Skip to main content

3D Culture of Mesenchymal Stem Cells in Alginate Hydrogels

  • Protocol
  • First Online:
Stem Cell Niche

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2002))

Abstract

Three-dimensional (3D) cell culture systems have gained increasing interest among the scientific community, as they are more biologically relevant than traditional two-dimensional (2D) monolayer cultures. Alginate hydrogels can be formed under cytocompatibility conditions, being among the most widely used cell-entrapment 3D matrices. They recapitulate key structural features of the natural extracellular matrix and can be bio-functionalized with bioactive moieties, such as peptides, to specifically modulate cell behavior. Moreover, alginate viscoelastic properties can be tuned to match those of different types of native tissues. Ionic alginate hydrogels are transparent, allowing routine monitoring of entrapped cells, and crosslinking can be reverted using chelating agents for easy cell recovery. In this chapter, we describe some key steps to establish and characterize 3D cultures of mesenchymal stem cells using alginate hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas D, O’Brien T, Pandit A (2018) Toward customized extracellular niche engineering: progress in cell-entrapment technologies. Adv Mater 30(1)

    Article  Google Scholar 

  2. Justice BA, Badr NA, Felder RA (2009) 3D cell culture opens new dimensions in cell-based assays. Drug Discov Today 14(1–2):102–107

    Article  CAS  Google Scholar 

  3. Huang G, Li F, Zhao X et al (2017) Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev 117(20):12764–12850

    Article  CAS  Google Scholar 

  4. Edmondson R, Broglie JJ, Adcock AF et al (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12(4):207–218

    Article  CAS  Google Scholar 

  5. Duval K, Grover H, Han L-H et al (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology 32(4):266–277

    Article  CAS  Google Scholar 

  6. Baker BM, Chen CS (2012) Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J Cell Sci 125(Pt 13):3015–3024

    Article  CAS  Google Scholar 

  7. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663

    Article  CAS  Google Scholar 

  8. Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10(4):1646–1662

    Article  CAS  Google Scholar 

  9. Bidarra SJ, Torres AL, Barrias CC (2016) Injectable cell delivery systems based on alginate hydrogels for regenerative therapies. In: Hashmi S (ed) Reference module in materials science and materials engineering. Elsevier, Oxford, pp 1–17. https://doi.org/10.1016/B978-0-12-803581-8.04057-1

    Chapter  Google Scholar 

  10. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  CAS  Google Scholar 

  11. Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8(3):71–78

    Article  CAS  Google Scholar 

  12. Morch YA, Donati I, Strand BL (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7(5):1471–1480

    Article  CAS  Google Scholar 

  13. Lee K, Mooney D (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  CAS  Google Scholar 

  14. Evangelista MB, Hsiong SX, Fernandes R et al (2007) Upregulation of bone cell differentiation through immobilization within a synthetic extracellular matrix. Biomaterials 28(25):3644–3655

    Article  CAS  Google Scholar 

  15. Bidarra SJ, Barrias CC, Barbosa MA et al (2010) Immobilization of human mesenchymal stem cells within RGD-grafted alginate microspheres and assessment of their angiogenic potential. Biomacromolecules 11(8):1956–1964

    Article  CAS  Google Scholar 

  16. Bidarra SJ, Barrias CC, Fonseca KB et al (2011) Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials 32(31):7897–7904

    Article  CAS  Google Scholar 

  17. Maia FR, Barbosa M, Gomes DB et al (2014) Hydrogel depots for local co-delivery of osteoinductive peptides and mesenchymal stem cells. J Control Release 189:158–168

    Article  CAS  Google Scholar 

  18. Maia FR, Fonseca KB, Rodrigues G et al (2014) Matrix-driven formation of mesenchymal stem cell-extracellular matrix microtissues on soft alginate hydrogels. Acta Biomater 10(7):3197–3208

    Article  CAS  Google Scholar 

  19. Torres AL, Bidarra SJ, Pinto MT et al (2018) Guiding morphogenesis in cell-instructive microgels for therapeutic angiogenesis. Biomaterials 154:34–47

    Article  CAS  Google Scholar 

  20. Bidarra SJ, Oliveira P, Rocha S et al (2016) A 3D in vitro model to explore the inter-conversion between epithelial and mesenchymal states during EMT and its reversion. Sci Rep 6:27072

    Article  CAS  Google Scholar 

  21. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1):45–53

    Article  CAS  Google Scholar 

  22. Maia FR, Lourenco AH, Granja PL et al (2014) Effect of cell density on mesenchymal stem cells aggregation in RGD-alginate 3D matrices under osteoinductive conditions. Macromol Biosci 14(6):759–771

    Article  CAS  Google Scholar 

  23. Fonseca KB, Gomes DB, Lee K et al (2014) Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems. Biomacromolecules 15(1):380–390

    Article  CAS  Google Scholar 

  24. Fonseca KB, Maia FR, Cuz FA et al (2013) Enzymatic, physiocochemical and biological properties of MMP-sensitive alginate hydrogels. Soft Matter 9:3283–3292

    Article  CAS  Google Scholar 

  25. Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22(6):511–521

    Article  CAS  Google Scholar 

  26. Oliveira SM, Barrias CC, Almeida IF et al (2008) Injectability of a bone filler system based on hydroxyapatite microspheres and a vehicle with in situ gel-forming ability. J Biomed Mater Res B Appl Biomater 87B(1):49–58

    Article  CAS  Google Scholar 

  27. Fonseca K, Bidarra SJ, Oliveira MJ et al (2011) Molecularly-designed alginate hydrogels susceptible to local proteolysis as 3D cellular microenvironments. Acta Biomater 7(4):1674–1682

    Article  CAS  Google Scholar 

  28. Alsberg E, Kong HJ, Hirano Y et al (2003) Regulating bone formation via controlled scaffold degradation. J Dent Res 82(11):903–908

    Article  CAS  Google Scholar 

  29. Formo K, Aarstad OA, Skjak-Braek G et al (2014) Lyase-catalyzed degradation of alginate in the gelled state: effect of gelling ions and lyase specificity. Carbohydr Polym 110:100–106

    Article  CAS  Google Scholar 

  30. D’Ayala G, Malinconico M, Laurienzo P (2008) Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 13(9):2069–2106

    Article  Google Scholar 

  31. Fischer AH, Jacobson KA, Rose J et al (2008) Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc 2008:pdb.prot4986

    Google Scholar 

  32. Ahmad R, Oprenyeszk F, Sanchez C et al (2015) Chitosan enriched three-dimensional matrix reduces inflammatory and catabolic mediators production by human chondrocytes. PLoS One 10(5):e0128362

    Article  Google Scholar 

  33. Sharma U, Pal D, Prasad R (2014) Alkaline phosphatase: an overview. Indian J Clin Biochem 29(3):269–278

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Project 3DEMT funded by POCI-Operacional Programme for Competitiveness and Internationalisation via FEDER-Fundo Europeu de Desenvolvimento Regional (POCI-01-0145-FEDER-016627) and by Portuguese Foundation for Science and Technology (FCT) via OE-Orçamento de Estado (PTDC/BBB-ECT/251872014). The authors thank FCT the post-doctoral grant SFRH/BPD/80571/2011 (Sílvia J. Bidarra) and the IF research position IF/00296/2015 (Cristina C. Barrias).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina C. Barrias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bidarra, S.J., Barrias, C.C. (2018). 3D Culture of Mesenchymal Stem Cells in Alginate Hydrogels. In: Turksen, K. (eds) Stem Cell Niche. Methods in Molecular Biology, vol 2002. Humana, New York, NY. https://doi.org/10.1007/7651_2018_185

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_185

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9507-3

  • Online ISBN: 978-1-4939-9508-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics