Skip to main content

Targeted, Amplicon-Based, Next-Generation Sequencing to Detect Age-Related Clonal Hematopoiesis

  • Protocol
  • First Online:
Stem Cells and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2045))

Abstract

Aging hematopoietic stem cells acquire mutations that sometimes impart a selective advantage. Next-generation DNA sequencing (NGS) can be used to detect expanded peripheral blood progeny of a mutant clone, usually carrying just one cancer-driver mutation, most often in the epigenetic regulator genes, DNMT3A or TET2. This phenomenon is known as clonal hematopoiesis (CH), age-related CH (ARCH) when considering its association with age, and CH of indeterminate potential (CHIP) when the variant allele fraction (VAF) is at least 2% in peripheral leukocytes. CHIP is present in at least 10–15% of adults older than 65 years and is a risk factor for hematological neoplasms and diseases exacerbated by mutant, hyper-inflammatory, monocytes/macrophages, such as atherosclerotic cardiovascular disease. Therefore, the detection of CHIP has important clinical consequences. Herein, we present a protocol for the generation of targeted, amplicon-based, NGS libraries for ion semiconductor sequencing and CHIP detection, using Ion Torrent platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaiswal S, Fontanillas P, Flannick J et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498

    Article  Google Scholar 

  2. Genovese G, Kähler AK, Handsaker RE et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477–2487

    Article  Google Scholar 

  3. McKerrell T, Park N, Moreno T et al (2015) Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep 10:1239–1245

    Article  CAS  Google Scholar 

  4. Steensma DP, Bejar R, Jaiswal S et al (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126:9–16

    Article  CAS  Google Scholar 

  5. Shlush LI (2018) Age-related clonal hematopoiesis. Blood 131:496–504

    Article  CAS  Google Scholar 

  6. Abelson S, Collord G, Ng SWK et al (2018) Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559:400–404

    Article  CAS  Google Scholar 

  7. Desai P, Mencia-Trinchant N, Savenkov O et al (2018) Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med 24:1015–1023

    Article  CAS  Google Scholar 

  8. Bowman RL, Busque L, Levine RL (2018) Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 22:157–170

    Article  CAS  Google Scholar 

  9. Steensma DP (2018) Clinical consequences of clonal hematopoiesis of indeterminate potential. Blood Adv 2:3404–3410

    Article  CAS  Google Scholar 

  10. Zhang Q, Zhao K, Shen Q et al (2015) Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525:389–393

    Article  CAS  Google Scholar 

  11. Fuster JJ, MacLauchlan S, Zuriaga MA et al (2017) Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355:842–847

    Article  CAS  Google Scholar 

  12. Jaiswal S, Natarajan P, Silver AJ et al (2017) Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 377:111–121

    Article  Google Scholar 

  13. Cull AH, Snetsinger B, Buckstein R et al (2017) Tet2 restrains inflammatory gene expression in macrophages. Exp Hematol 55:56–70.e13

    Article  CAS  Google Scholar 

  14. Young AL, Challen GA, Birmann BM et al (2016) Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 7:12484

    Article  CAS  Google Scholar 

  15. Rothberg JM, Hinz W, Rearick TM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352

    Article  CAS  Google Scholar 

  16. Sekeres MA, Othus M, List AF et al (2017) Randomized Phase II Study of azacitidine alone or in combination with lenalidomide or with vorinostat in higher-risk myelodysplastic syndromes and chronic myelomonocytic leukemia: North American Intergroup Study SWOG S1117. J Clin Oncol 35:2745–2753

    Article  CAS  Google Scholar 

  17. Buscarlet M, Provost S, Zada YF et al (2017) DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood 130:753–762

    Article  CAS  Google Scholar 

  18. Buscarlet M, Provost S, Zada YF et al (2018) Lineage restriction analyses in CHIP indicate myeloid bias for TET2 and multipotent stem cell origin for DNMT3A. Blood 132:277–280

    Article  CAS  Google Scholar 

  19. Cook E, Izukawa T, Young S et al (2018) Feeding the fire: the comorbid and inflammatory backdrop of clonal hematopoiesis of indeterminate potential (CHIP) by mutation subtype. Blood 130:426

    Google Scholar 

  20. Coombs CC, Zehir A, Devlin SM et al (2017) Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21:374–382

    Article  CAS  Google Scholar 

  21. Zink F, Stacey SN, Norddahl GL et al (2017) Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130:742–752

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Harriet Feilloter, Dr. Xudong Liu, Dr. Amy McNaughton, Dr. Xiao Zhang, and Dr. Paul Park for initial assistance with Ion Torrent Sequencing. Funding was provided by the Southeastern Ontario Academic Medical Organization (SEAMO) Innovation Fund, the University Hospitals Kingston Fund (UHKF)/Women’s Giving Circle, and the Ontario Institute for Cancer Research (OICR)/Ontario Molecular Pathology Research Network (OMPRN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Rauh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Snetsinger, B., Ferrone, C.K., Rauh, M.J. (2019). Targeted, Amplicon-Based, Next-Generation Sequencing to Detect Age-Related Clonal Hematopoiesis. In: Turksen, K. (eds) Stem Cells and Aging . Methods in Molecular Biology, vol 2045. Humana, New York, NY. https://doi.org/10.1007/7651_2019_216

Download citation

  • DOI: https://doi.org/10.1007/7651_2019_216

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9712-1

  • Online ISBN: 978-1-4939-9713-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics