Skip to main content

Human Skeletal Muscle-Derived Mesenchymal Stem/Stromal Cell Isolation and Growth Kinetics Analysis

  • Protocol
  • First Online:
Stem Cells and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2045))

Abstract

The most studied sources of mesenchymal stem/stromal cells (MSCs) are bone marrow and adipose tissue. However skeletal muscle represents an interesting source of diverse subpopulations of MSCs, such as paired box 7 (Pax-7)-positive satellite cells, fibro-/adipogenic progenitors, PW1-positive interstitial cells and others. The specific properties of some of these muscle-derived cells have encouraged the development of cell therapies for muscle regeneration. However, the identity and multilineage potential of the diverse muscle-resident cells should first be evaluated in vitro, followed by in vivo clinical trials to predict their regenerative capacity. Here, we present protocols for the isolation of MSCs from skeletal muscle using enzymatic digestion and mechanical trituration. We also provide a method to determine their specific growth rate, a feature that is of particular interest when designing cell therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horwitz EM, Le BK, Dominici M et al (2005) Clarification of the nomenclature for MSCs: the International Society for Cellular Therapy position statement. Cytotherapy 7:393–395

    Article  CAS  Google Scholar 

  2. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    CAS  PubMed  Google Scholar 

  3. Čamernik K, Barlič A, Drobnič M et al (2018) Mesenchymal stem cells in the musculoskeletal system: from animal models to human tissue regeneration? Stem Cell Rev 14(3):346–369. https://doi.org/10.1007/s12015-018-9800-6

    Article  CAS  Google Scholar 

  4. Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139:2845–2856. https://doi.org/10.1242/dev.069088

    Article  CAS  PubMed  Google Scholar 

  5. Hamrick MW, McGee-Lawrence ME, Frechette DM (2016) Fatty infiltration of skeletal muscle: mechanisms and comparisons with bone marrow adiposity. Front Endocrinol (Lausanne) 7:1–7. https://doi.org/10.3389/fendo.2016.00069

    Article  Google Scholar 

  6. Cottle BJ, Lewis FC, Shone V et al (2017) Skeletal muscle-derived interstitial progenitor cells (PICs) display stem cell properties, being clonogenic, self-renewing, and multi-potent in vitro and in vivo. Stem Cell Res Ther 8(1):158. https://doi.org/10.1186/s13287-017-0612-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mizukami A, Swiech K (2018) Mesenchymal stromal cells: from discovery to manufacturing and commercialization. Stem Cells Int 2018:4083921. https://doi.org/10.1155/2018/4083921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heathman TRJ, Rafiq QA, Chan AKC et al (2016) Characterization of human mesenchymal stem cells from multiple donors and the implications for large-scale bioprocess development. Biochem Eng J 108:14–23. https://doi.org/10.1016/j.bej.2015.06.018

    Article  CAS  Google Scholar 

  9. Qi W, Yuan W, Yan J et al (2014) Growth and accelerated differentiation of mesenchymal stem cells on graphene oxide/poly-l-lysine composite films. J Mater Chem B 2:5461–5467. https://doi.org/10.1039/C4TB00856A

    Article  CAS  Google Scholar 

  10. Tsai C-C, Yew T-L, Yang D-C et al (2012) Benefits of hypoxic culture on bone marrow multipotent stromal cells. Am J Blood Res 2:148–159

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Autengruber A, Gereke M, Hansen G et al (2012) Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. Eur J Microbiol Immunol 2:112–120. https://doi.org/10.1556/EuJMI.2.2012.2.3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovenian Research Agency, J3-7245 Research Project and P3-0298 Research Programme and by the ARTE Project EU Interreg Italia Slovenia 2014-2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janja Zupan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Čamernik, K., Marc, J., Zupan, J. (2018). Human Skeletal Muscle-Derived Mesenchymal Stem/Stromal Cell Isolation and Growth Kinetics Analysis. In: Turksen, K. (eds) Stem Cells and Aging . Methods in Molecular Biology, vol 2045. Humana, New York, NY. https://doi.org/10.1007/7651_2018_201

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_201

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9712-1

  • Online ISBN: 978-1-4939-9713-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics