Skip to main content

Molecular Adjuvants for DNA Vaccines: Application, Design, Preparation, and Formulation

  • Protocol
  • First Online:
DNA Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2197))

Abstract

Compared with conventional vaccines, the main advantage of DNA vaccine-based methods is its continued expression of the plasmid-encoded antigens followed by the induction of subsequent humoral and cellular immunities. DNA vaccines are currently used in animal models, but limited success has been obtained for use in clinical applications due to their poor immunogenicity. Various strategies are attempted to improve the induced immune response of DNA vaccines. It has been demonstrated that co-administration of molecular adjuvants with DNA vaccines is a promising approach to effectively elicit protective immunity by increasing the transfection efficiency of DNA vaccines. Genetic adjuvants are incorporated to promote activation of the transfected local antigen-presenting cells (APCs) and immune cells in the draining lymph node and polarization of T-cell subsets to decrease T-cell tolerance to the specific antigen. Here we provide an overview of different types of genetic adjuvants. The aim of the current chapter is to present a framework for the construction of a gene-based vaccine and adjuvant. Moreover, we describe the application of DNA vaccines co-administered with different types of genetic adjuvants and the methods to evaluate their potency in the mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iurescia S, Fioretti D, Rinaldi M (2014) Strategies for improving DNA vaccine performance. Methods Mol Biol 1143:21–31

    Article  CAS  PubMed  Google Scholar 

  2. Raska M, Turanek J (2015) DNA vaccines for the induction of immune responses in mucosal tissues. Mucosal Immunol 2:1307–1335

    Article  CAS  Google Scholar 

  3. Li L, Petrovsky N (2017) Molecular adjuvants for DNA vaccines. Curr Issues Mol Biol 22:17–40

    Article  PubMed  Google Scholar 

  4. Borja-Cabrera GP, Santos FB, Nico D et al (2012) The Leishmune® s nucleoside hydrolase DNA vaccine as an aid in immunotherapy of canine visceral leishmaniasis. Procedia Vaccinol 6:64–73

    Article  CAS  Google Scholar 

  5. Li L, Petrovsky N (2016) Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines 15:313–329

    Article  CAS  PubMed  Google Scholar 

  6. Fotouhi F, Shaffifar M, Farahmand B et al (2017) Adjuvant use of the NKT cell agonist alpha-galactosylceramide leads to enhancement of M2-based DNA vaccine immunogenicity and protective immunity against influenza a virus. Arch Virol 162:1251–1260

    Article  CAS  PubMed  Google Scholar 

  7. Saade F, Petrovsky N (2012) Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines 11:189–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suschak JJ, Williams JA, Schmaljohn CS (2017) Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccin Immunother 13:2837–2848

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim JJ, Yang J-S, Dentchev T, Dang K et al (2000) Chemokine gene adjuvants can modulate immune responses induced by DNA vaccines. J Interf Cytokine Res 20:487–498

    Article  CAS  Google Scholar 

  10. Okuda K, Kawamoto S, Fukushima J (2000) Cytokine and costimulatory factor-encoding plasmids as adjuvants for DNA vaccination. Methods Mol Med 29:197–204

    CAS  PubMed  Google Scholar 

  11. Wang B, Kang Y, Ascione R (2012) Cytokine genes as molecular adjuvants for DNA vaccines. Gene Vaccines 1:89–107

    Article  Google Scholar 

  12. Scheerlinck J-PY (2001) Genetic adjuvants for DNA vaccines. Vaccine 19:2647–2656

    Article  CAS  PubMed  Google Scholar 

  13. Bugeon L, Dallman MJ (2000) Costimulation of T cells. Am J Respir Crit Care Med 162:S164–S168

    Article  CAS  PubMed  Google Scholar 

  14. Dalod M, Chelbi R, Malissen B et al (2014) Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J 33:1104–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cohn L, Delamarre L (2014) Dendritic cell-targeted vaccines. Front Immunol 5:255

    Article  PubMed  PubMed Central  Google Scholar 

  16. Villarreal DO, Svoronos N, Wise MC et al (2015) Molecular adjuvant IL-33 enhances the potency of a DNA vaccine in a lethal challenge model. Vaccine 33:4313–4320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lladser A, Mougiakakos D, Tufvesson H et al (2011) DAI (DLM-1/ZBP1) as a genetic adjuvant for DNA vaccines that promotes effective antitumor CTL immunity. Mol Ther 19:594–601

    Article  CAS  PubMed  Google Scholar 

  18. Casali N, Preston A (2003) E coli plasmid vectors: methods and applications, vol 235. Springer Science & Business Media, New York, pp 121–140

    Book  Google Scholar 

  19. Humbert MV (2019) Cloning, expression, and purification of recombinant Neisseria gonorrhoeae proteins. Methods Mol Biol 1997:233–266

    Article  CAS  PubMed  Google Scholar 

  20. Madigan MT, Martinko JM, Bender KS et al (2014) Brock biology of microorganisms, 14th edn. Benjamin Cummings, San Francisco, pp 316–331

    Google Scholar 

  21. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 1, 3th edn. Cold Spring Harbor Laboratory Press, New York, pp 1.84–1.119

    Google Scholar 

  22. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, vol 1, 4th edn. Cold Spring Harbor Laboratory Press, New York, pp 157–261

    Google Scholar 

  23. Gupta SK, Dey S, Chellappa MM (2016) DNA vaccination in chickens. Methods Mol Biol 1404:165–178

    Article  PubMed  Google Scholar 

  24. Dalby B, Cates S, Harris A et al (2004) Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 33:95–103

    Article  CAS  PubMed  Google Scholar 

  25. Saeedi A, Ghaemi A, Tabarraei A et al (2014) Enhanced cell immune responses to hepatitis C virus core by novel heterologous DNA prime/lambda nanoparticles boost in mice. Virus Genes 49:11–21

    Article  CAS  PubMed  Google Scholar 

  26. Naderi M, Saeedi A, Moradi A et al (2013) Interleukin-12 as a genetic adjuvant enhances hepatitis C virus NS3 DNA vaccine immunogenicity. Virol Sin 28:167–173

    Article  CAS  PubMed  Google Scholar 

  27. Davtyan H, Petrushina I, Ghochikyan A (2014) Immunotherapy for Alzheimer’s disease: DNA-and protein-based epitope vaccines. Methods Mol Biol 1143:259–281

    Article  CAS  PubMed  Google Scholar 

  28. Hjertner B, Bengtsson T, Morein B et al (2018) A novel adjuvant G3 induces both Th1 and Th2 related immune responses in mice after immunization with a trivalent inactivated split-virion influenza vaccine. Vaccine 36:3340–3344

    Article  CAS  PubMed  Google Scholar 

  29. Fourati IS, Grenier A-J, Jolette É et al (2014) Development of an IFN-γ ELISpot assay to assess varicella-zoster virus-specific cell-mediated immunity following umbilical cord blood transplantation. J Vis Exp 89:e51643

    Google Scholar 

  30. Baumann T, Arndt KM, Müller KM (2013) Directional cloning of DNA fragments using deoxyinosine-containing oligonucleotides and endonuclease V. BMC Biotechnol 13:1–11

    Article  Google Scholar 

  31. Bola G (2005) Evaluating the role of G, C-nucleotides and length of overhangs in T4 DNA ligase efficiency. J Exp Microbiol Immunol 8:1–7

    Google Scholar 

  32. Gerstein AS (2001) Molecular biology problem solver: a laboratory guide. John Wiley & Sons, Hoboken, New Jersey, pp 225–266

    Book  Google Scholar 

  33. Farell EM, Alexandre G (2012) Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. BMC Res Notes 5:257

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tong J, Barany F, Cao W (2000) Ligation reaction specificities of an NAD+-dependent DNA ligase from the hyperthermophile Aquifex aeolicus. Nucleic Acids Res 28:1447–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moore D, Dowhan D (2002) Purification and concentration of DNA from aqueous solutions. Curr Protoc Mol Biol 59:2.1.1–2.1.10

    Article  Google Scholar 

  36. Ihle Ø, Michaelsen TE (2000) Efficient purification of DNA fragments using a protein binding membrane. Nucleic Acids Res 28:e76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tabor S (2001) DNA ligases. Curr Protoc Mol Biol. Chapter 3: 3.14.1-3.14.4

    Google Scholar 

  38. Chang AY, Chau V, Landas JA et al (2017) Preparation of calcium competent Escherichia coli and heat-shock transformation. JEMI Methods 1:22–25

    Google Scholar 

  39. Panja S, Aich P, Jana B et al (2008) How does plasmid DNA penetrate cell membranes in artificial transformation process of Escherichia coli? Mol Membr Biol 25:411–422

    Article  CAS  PubMed  Google Scholar 

  40. Escriou V, Ciolina C, Helbling-Leclerc A et al (1998) Cationic lipid-mediated gene transfer: analysis of cellular uptake and nuclear import of plasmid DNA. Cell Biol Toxicol 14:95–104

    Article  CAS  PubMed  Google Scholar 

  41. Desjardins P, Conklin D (2010) NanoDrop microvolume quantitation of nucleic acids. J Vis Exp 45:e2565

    Google Scholar 

  42. Gargiulo S, Greco A, Gramanzini M et al (2012) Mice anesthesia, analgesia, and care, part I: anesthetic considerations in preclinical research. ILAR J 53:E55–E69

    Article  PubMed  Google Scholar 

  43. Shimizu S (2004) Routes of administration. The laboratory mouse chapter 32:527–541

    Article  Google Scholar 

  44. Devarajan P, Bautista B, Vong AM et al (2016) New insights into the generation of CD4 memory may shape future vaccine strategies for influenza. Front Immunol 7:1–7

    Article  Google Scholar 

  45. TIP T (2010) ELISA technical guide and protocols. Thermo Fisher Scientific Inc USA, Bartlesville, OK

    Google Scholar 

  46. Steinitz M (2000) Quantitation of the blocking effect of tween 20 and bovine serum albumin in ELISA microwells. Anal Biochem 282:232–238

    Article  CAS  PubMed  Google Scholar 

  47. Weiss AJ (2012) Overview of membranes and membrane plates used in research and diagnostic ELISPOT assays. Method Mol Biol 792:243–256

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge Pasteur Institute of Iran for the financial support. This work was supported by Pasteur Institute of Iran (grant 1029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Ghaemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sabbaghi, A., Ghaemi, A. (2021). Molecular Adjuvants for DNA Vaccines: Application, Design, Preparation, and Formulation. In: Sousa, Â. (eds) DNA Vaccines. Methods in Molecular Biology, vol 2197. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0872-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0872-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0871-5

  • Online ISBN: 978-1-0716-0872-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics