Skip to main content

Impact of a Plasmid DNA-Based Alphavirus Vaccine on Immunization Efficiency

  • Protocol
  • First Online:
DNA Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2197))

Abstract

Alphavirus vectors have been engineered for high-level gene expression relying originally on replication-deficient recombinant particles, more recently designed for plasmid DNA-based administration. As alphavirus-based DNA vectors encode the alphavirus RNA replicon genes, enhanced transgene expression in comparison to conventional DNA plasmids is achieved. Immunization studies with alphavirus-based DNA plasmids have elicited specific antibody production, have generated tumor regression and protection against challenges with infectious agents and tumor cells in various animal models. A limited number of clinical trials have been conducted with alphavirus DNA vectors. Compared to conventional plasmid DNA-based immunization, alphavirus DNA vectors required 1000-fold less DNA to elicit similar immune responses in rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delrue I, Verzele D, Madder A et al (2012) Inactivated virus vaccines: from chemistry to prophylaxis: merits, risks and challenges. Expert Rev Vaccines 11:695–719

    CAS  PubMed  Google Scholar 

  2. Deng MP, Hu ZH, Wang HL et al (2012) Developments of subunit and VLP vaccines against influenza a virus. Virol Sin 27:145–153

    CAS  PubMed  Google Scholar 

  3. Apostolopoulos V (2016) Vaccine delivery methods into the future. Vaccine 4:9. https://doi.org/10.3390/vaccines4020009

    Article  CAS  Google Scholar 

  4. Lundstrom K (2014) Alphavirus-based vaccines. Viruses 6:2392–2415

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zajakina A, Spunde K, Lundstrom K (2017) Application of Alphaviral vectors for immunomodulation in cancer therapy. Curr Pharmaceut Design 23:1–27

    Google Scholar 

  6. Chiarella P, Massi E, De Robertis M et al (2008) Strategies for effective naked-DNA against infectious diseases. Recent Pat Antiinfect Drug Discov 3:93–101

    CAS  PubMed  Google Scholar 

  7. Farris E, Brown DM, Ramer-Tait AE et al (2016) Micro- and nano-particulates for DNA vaccine delivery. Exp Biol Med 241:919–929

    CAS  Google Scholar 

  8. Tejeda-Mansir A, Garcia-Rendon A, Guerrero-German P (2018) Plasmid-DNA lipid and polymer nanovaccines: a new strategic in vaccines development. Biotechnol Genet Eng Rev 26:1–23

    Google Scholar 

  9. Knudsen ML, Ljungberg K, Tatoud R et al (2015) Alphavirus replicon DNA expressing HIV antigens is an excellent prime for boosting with recombinant Ankara (MVA) or with HIV gp140 protein antigen. PLoS One 10:e0117042

    PubMed  PubMed Central  Google Scholar 

  10. Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication and evolution. Micobiol Rev 58:491–562

    CAS  Google Scholar 

  11. Liljestrom P, Garoff H (1991) A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology 9:1356–1361

    CAS  PubMed  Google Scholar 

  12. Xiong C, Levis R, Shen P et al (1989) Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243:1188–1191

    CAS  PubMed  Google Scholar 

  13. Davis NL, Willis LV, Smith JF et al (1989) In vitro synthesis of infectious Venezuelan equine encephalitis virus RNA from a cDNA clone: analysis of a viable deletion mutant. Virology 171:189–204

    CAS  PubMed  Google Scholar 

  14. DiCiommo DP, Bremner R (1998) Rapid, high level protein production using DNA-based Semliki Forest virus vectors. J Biol Chem 273:18060–18066

    CAS  PubMed  Google Scholar 

  15. Lechardeur D, Lukacs GL (2006) Nucleocytoplasmic transport of plasmid DNA: a perilous journey from the cytoplasm to the nucleus. Hum Gene Ther 17:882–889

    CAS  PubMed  Google Scholar 

  16. Wolff JA, Ludtke JJ, Acsadi G et al (1992) Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet 1:363–369

    CAS  PubMed  Google Scholar 

  17. Wang Z, Troilo PJ, Wang X et al (2004) Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther 11:711–721

    CAS  PubMed  Google Scholar 

  18. Manam S, Ledwith BJ, Barnum AB et al (2000) Plasmid DNA vaccines: tissue distribution and effects of DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirology 43:273–281

    CAS  PubMed  Google Scholar 

  19. Jiao S, Williams P, Berg RK et al (1992) Direct gene transfer into nonhuman primate myofibers in vivo. Hum Gene Ther 3:21–33

    CAS  PubMed  Google Scholar 

  20. Mairhofer J, Lara AR (2014) Advances in host and vector development for the production of plasmid DNA vaccines. Methods Mol Biol 1139:505–541

    CAS  PubMed  Google Scholar 

  21. Lundstrom K (2019) Plasmid DNA-based Alphavirus Vaccines. Vaccines (Basel) 7:E29. https://doi.org/10.3390/vaccines7010029

    Article  CAS  Google Scholar 

  22. Hariharan MJ, Driver DA, Townsend K et al (1998) DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. J Virol 72:950–958

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Reddy JR, Kwang J, Varthakavi V et al (1999) Semliki Forest virus vector carrying the bovine viral diarrhea virus NS3 (p80) cDNA induced immune responses in mice and expressed BVDV protein in mammalian cells. Comp Immunol Microbiol Infect Dis 22:231–246

    CAS  PubMed  Google Scholar 

  24. Pasetti MF, Ramirez K, Resendiz-Albor A et al (2009) Sindbis virus-based measles DNA vaccines protect cotton rats against respiratory measles: relevance of antibodies, mucosal and systemic antibody-secreting cells, memory B cells, and Th1-type cytokines as correlates of immunity. J Virol 83:2789–2794

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun Y, Li N, Li HY et al (2010) Enhanced immunity against classical swine fever in pigs induced by prime-boost immunization using an alphavirus replicon-vectored DNA vaccine and a recombinant adenovirus. Vet Immunol Immunopathol 137:20–27

    CAS  PubMed  Google Scholar 

  26. Marin MQ, Perez P, Ljungberg K et al (2019) Potent anti-hepatitis C (HCV) T cell immune responses induced in mice vaccinated with DNA-launched RNA replicons and MVA-HCV. J Virol 93:e00055–e00019. https://doi.org/10.1128/JVI.00055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Öhlund P, Garcia-Arriaza J, Zusinaite E et al (2018) DNA-launched RNA replicon vaccines induce potent anti-ebolavirus immune responses that can be further improved by a recombinant MVA boost. Sci Rep 8:12459

    PubMed  PubMed Central  Google Scholar 

  28. Ren S, Wei Q, Cai L et al (2018) Alphavirus replicon DNA vectors expressing Ebola GP and VP40 antigens induce humoral and cellular immune responses in mice. Front Microbiol 8:2662

    PubMed  PubMed Central  Google Scholar 

  29. Kirman JR, Turon T, Su H et al (2003) Enhanced immunogenicity to Mycobacterium tuberculosis by vaccination with an alphavirus plasmid replicon expressing antigen 85A. Infect Immun 71:575–579

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dalmia N, Klimstra WB, Mason C et al (2015) DNA-launched alphavirus replicons encoding a fusion of mycobacterial antigens Acr and Ag85B are immunogenic and protective in a murine model of TB infection. PLoS One 10:e0136635

    PubMed  PubMed Central  Google Scholar 

  31. Zheng L, Hu Y, Hua Q et al (2017) Protective immune response in mice induced by a suicidal DNA vaccine encoding NTPase-II gene of toxoplasma gondii. Acta Trop 166:336–342

    CAS  PubMed  Google Scholar 

  32. Li N, Yu YZ, Yu WY et al (2011) Enhancement of the immunogenicity of DNA replicon vaccine of clostridium botulinum neurotoxin serotype A by GM-CSF gene adjuvant. Immunopharmacol Immunotoxicol 33:211–219

    CAS  PubMed  Google Scholar 

  33. Hsu KF, Hung CF, Cheng WF et al (2001) Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen. Gene Ther 8:376–383

    CAS  PubMed  Google Scholar 

  34. Van de Wall S, Ljungberg K, Ip PP et al (2018) Potent therapeutic efficacy of an alphavirus replicon DNA vaccine expressing human papilloma virus E6 and E7 antigens. Onco Targets Ther 7:e1487913

    Google Scholar 

  35. Lachman LB, Rao XM, Kremer RH et al (2001) DNA vaccination against neu reduces breast cancer incidence and metastasis in mice. Cancer Gene Ther 8:259–268

    CAS  PubMed  Google Scholar 

  36. Eralp Y, Wang X, Wang JP et al (2004) Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER2/neu in a murine mammary carcinoma model. Breast Cancer Res 6:R275–R283

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang X, Wang JP, Rao XM et al (2005) Prime-boost vaccination with plasmid and adenovirus gene vaccines control HER2/neu+ metastatic breast cancer in mice. Breast Cancer Res 7:R580–R588

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Leitner WW, Hwang LN, deVeer MJ et al (2003) Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 9:33–39

    CAS  PubMed  Google Scholar 

  39. Leslie MC, Zhao YJ, Lachman LB et al (2007) Immunization against MUC18/MCAM, a novel antigen that drives melanoma invasion and metastasis. Gene Ther 14:316–323

    CAS  PubMed  Google Scholar 

  40. Yin X, Wang W, Zhu X et al (2015) Synergistic antitumor efficacy of combined DNA vaccines targeting tumor cells and angiogenesis. Biochem Biophys Res Commun 465:239–244

    CAS  PubMed  Google Scholar 

  41. Yamanaka R, Xanthopoulos KG (2005) Induction of antigen-specific immune responses against malignant brain tumors by intramuscular injection of Sindbis DNA encoding gp100 and IL-18. DNA Cell Biol 24:317–324

    CAS  PubMed  Google Scholar 

  42. Ehrengruber MU, Lundstrom K (2016) Recombinant Alphavirus-mediated expression of ion channels and receptors in the brain. In: Luján R, Ciruela F (eds). Neuromethods Receptor and ion channel detection in the brain: methods and protocols, vol 110. Springer Science + Business Media, New York. https://doi.org/10.1007/978-1-4939-3064-7_7

    Chapter  Google Scholar 

  43. https://www.addgene.org/58970/

  44. DiCiommo DP, Duckett A, Burcescu I et al (2004) Retinoblastoma protein purification and transduction of retina and retinoblastoma cells using improved alphavirus vectors. Invest Ophthalmol Vis Sci 45:3320–3329

    PubMed  Google Scholar 

  45. Ulper L, Sarand I, Rausalu K et al (2008) Construction, properties, and potential application of infectious plasmids containing Semliki Forest virus full-length cDNA with a n inserted intron. J Virol Methods 148:265–270

    CAS  PubMed  Google Scholar 

  46. Colombage G, Hall R, Pavy M et al (1998) DNA-based and alphavirus-vectored immunization with PrM and E proteins elicits long-lived and protective immunity against the flavivirus, Murray Valley encephalitis virus. Virology 250:151–163

    CAS  PubMed  Google Scholar 

  47. Lundstrom K, Abenavoli A, Malgaroli A et al (2003) Novel Semliki Forest virus vectors with reduced toxicity and temperature-sensitivity for long-term enhancement of transgene expression. Mol Ther 7:202–209

    CAS  PubMed  Google Scholar 

  48. Agapov EV, Frolov I, Lindenbach BD et al (1998) Noncythopathic Sindbis virus RNA vectors for heterologous gene expression. Proc Natl Acad Sci U S A 95:12989–12994

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sjöberg EM, Suomalainen M, Garoff H (1994) A significantly improved Semliki Forest virus expression system based on translation enhancer segments from the viral capsid gene. Bio/Technology 12:1127–1131

    PubMed  Google Scholar 

  50. Voytas D, Ke N (2001) Detection and quantitation of radiolabeled proteins and DNA in gels and blot. Curr Protoc Mol Biol Appendix 3:3A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Lundstrom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lundstrom, K. (2021). Impact of a Plasmid DNA-Based Alphavirus Vaccine on Immunization Efficiency. In: Sousa, Â. (eds) DNA Vaccines. Methods in Molecular Biology, vol 2197. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0872-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0872-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0871-5

  • Online ISBN: 978-1-0716-0872-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics