Skip to main content
Book cover

DNA Vaccines pp 253–269Cite as

Bulk and Microfluidic Synthesis of Stealth and Cationic Liposomes for Gene Delivery Applications

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2197))

Abstract

This chapter describes the synthesis of stealth and cationic liposomes and their complexation with plasmid DNA to generate lipoplexes for gene delivery applications. Two techniques are presented: a top-down approach which requires a second step of processing for downsizing the liposomes (i.e., ethanol injection method) and a microfluidic technique that explores the diffusion of ethanol in water to allow the proper lipid self-assembly. The synthesis of stealth liposomes is also a challenge since the use of poly(ethylene glycol) favors the formation of oblate micelles. In this protocol, the stealth cationic liposome synthesis by exploring the high ionic strength to overcome the formation of secondary structures like micelles is described. Finally, the electrostatic complexation between cationic liposomes and DNA is described, indicating important aspects that guarantee the formation of uniform lipoplexes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kaleko M, Garcia JV, Miller AD (1991) Persistent gene expression after retroviral gene transfer into liver cells in vivo. Hum Gene Ther 32:27–32

    Article  Google Scholar 

  2. de la Torre LG, Rosada RS, Trombone APF et al (2009) The synergy between structural stability and DNA-binding controls the antibody production in EPC/DOTAP/DOPE liposomes and DOTAP/DOPE lipoplexes. Colloids Surf B Biointerfaces 73:175–184

    Article  Google Scholar 

  3. Verma IM, Weitzman MD (2005) Gene therapy: twenty-first century medicine. Annu Rev Biochem 74:711–738

    Article  CAS  Google Scholar 

  4. Naldini L (2015) Gene therapy returns to centre stage. Nature 526:351–360

    Article  CAS  Google Scholar 

  5. Zylberberg C, Gaskill K, Pasley S et al (2017) Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther 24:441–452

    Article  CAS  Google Scholar 

  6. Audouy S a L, de Leij LFMH, Hoekstra D et al (2002) In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm Res 19:1599–1605

    Article  Google Scholar 

  7. Sternberg B, Sorgi FL, Huang L (1994) New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Lett 356:361–366

    Article  CAS  Google Scholar 

  8. Mönkkönen J, Urtti A (1998) Lipid fusion in oligonucleotide and gene delivery with cationic lipids. Adv Drug Deliv Rev 34:37–49

    Article  Google Scholar 

  9. Parker AL, Newman C, Briggs S et al (2003) Nonviral gene delivery: techniques and implications for molecular medicine. Expert Rev Mol Med 5:1–15

    Article  Google Scholar 

  10. Allen TM, Hansen C (1991) Pharmacokinetics of stealth versus conventional liposomes: effect of dose. BBA-Biomembranes 1068:133–141

    Article  CAS  Google Scholar 

  11. Suk JS, Xu Q, Kim N et al (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51

    Article  CAS  Google Scholar 

  12. Trevisan JE, Cavalcanti LP, Oliveira CL et al (2011) Technological aspects of scalable processes for the production of functional liposomes for gene therapy. In: Non-viral gene therapy. IntechOpen, Crotia. https://doi.org/10.5772/17869

    Chapter  Google Scholar 

  13. Maulucci G, De Spirito M, Arcovito G et al (2005) Particle distribution in DMPC vesicles solutions undergoing different sonication times. Biophys J 88:3545–3550

    Article  CAS  Google Scholar 

  14. De Paula Rigoletto T, Silva CL, Santana MHA et al (2012) Effects of extrusion, lipid concentration and purity on physico-chemical and biological properties of cationic liposomes for gene vaccine applications. J Microencapsul 29:759–769

    Article  Google Scholar 

  15. Pupo E, Padrón A, Santana E et al (2005) Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization-extrusion technique. J Control Release 104:379–396

    Article  CAS  Google Scholar 

  16. Meure LA, Foster NR, Dehghani F (2008) Conventional and dense gas techniques for the production of liposomes: a review. AAPS PharmSciTech 9:798–809

    Article  CAS  Google Scholar 

  17. Balbino TA, Aoki NT, Gasperini AAM et al (2013) Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications. Chem Eng J 226:423–433

    Article  CAS  Google Scholar 

  18. Perli G, Pessoa ACSN, Balbino TA et al (2019) Ionic strength for tailoring the synthesis of monomodal stealth cationic liposomes in microfluidic devices. Colloids Surf B Biointerfaces 179:233–241

    Article  CAS  Google Scholar 

  19. Eş I, Ok MT, Puentes-Martinez XE et al (2018) Evaluation of siRNA and cationic liposomes complexes as a model for in vitro siRNA delivery to cancer cells. Colloids Surf A Physicochem Eng Asp 555:280–289

    Article  Google Scholar 

  20. Balbino TA, Gasperini AAM, Oliveira CLP et al (2012) Correlation of the physicochemical and structural properties of pDNA/cationic liposome complexes with their in vitro transfection. Langmuir 28:11535–11545

    Article  CAS  Google Scholar 

  21. Vitor MT, Bergami-Santos PC, Piedade Cruz KS et al (2016) Dendritic cells stimulated by cationic liposomes. J Nanosci Nanotechnol 16:270–279

    Article  CAS  Google Scholar 

  22. Gómez-Mascaraque LG, Casagrande Sipoli C, de La Torre LG et al (2017) Microencapsulation structures based on protein-coated liposomes obtained through electrospraying for the stabilization and improved bioaccessibility of curcumin. Food Chem 233:343–350

    Article  Google Scholar 

  23. Wetzer B, Gerardo BYK, Frederic M et al (2001) Reducible cationic lipids for gene transfer. Biochem J 356:747–756

    Article  CAS  Google Scholar 

  24. Balbino TA, Azzoni AR, de La Torre LG (2013) Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy. Colloids Surf B Biointerfaces 111:203–210

    Article  CAS  Google Scholar 

  25. Moreira NH, de Almeida AL d J, de Oliveira Piazzeta MH et al (2009) Fabrication of a multichannel PDMS/glass analytical microsystem with integrated electrodes for amperometric detection. Lab Chip 9:115–121

    Article  CAS  Google Scholar 

  26. de Paula Rigoletto T, Zaniquelli MED, Santana MHA et al (2011) Surface miscibility of EPC/DOTAP/DOPE in binary and ternary mixed monolayers. Colloids Surf B Biointerfaces 83:260–269

    Article  Google Scholar 

  27. Vitor MT, Bergami-Santos PC, Zômpero RHF et al (2017) Cationic liposomes produced via ethanol injection method for dendritic cell therapy. J Liposome Res 27:249–263

    Article  CAS  Google Scholar 

  28. Toledo MAS, Janissen R, Favaro MTP et al (2012) Development of a recombinant fusion protein based on the dynein light chain LC8 for non-viral gene delivery. J Control Release 159:222–231

    Article  CAS  Google Scholar 

  29. Eş I, Montebugnoli LJ, Filippi MFP et al (2020) High-throughput conventional and stealth cationic liposome synthesis using a chaotic advection-based microfluidic device combined with a centrifugal vacuum concentrator. Chem Eng J 382:122821

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucimara Gaziola de la Torre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

de la Torre, L.G., Pessoa, A.C.S.N., de Carvalho, B.G., Taketa, T.B., Eş, I., Perli, G. (2021). Bulk and Microfluidic Synthesis of Stealth and Cationic Liposomes for Gene Delivery Applications. In: Sousa, Â. (eds) DNA Vaccines. Methods in Molecular Biology, vol 2197. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0872-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0872-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0871-5

  • Online ISBN: 978-1-0716-0872-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics