Skip to main content

Synthesis and Evaluation of Novel Neamine–Nucleoside Conjugates as Potential Antibiotic Targets for Escherichia coli 16S Ribosomal RNA

  • Protocol
  • First Online:
Epitranscriptomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1870))

Abstract

Based on the nucleobase rich character of the binding pocket of A-site 16S ribosomal RNA of Escherichia coli, it was proposed that the neamine moiety of synthesized Neamine–nucleoside conjugates could bind to the groove of RNA while the nucleobase moiety would bind specifically to the sequence of the 16S rRNA A-site fragment. Thus the designed conjugate compound 5 was found to have the same dissociation constant as neamine for binding to 16S rRNA and the neamine–amino acid substituted nucleoside conjugate 8 and 9 showed 6.3 and 4.8 times greater RNA binding affinity, respectively, as compared with neamine. The results obtained successfully demonstrate the need for chemically modifying neamine and probe the changes induced using NMR protocols to assist in the discovery of new aminoglycoside antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noller HF (2005) RNA structure: reading the ribosome. Science 309(5740):1508–1514. https://doi.org/10.1126/science.1111771

    Article  CAS  PubMed  Google Scholar 

  2. Gilbert D (1995) Aminoglycosides. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases. Oxford University Press, New York

    Google Scholar 

  3. Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM (1999) Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 43(4):727–737

    Article  CAS  Google Scholar 

  4. Wu B, Yang J, He Y, Swayze EE (2002) Reexamination of neomycin B degradation: efficient preparation of its CD and D rings as protected glycosyl donors. Org Lett 4(20):3455–3458

    Article  CAS  Google Scholar 

  5. Hung S, Thopate SR, Chi FC, Chang SW, Lee JC, Wang CC, Wen YS (2001) Anhydro-β-L-hexopyranoses as potent syntons in the synthesis of the disaccharide units of Bleomycin A2 and heparin. J Am Chem Soc 123:3153–3154

    Article  CAS  Google Scholar 

  6. Epp JB, Widlanski TS (1999) Facile preparation of nucleoside-5′-carboxylic acids. J Org Chem 64(1):293–295

    Article  CAS  Google Scholar 

  7. Claridge T (2009) High-resolution NMR techniques in organic chemistry. Elseiver Ltd, UK

    Google Scholar 

  8. Wüthrich K (1986) NMR of proteins and nucleic acids. John Wiley & Sons, Inc, New York

    Book  Google Scholar 

  9. Fourmy D, Recht MI, Blanchard SC, Puglisi JD (1996) Structure of the a site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274(5291):1367–1371

    Article  CAS  Google Scholar 

  10. Cai L, Li Q, Ren B, Yang ZJ, Zhang LR, Zhang LH (2007) Synthesis of aminodisaccharide –nucleoside conjugates for RNA binding. Tetrahedron 63:8135–8144

    Article  CAS  Google Scholar 

  11. Xu Y, Jin HW, Yang ZJ, Zhang LR, Zhang LH (2009) Synthesis and biological evaluation of novel neamine–nucleoside conjugates potentially targeting to RNAs. Tetrahedron 65:5228–5239

    Article  CAS  Google Scholar 

  12. Hendrix M, Priestley ES, Joyce GF, Wong CH (1997) Direct observation of aminoglycoside−RNA interactions by surface plasmon resonance. J Am Chem Soc 119:3641–3648

    Article  CAS  Google Scholar 

  13. Sucheck S, Wong AL, Koeller KM (2000) Design of bifunctional antibiotics that target bacterial rRNA and inhibit resistance-causing enzymes. J Am Chem Soc 122:5230–5231

    Article  CAS  Google Scholar 

  14. Liua M, Maoa X, Yea C, Huanga H, Nicholson JK, Lindon JC (1998) Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J Magn Reson 1:125–136

    Article  Google Scholar 

  15. Rance M, Sorensen OW, Bodenhausen G, Wagner G, Ernst RR, Wuthrich K (1983) Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun 117(2):479–485

    Article  CAS  Google Scholar 

  16. Bax A, Davis DG (1985) MLEV-17 based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65:355–360

    CAS  Google Scholar 

  17. Marek R, Králík L, Sklenář V (1997) Gradient-enhanced HSQC experiments for phase-sensitive detection of multiple bond interactions. Tetrahedron Lett 4:665–668

    Article  Google Scholar 

  18. Marat K (2010) SpinWorks 3.1.7 copyright © 2010. University of Manitoba, Winnipeg. Accessed 02 July 2012. http://www.umanitoba.ca/chemistry/nmr/spinworks/

    Google Scholar 

  19. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  CAS  Google Scholar 

  20. Goddard TD, Kneller DG SPARKY 3. University of California, San Francisco

    Google Scholar 

  21. Pettersen E, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  22. The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC

    Google Scholar 

  23. Mills N (2006) ChemDraw ultra 10.0. J Am Chem Soc 128:13649–13650

    Article  CAS  Google Scholar 

  24. Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wuthrich K (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids--IUPAC-IUBMB-IUPAB Inter-Union Task Group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy. Eur J Biochem 256(1):1–15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-He Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, ZJ., Concilio, MG., Ramesh, V., Zhang, LH. (2019). Synthesis and Evaluation of Novel Neamine–Nucleoside Conjugates as Potential Antibiotic Targets for Escherichia coli 16S Ribosomal RNA. In: Wajapeyee, N., Gupta, R. (eds) Epitranscriptomics. Methods in Molecular Biology, vol 1870. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8808-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8808-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8807-5

  • Online ISBN: 978-1-4939-8808-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics