634/stemcells.2005-0463

    Article  CAS  PubMed  Google Scholar 

  44. Kuan CY, Schloemer AJ, Lu A, Burns KA, Weng WL, Williams MT, Strauss KI, Vorhees CV, Flavell RA, Davis RJ, Sharp FR, Rakic P (2004) Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci 24(47):10763–10772. https://doi.org/10.1523/JNEUROSCI.3883-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin P, Allison DC (1993) Measurement of DNA content and of tritiated thymidine and bromodeoxyuridine incorporation by the same cells. J Histochem Cytochem 41(9):1435–1439. https://doi.org/10.1177/41.9.8354883

    Article  CAS  PubMed  Google Scholar 

  46. Steel GG (1977) Growth kinetics of tumours. Cell population kinetics in relation to the growth and treatment of cancer. Q Rev Biol 54(1)

    Google Scholar 

  47. Pollack A, Bagwell CB, Irvin GL 3rd (1979) Radiation from tritiated thymidine perturbs the cell cycle progression of stimulated lymphocytes. Science 203(4384):1025–1027

    Article  CAS  PubMed  Google Scholar 

  48. Gratzner HG (1982) Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218(4571):474–475

    Article  CAS  PubMed  Google Scholar 

  49. Madhavan H (2007) Simple laboratory methods to measure cell proliferation using DNA synthesis property. J Stem Cells Regen Med 3(1):12–14

    PubMed  PubMed Central  Google Scholar 

  50. Gunduz N (1985) The use of FITC-conjugated monoclonal antibodies for determination of S-phase cells with fluorescence microscopy. Cytometry 6(6):597–601. https://doi.org/10.1002/cyto.990060615

    Article  CAS  PubMed  Google Scholar 

  51. Wilson GD, McNally NJ, Dunphy E, Karcher H, Pfragner R (1985) The labelling index of human and mouse tumours assessed by bromodeoxyuridine staining in vitro and in vivo and flow cytometry. Cytometry 6(6):641–647. https://doi.org/10.1002/cyto.990060621

    Article  CAS  PubMed  Google Scholar 

  52. Sasaki K, Ogino T, Takahashi M (1986) Immunological determination of labeling index on human tumor tissue sections using monoclonal anti-BrdUrd antibody. Stain Technol 61(3):155–161

    Article  CAS  PubMed  Google Scholar 

  53. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  54. Varghese J, Griffin M, Mosahebi A, Butler P (2017) Systematic review of patient factors affecting adipose stem cell viability and function: implications for regenerative therapy. Stem Cell Res Ther 8(1):45. https://doi.org/10.1186/s13287-017-0483-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Noren Hooten N, Evans MK (2017) Techniques to Induce and quantify cellular senescence. J Vis Exp (123). doi:https://doi.org/10.3791/55533

  56. Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D, Hwang ES (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5(2):187–195. https://doi.org/10.1111/j.1474-9726.2006.00199.x

    Article  CAS  PubMed  Google Scholar 

  57. Seo MJ, Suh SY, Bae YC, Jung JS (2005) Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 328(1):258–264. https://doi.org/10.1016/j.bbrc.2004.12.158

    Article  CAS  PubMed  Google Scholar 

  58. Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 25(4):818–827. https://doi.org/10.1634/stemcells.2006-0589

    Article  CAS  PubMed  Google Scholar 

  59. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2(2):141–150. https://doi.org/10.1016/j.stem.2007.11.014

    Article  CAS  PubMed  Google Scholar 

  60. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822. https://doi.org/10.1182/blood-2004-04-1559

    Article  CAS  PubMed  Google Scholar 

  61. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105(7):2821–2827. https://doi.org/10.1182/blood-2004-09-3696

    Article  CAS  PubMed  Google Scholar 

  62. Galvez BG, San Martin N, Rodriguez C (2009) TNF-alpha is required for the attraction of mesenchymal precursors to white adipose tissue in Ob/ob mice. PLoS One 4(2):e4444. https://doi.org/10.1371/journal.pone.0004444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Perez LM, Bernal A, San Martin N, Galvez BG (2013) Obese-derived ASCs show impaired migration and angiogenesis properties. Arch Physiol Biochem 119(5):195–201. https://doi.org/10.3109/13813455.2013.784339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bai L, Lennon DP, Caplan AI, DeChant A, Hecker J, Kranso J, Zaremba A, Miller RH (2012) Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat Neurosci 15(6):862–870. https://doi.org/10.1038/nn.3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen PM, Liu KJ, Hsu PJ, Wei CF, Bai CH, Ho LJ, Sytwu HK, Yen BL (2014) Induction of immunomodulatory monocytes by human mesenchymal stem cell-derived hepatocyte growth factor through ERK1/2. J Leukoc Biol 96(2):295–303. https://doi.org/10.1189/jlb.3A0513-242R

    Article  CAS  PubMed  Google Scholar 

  66. Ichim TE, Alexandrescu DT, Solano F, Lara F, Campion Rde N, Paris E, Woods EJ, Murphy MP, Dasanu CA, Patel AN, Marleau AM, Leal A, Riordan NH (2010) Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol 260(2):75–82. https://doi.org/10.1016/j.cellimm.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  67. Murphy MB, Moncivais K, Caplan AI (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 45:e54. https://doi.org/10.1038/emm.2013.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. O’Cearbhaill ED, Punchard MA, Murphy M, Barry FP, McHugh PE, Barron V (2008) Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials 29(11):1610–1619. https://doi.org/10.1016/j.biomaterials.2007.11.042

    Article  CAS  PubMed  Google Scholar 

  69. Ben-Ami E, Berrih-Aknin S, Miller A (2011) Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmun Rev 10(7):410–415. https://doi.org/10.1016/j.autrev.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  70. Yi T, Song SU (2012) Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res 35(2):213–221. https://doi.org/10.1007/s12272-012-0202-z

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marek Dobke or Victoria V. Lunyak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gaur, M., Dobke, M., Lunyak, V.V. (2018). Methods and Strategies for Procurement, Isolation, Characterization, and Assessment of Senescence of Human Mesenchymal Stem Cells from Adipose Tissue. In: Turksen, K. (eds) Stem Cells and Aging . Methods in Molecular Biology, vol 2045. Humana, New York, NY. https://doi.org/10.1007/7651_2018_174

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_174

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9712-1

  • Online ISBN: 978-1-4939-9713-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics