Skip to main content

Scale-Up of Plasmid DNA Downstream Process Based on Chromatographic Monoliths

  • Protocol
  • First Online:
Book cover DNA Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2197))

Abstract

Purification of high-quality plasmid DNA in large quantities is a crucial step in its production for therapeutic use and is usually conducted by different chromatographic techniques. Large-scale preparations require the optimization of yield and homogeneity, while maximizing removal of contaminants and preserving molecular integrity. The advantages of Convective Interaction Media® (CIM®) monolith stationary phases, including low backpressure, fast separation of macromolecules, and flow-rate-independent resolution qualified them to be used effectively in separation of plasmid DNA on laboratory as well as on large scale. A development and scale-up of plasmid DNA downstream process based on chromatographic monoliths is described and discussed below. Special emphasis is put on the introduction of process analytical technology principles and tools for optimization and control of a downstream process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulrahman A, Ghanem A (2018) Recent advances in chromatographic purification of plasmid DNA for gene therapy and DNA vaccines: a review. Anal Chim Acta 1025:41–57

    Article  CAS  Google Scholar 

  2. Jungbauer A (2013) Continuous downstream processing of biopharmaceuticals. Trends Biotechnol 31:479–492

    Article  CAS  Google Scholar 

  3. Podgornik A, Yamamoto S, Peterka M et al (2013) Fast separation of large biomolecules using short monolithic columns. J Chromatogr B 927:80–89

    Article  CAS  Google Scholar 

  4. Urthaler J, Schlegl R, Podgornik A et al (2005) Application of monoliths for plasmid DNA purification development and transfer to production. J Chromatogr A 1065:93–106

    Article  CAS  Google Scholar 

  5. Podgornik A, Barut M, Peterka M et al (2012) Monoliths in bioprocessing. In: Biopharmaceutical production technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 333–375

    Chapter  Google Scholar 

  6. Home—BIA Separations. https://www.biaseparations.com/

  7. Smrekar F, Podgornik A, Ciringer M et al (2010) Preparation of pharmaceutical-grade plasmid DNA using methacrylate monolithic columns. Vaccine 28:2039–2045

    Article  CAS  Google Scholar 

  8. Cardoso S, Černigoj U, Lendero Krajnc N et al (2015) Chromatographic purification of plasmid DNA on hydrophobic methacrylate monolithic supports. Sep Purif Technol 147:139

    Article  CAS  Google Scholar 

  9. Černigoj U, Martinuč U, Cardoso S et al (2015) Sample displacement chromatography of plasmid DNA isoforms. J Chromatogr A 1414:103

    Article  Google Scholar 

  10. Rathore AS, Bhambure R, Ghare V (2010) Process analytical technology (PAT) for biopharmaceutical products. Anal Bioanal Chem 398:137–154

    Article  CAS  Google Scholar 

  11. Peljhan S, Jakop T, Šček D et al (2017) HPLC fingerprinting approach for raw material assessment and unit operation tracking for IVIG production from Cohn I+II+III fraction. Electrophoresis 38:2880–2885

    Article  CAS  Google Scholar 

  12. Mota É, Sousa Â, Černigoj U et al (2013) Rapid quantification of supercoiled plasmid deoxyribonucleic acid using a monolithic ion exchanger. J Chromatogr A 1291:114–121

    Article  CAS  Google Scholar 

  13. Gabor B, Černigoj U, Barut M et al (2013) Reversible entrapment of plasmid deoxyribonucleic acid on different chromatographic supports. J Chromatogr A 1311:106

    Article  CAS  Google Scholar 

  14. Gabor B, Černigoj U, Smrekar F (2010) In-process control of pDNA production on CIMac pDNA analytical column. Bioprocess Int 8

    Google Scholar 

  15. Hebel H, Attra H, Khan A et al (2006) Successful parallel development and integration of a plasmid-based biologic, container/closure system and electrokinetic delivery device. Vaccine 24:4607–4614

    Article  CAS  Google Scholar 

  16. Cai Y, Rodriguez S, Rameswaran R et al (2010) Production of pharmaceutical-grade plasmids at high concentration and high supercoiled percentage. Vaccine 28:2046–2052

    Article  CAS  Google Scholar 

  17. Kong S, Titchener-Hooker N, Levy MS (2006) Plasmid DNA processing for gene therapy and vaccination: studies on the membrane sterilisation filtration step. J Membrane Sci 280:824–831

    Article  CAS  Google Scholar 

  18. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  CAS  Google Scholar 

  19. Krajnc NL, Smrekar F, Štrancar A et al (2011) Adsorption behavior of large plasmids on the anion-exchange methacrylate monolithic columns. J Chromatogr A 1218:2413–2424

    Article  CAS  Google Scholar 

  20. Schmeer M, Buchholz T, Schleef M (2017) Plasmid DNA manufacturing for indirect and direct clinical applications. Hum Gene Ther 28:856–861

    Article  CAS  Google Scholar 

  21. Dubinina NI, Kurenbin OI, Tennikova TB (1996) Peculiarities of gradient ion-exchange high-performance liquid chromatography of proteins. J Chromatogr A 753:217–225

    Article  CAS  Google Scholar 

  22. Milavec Zmak P, Podgornik H, Jancar J et al (2003) Transfer of gradient chromatographic methods for protein separation to convective interaction media monolithic columns. J Chromatogr A 1006:195–205

    Article  CAS  Google Scholar 

  23. Yamamoto S, Kita A (2005) Theoretical background of short chromatographic layers. J Chromatogr A 1065:45–50

    Article  CAS  Google Scholar 

  24. Diamantino T, Pereira P, Queiroz JA et al (2016) Minicircle DNA purification using a CIM® DEAE-1 monolithic support. J Sep Sci 39:3544–3549

    Article  CAS  Google Scholar 

  25. Podgornik A, Hamachi M, Isakari Y et al (2017) Effect of pore size on performance of monolithic tube chromatography of large biomolecules. Electrophoresis 38:2892–2899

    Article  CAS  Google Scholar 

  26. Mao Y, Kulozik U (2018) Selective hydrolysis of whey proteins using a flow-through monolithic reactor with large pore size and immobilised trypsin. Int Dairy J 85:96–104

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the research and application team of BIA Separations, Ajdovščina, Slovenia, for contributing work and discussions, especially Franci Smrekar, Boštjan Gabor, Nika Lendero Krajnc, Miloš Barut, and Aleš Podgornik for their crucial roles in pDNA DSP development; Tomas Kostelec for his support with figures and text revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urh Černigoj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Černigoj, U., Štrancar, A. (2021). Scale-Up of Plasmid DNA Downstream Process Based on Chromatographic Monoliths. In: Sousa, Â. (eds) DNA Vaccines. Methods in Molecular Biology, vol 2197. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0872-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0872-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0871-5

  • Online ISBN: 978-1-0716-0872-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics