Skip to main content

Complete Assessment of Multilineage Differentiation Potential of Human Skeletal Muscle-Derived Mesenchymal Stem/Stromal Cells

  • Protocol
  • First Online:
Stem Cells and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2045))

Abstract

The minimal criteria for mesenchymal stem/stromal cell (MSC) identification set by the International Society for Cellular Therapy include plastic adherence, presence and absence of a set of surface antigens and in vitro multilineage differentiation. This differentiation is assessed through stimulation of MSCs with defined combination and concentration of growth factors towards specific lineages and histological confirmation of the presence of differentiated cells. Here we provide protocols for multilineage differentiation, namely, osteogenesis, adipogenesis, chondrogenesis and myogenesis. We also provide their respective histological analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalinina NI, Sysoeva VY, Rubina KA et al (2011) Mesenchymal stem cells in tissue growth and repair. Acta Nat 3:30–37

    Article  CAS  Google Scholar 

  2. Qi K, Li N, Zhang Z et al (2018) Tissue regeneration: the crosstalk between mesenchymal stem cells and immune response. Cell Immunol 326:86–93. https://doi.org/10.1016/j.cellimm.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  3. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    CAS  PubMed  Google Scholar 

  4. Beane OS, Fonseca VC, Cooper LL et al (2014) Impact of aging on the regenerative properties of bone-marrow-, muscle-, and adipose-derived mesenchymal stem/ stromal cells. PLoS One 9:1–22. https://doi.org/10.1371/journal.pone.0115963

    Article  CAS  Google Scholar 

  5. Wagner W, Wein F, Seckinger A et al (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416

    Article  CAS  Google Scholar 

  6. Dominici M, Le BK, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  Google Scholar 

  7. Čamernik K, Barlič A, Drobnič M et al (2018) Mesenchymal stem cells in the musculoskeletal system: from animal models to human tissue regeneration. Stem Cell Rev 14(3):346–369. https://doi.org/10.1007/s12015-018-9800-6

    Article  CAS  Google Scholar 

  8. Burlacu A, Rosca AM, Maniu H et al (2008) Promoting effect of 5-azacytidine on the myogenic differentiation of bone marrow stromal cells. Eur J Cell Biol 87:173–184. https://doi.org/10.1016/j.ejcb.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  9. Wakitani S, Saito T, Caplan A (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426

    Article  CAS  Google Scholar 

  10. Yang Y-HK, Ogando CR, Wang See C et al (2018) Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 9:131. https://doi.org/10.1186/s13287-018-0876-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Langenbach F, Handschel JR (2013) Effects of dexamethasone, ascorbic acid and ß-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther 4:117. https://doi.org/10.1186/scrt328

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu N, Liu H, Qu F et al (2013) Hypoxia inhibits the differentiation of mesenchymal stem cells into osteoblasts by activation of Notch signaling. Exp Mol Pathol 94:33–39. https://doi.org/10.1016/j.yexmp.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  13. Autengruber A, Gereke M, Hansen G et al (2012) Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. Eur J Microbiol Immunol 2:112–120. https://doi.org/10.1556/EuJMI.2.2012.2.3

    Article  CAS  Google Scholar 

  14. Zuliani CC, Bombini MF, de AKC et al (2018) Micromass cultures are effective for differentiation of human amniotic fluid stem cells into chondrocytes. Clinics (Sao Paulo) 73:e268. https://doi.org/10.6061/clinics/2018/e268

    Article  Google Scholar 

  15. Ruedel A, Hofmeister S, Bosserhoff A-K (2013) Development of a model system to analyze chondrogenic differentiation of mesenchymal stem cells. Int J Clin Exp Pathol 6:3042–3048

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovenian Research Agency, J3-7245 Research Project and P3-0298 Research Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janja Zupan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Čamernik, K., Zupan, J. (2018). Complete Assessment of Multilineage Differentiation Potential of Human Skeletal Muscle-Derived Mesenchymal Stem/Stromal Cells. In: Turksen, K. (eds) Stem Cells and Aging . Methods in Molecular Biology, vol 2045. Humana, New York, NY. https://doi.org/10.1007/7651_2018_200

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_200

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9712-1

  • Online ISBN: 978-1-4939-9713-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics