Skip to main content

Main Features of DNA-Based Vectors for Use in Lactic Acid Bacteria and Update Protocols

  • Protocol
  • First Online:
Book cover DNA Vaccines

Abstract

DNA vaccines have been used as a promising strategy for delivery of immunogenic and immunomodulatory molecules into the host cells. Although, there are some obstacles involving the capability of the plasmid vector to reach the cell nucleus in great number to promote the expected benefits. In order to improve the delivery and, consequently, increase the expression levels of the target proteins carried by DNA vaccines, alternative methodologies have been explored, including the use of non-pathogenic bacteria as delivery vectors to carry, deliver, and protect the DNA from degradation, enhancing plasmid expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ingolotti M, Kawalekar O, Shedlock DJ et al (2010) DNA vaccines for targeting bacterial infections. Expert Rev Vaccines 9:747–763

    Article  CAS  Google Scholar 

  2. Landete JM (2017) A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Crit Rev Biotechnol 37:296–308

    Article  CAS  Google Scholar 

  3. Hobernik D, Bros M (2018) DNA vaccines—how far from clinical use? Int J Mol Sci 19:3605

    Article  Google Scholar 

  4. Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9:776–788

    Article  CAS  Google Scholar 

  5. Fuller DH, Loudon P, Schmaljohn C (2006) Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods 40:86–97

    Article  CAS  Google Scholar 

  6. Vasan S, Hurley A, Schlesinger SJ et al (2011) In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers. PLoS One 6:e19252

    Article  CAS  Google Scholar 

  7. Wang S, Zhang C, Zhang L et al (2008) The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine 26:2100–2110

    Article  CAS  Google Scholar 

  8. Pereira VB, Saraiva TDL, Souza BM et al (2015) Development of a new DNA vaccine based on mycobacterial ESAT-6 antigen delivered by recombinant invasive Lactococcus lactis FnBPA+. Appl Microbiol Biotechnol 99:1817–1826

    Article  CAS  Google Scholar 

  9. Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14:667–685

    Article  CAS  Google Scholar 

  10. Wyszyńska A, Kobierecka P, Bardowski J et al (2015) Lactic acid bacteria—20 years exploring their potential as live vectors for mucosal vaccination. Appl Microbiol Biotechnol 99:2967–2977

    Article  Google Scholar 

  11. Schaffner W (1980) Direct transfer of cloned genes from bacteria to mammalian cells. Proc Natl Acad Sci U S A 77:2163–2167

    Article  CAS  Google Scholar 

  12. Courvalin P, Goussard S, Grillot-Courvalin C (1995) Gene transfer from bacteria to mammalian cells. C R Acad Sci III 318:1207–1212

    CAS  PubMed  Google Scholar 

  13. Pilgrim S, Stritzker J, Schoen C et al (2003) Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery. Gene Ther 10:2036–2045

    Article  CAS  Google Scholar 

  14. Daudel D, Weidinger G, Spreng S (2007) Use of attenuated bacteria as delivery vectors for DNA vaccines. Expert Rev Vaccines 6:97–110

    Article  CAS  Google Scholar 

  15. Dunham SP (2002) The application of nucleic acid vaccines in veterinary medicine. Res Vet Sci 73:9–16

    Article  CAS  Google Scholar 

  16. Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6:349–362

    Article  CAS  Google Scholar 

  17. Bermúdez-Humarán LG, Aubry C, Motta J-P et al (2013) Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol 16:278–283

    Article  Google Scholar 

  18. Sanders ME (2003) Probiotics: considerations for human health. Nutr Rev 61:91–99

    Article  Google Scholar 

  19. Hill C, Guarner F, Reid G et al (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514

    Article  Google Scholar 

  20. Mercenier A, Müller-Alouf H, Grangette C (2000) Lactic acid bacteria as live vaccines. Curr Issues Mol Biol 2(1):17–25

    CAS  PubMed  Google Scholar 

  21. Faudzi H, Faroque H, Chia SL et al (2018) Lactococcus lactis: LAB model organism for bacteria-mediated therapeutic strategies. Asia-Pacific J Mol Biol Biotechnol 26(1):1–10

    Article  Google Scholar 

  22. Guimarães VD, Innocentin S, Lefevre F et al (2006) Use of native Lactococci as vehicles for delivery of DNA into mammalian epithelial cells. Appl Environ Microbiol 72:7091–7097

    Article  Google Scholar 

  23. Chatel J-M, Pothelune L, Ah-Leung S et al (2008) In vivo transfer of plasmid from food-grade transiting lactococci to murine epithelial cells. Gene Ther 15:1184–1190

    Article  CAS  Google Scholar 

  24. Guimarães V, Innocentin S, Chatel J-M et al (2009) A new plasmid vector for DNA delivery using lactococci. Genet Vaccines Ther 7:4

    Article  Google Scholar 

  25. Chiabai MJ, Almeida JF, de Azevedo MGD et al (2019) Mucosal delivery of Lactococcus lactis carrying an anti-TNF scFv expression vector ameliorates experimental colitis in mice. BMC Biotechnol 19:38

    Article  CAS  Google Scholar 

  26. Tao L, Pavlova SI, Ji X et al (2011) A novel plasmid for delivering genes into mammalian cells with noninvasive food and commensal lactic acid bacteria. Plasmid 65:8–14

    Article  CAS  Google Scholar 

  27. Mancha-Agresti P, Drumond MM, Carmo FLR d et al (2017) A new broad range plasmid for DNA delivery in eukaryotic cells using lactic acid bacteria: in vitro and in vivo assays. Mol Ther Methods Clin Dev 4:83–91

    Article  CAS  Google Scholar 

  28. Coelho-Rocha ND, de Castro CP, de Jesus LCL et al (2018) Microencapsulation of lactic acid bacteria improves the gastrointestinal delivery and in situ expression of recombinant fluorescent protein. Front Microbiol 9:2398

    Article  Google Scholar 

  29. Yagnik B, Padh H, Desai P (2016) Construction of a new shuttle vector for DNA delivery into mammalian cells using non-invasive Lactococcus lactis. Microbes Infect 18:237–244

    Article  CAS  Google Scholar 

  30. Yagnik B, Sharma D, Padh H et al (2018) In vivo delivery of pPERDBY to BALB/c mice by LacVax® DNA-I and comparison of elicited immune response with conventional immunization methods. Gene Ther 25:485–496

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Mancha-Agresti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Coelho-Rocha, N.D. et al. (2021). Main Features of DNA-Based Vectors for Use in Lactic Acid Bacteria and Update Protocols. In: Sousa, Â. (eds) DNA Vaccines. Methods in Molecular Biology, vol 2197. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0872-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0872-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0871-5

  • Online ISBN: 978-1-0716-0872-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics